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LOCAL-NONLOCAL INTERACTION AND
SPATIAL-TEMPORAL PATTERNS
IN SINGLE SPECIES POPULATION OVER
A PATCHY ENVIRONMENT

NEAL MADRAS, JIANHONG WU AND XINGFU ZOU

ABSTRACT. A system of functional differential equations
is proposed to describe the dynamics of a single-species pop-
ulation distributed over a patchy environment. Of major
concern is the impact of the interaction between local aggre-
gation and global delayed competition on the dynamics and
the spatial-temporal patterns of the considered system. It is
shown that spatially heterogeneous steady state solutions can
bifurcate from a spatially homogeneous steady state solution
if the dispersion rate is large. Moreover, Hopf bifurcation
of periodic solutions including phase-locked oscillations and
synchronous oscillations can occur when the time delay in the
global intraspecies competition reaches a critical value. Ex-
amples are provided to exhibit the complexity of the dynamics
and the co-existence of phase-locked oscillations and hetero-
geneous steady state solutions.

1. Introduction. Single species population models with or without
delay have been extensively investigated and the interaction of spatial
diffusion/dispersal with time delay has also been studied. For details,
we refer to [1, 2, 4-8, 13-16, 19, 22-27, 31-39] and the references
therein.

In [7], Britton proposed and analyzed a model of the form

o}
(1.1) %:u[1+au—(1+a)g*u]+Au
to account for local aggregation and global intraspecies competition,
where g is a given function and g * u represents a convolution in
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the spatial-temporal variables. The term au with a > 0 represents
an advantage in local aggregation and the term —(1 + a)g * u with
a > —1 represents a disadvantage of high global population levels. It
was shown that various types of bifurcating spatial-temporal solutions
including steady spatial periodic structures, periodic standing wave
solutions and periodic traveling wave solutions can occur by varying
certain parameters.

In this paper, we propose a system of ordinary functional differen-
tial equations as a discrete analog of Britton’s model to describe the
dynamics of a single species population distributed over a patchy envi-
ronment. We will justify the assumption that growth rate decreases as
the total population increases due to the accumulation of population’s
waste products in the environment, and we will point out that the non-
local competitive effect due to the migration of the population and the
resulting competition for resources is more complicated than the case
described in Britton’s model at the probability level. We will show,
by using several existing bifurcation theorems, that the proposed sys-
tem exhibits spatially heterogeneous steady state solutions and discrete
wave solutions bifurcating from a spatially homogeneous equilibrium,
More precisely, we prove that a bifurcation of spatially heterogeneous
steady state solutions takes place when we increase the strength of the
dispersal to a critical value, and discrete waves (or phase-locked os-
cillations) bifurcate (from a spatially homogeneous equilibrium) when
the delay passes through another critical value. This demonstrates the
possible co-existence of several spatial heterogeneous positive equilib-
ria and periodic solutions, in addition to some spatially homogeneous
equilibria and periodic solutions.

The rest of this paper is organized as follows. The model is derived in
Section 2. The steady state bifurcation and spatial-temporal structure
are described in Section 3 and Section 4 respectively.

2. The model. The focus of this paper is on a single species
population over a ring of n identical patches connected by dispersion
between adjacent patches. For concreteness, we consider a species of
land (or amphibious) animals that live on the shores of a lake. The
patches correspond to segments of the shoreline, and thus form a ring.
The lake serves as the animals’ principal source of water, and it is also
where their waste products accumulate. We assume that each particle
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of waste floats randomly around the lake, until it is removed, e.g.,
via a stream that flows out of the lake. We shall use the following
probabilities to describe the free motion of a waste particle:

p;,i(s) = Pr{a particle is in patch ¢ at time ¢ + s,
given that the particle is produced at patch j at time ¢}.

Here we assume time-homogeneity so that the probabilities are inde-
pendent of the initial time {. We emphasize that p; ;(s) describes the
motion of a hypothetical particle under the condition that it remains in
the lake forever. The amount of time that a real particle spends in the
lake is modeled by a random variable T'. We describe the probability
distribution of T by

w(s) =Pr{T > s}
= Pr {a particle is still in the lake at time ¢ + s,
given that the particle is produced at time t}.

Therefore, for a waste particle that was produced at time ¢ in patch j,
the probability that it is still in the lake at time ¢ + s and is in patch
i at that time is p;;(s)w(s). Therefore the expected number of waste
particles that are in patch i at time ¢ is proportional to

/0°° Z u;(t — 8)pji(s)w(s) ds

where u;(t) is the population of the species in patch j at time ¢ and
the proportionality constant is scaled to one. This gives us a measure
of the water quality in patch ¢ at time t. If we assume that the birth
rate is influenced (linearly) by the water quality, then we arrive at the
model

@.1) %u;(t) = ru;(t) [1+’yu,-(t) - A;Awuj(t—s)pj,;(s)w(s) ds]
+ d[ui41(t) — 2u(t) + u;—1(t)], ¢ (mod n)

for some constant A, where r > 0 is the intrinsic growth rate of the
population in each patch, d > 0 is the parameter measuring the strength
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of dispersion of the populations between patches and v > 0 (< 0)
represents the advantage (disadvantage) of local aggregation.

In the present paper, we shall analyze a version of this model that
has been simplified in two ways. Firstly, instead of integrating over
all possible time delays, we shall work with a single time delay = and
assume that the waste quality at time ¢ depends only on the population
accounts at time ¢ — 7. Mathematically, this is done by replacing the
delay weights w(s) in (2.1) by a Dirac delta function (s — 7) times a
constant, which can be absorbed into the existing constant A. If we
interpret 7 as the average amount of time that a waste particle spends in
the lake, then this seems to preserve the spirit of our model. Secondly,
we assume that the probability p; () depends on the relative location
of the two patches, and hence p;i(r) = f|;_; for some nonnegative
constants 8g, B1,..., On—1 with

n—1
(Hl) Z'BJ =1 and ,Bj = ,Bn_j.

=0

(It may be biologically reasonable to expect that &4 > 8, > ---, but
this will not be necessary in our analysis, so we shall not impose this
constraint.) This brings us to the following system

22) %’Ui(t) = ru(t) [1 +yuit) — A Zﬂu—iluj(t - T)]

+ d[ui+1(t) — 2u;(t) + ui-1(¢)], ¢ (mod n).
Rescaling the variable u; by a factor (A — v), we get

(2.3) Lui(t) = rust) [1 +owi(t) = (14 ) Y Bt - ”]

+ dluit1(t) — 2ui(t) + u;_l(t)], i (mod n).

The reduction of the population growth rate by the accumulation
of waste products in the environment was observed in the classical
experiments of Gause [17]. In nature waste products remain in the
environment for a while, and this introduces a distributed delay effect.
So our assumption of a discrete delay is only an approximation of the
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reality. Also, we assumed that wastes are eventually removed, although
in a closed laboratory system the wastes never leave (cf. MacDonald
(34]).

It is also important to note that the motions of the waste particles
are independent of one another and of the size of the population in
each patch. (Of course, the number of particles is not independent of
the size of the population). The result is a “competition effect” that is
nonlocal in both time and space. This is where the explanation of (7]
is inadequate. In [7], Britton attributes the competition to the random
migration of individuals, and asserts that the competition should be
measured by the frequency with which paths intersect one another.
This is reasonable, but given the entire history of the population counts
ui(s), [i = 1,...,N, s < t], the paths of individuals before time
t are not simply independent random walks. Nonlinearities signify
interactions, and the interactions cause deviations from pure random
walk behavior. For example, a particle that was present at time
t — s would have an increased probability of being in a patch j where
uj(t — 8) is large. Thus, to assess the effect of competition due to
path intersections, one should be looking at the conditional distribution
of paths given the population counts, but this seems like a complex
problem. Indeed, the best approach to this model may well be through
the theory of measure-valued stochastic processes, see, for example,
Dawson [9] or Evans and Perkins [11]. In summary, we feel that the
random walk arguments of Britton [7] are a major oversimplification at
the probabilistic level, and a more realistic model should be developed
in the future.

Finally, let us point out the symmetry of the model system (2.3)
due to the ring structure of the environment. Let D,, be the dihedral
group of order 2n. D,, is generated by a rotation ¢ and a reflection ¢
such that (¥) =2 Z,, (@) = Z2 and pypy = 1. Define the orthogonal
representation j : D, - GL(R"™) by
(p)z); =zj-1,  (B(P)7); = Tn—j)

j (mod n), ze€R"
Then, we have the following

(2.4)

Lemma 2.1. Suppose (H1) holds. Then, system (2.3) is equivariant
with respect to the action of D,, under the representation (2.4).



114 N. MADRAS, J. WU AND X. ZOU

The proof of this lemma is a direct verification. For the definition
of equivariance, we refer to Golubitsky, Schaeffer and Stewart [20],
Golubitsky and Stewart [21], and Geba, Krawcewicz and Wu [18].

3. Bifurcations of equilibria. This section is concerned with
the bifurcation of equilibria. Since the structure of the equilibria is
independent of the delay, we only need consider system (2.3) with + = 0,
ie.,

%ui(t) = ru;(t) [1 + au;(t) — (1+ a) Zﬂlj—ﬂ“j(t)]

=1

+ d[ui+1 (t) + u,-_l(t) - 2u;(t)],
i=1,2,...,nmod (n).

(3.1)

For biological reasons, we are interested only in those equilibria
located in the closed cone

Q4 = {U = (u1,uz,...,un)T € R"; u; >0,i=1,2,...,n}.

It can be easily seen that (0,0,...,0)7 and (1,1,...,1)T are the only
spatially homogeneous steady equilibria of (3.1) in Q4. Since the lin-
earization of (3.1) at (0,0, ...,0)T always has a positive real eigenvalue
A=r>0,(0,0,...,0)7 is always unstable forany r > 0,d > 0, > —1
and B; > 0, j = 1,2,...,nmod (n). In what follows, we concentrate
on bifurcation from the positive steady equilibrium (1,1,...,1)7, al-
though branches of equilibria and periodic solutions can also bifurcate
from (0,0,...,0)T and other possible spatially heterogeneous equilib-
ria.

Set z;(t) = u;(t) — 1. Then, (3.1) becomes

%mi(t) =r [1 + l‘i(t)] [a:c,-(t) -1+ a) Zﬂu_i‘.’l)]‘ (t)]

(3.2) =

+ d[zis1(t) + zica(t) — 22:i(2)),
i=1,2,...,nmod (n).
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The linearization of (3.1) at (1,1,...,1)T is

S0 = an®) = 1+ 3 By-ans 0]
(3.3) i=t
+dlyi1 () + vioa(t) - 2u(8)],

t>0, i=12,...,nmod (n),

or using matrix expression,

(3.4) %Y(t) — [rald - r(1 + o) M +dN] Y(2),
where Id is the n x n identity matrix and
[ Po B1 B2 ... Ba-2 Bn-1
M= 181 ﬁO ,31 e ﬂn—3 ,311—2
\Bnr Bu=2 Bn-z .. B Bo
( -2 1 0 0 ... 0 1
1 -2 1 0 ... 0 O
N=|o0 1 —21 0 0
\1 0 0 0 .. 1 -2

In the rest of this section, we will use d € [0,00) as the bifurcation
parameter. For any fixed r >0, > —-1and §; 20,5 =1,2,...,n, let

L(d)=rald—r(1+a)M +dN.

Denote by £ the primitive nth root of the unit in C, i.e., £ = €!(27/n),
and let

n—-1
Bk:Zﬂjfjk, k=0,1,...,n—1.
=0
Clearly, By = B, for 0 < k < n — 1. We have

Lemma 3.1. Under assumption (H1), we have

det [AId — L(d)] = nf[l A-X@)], AeC,
k=0
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where
Ak(d) = ra = (1 + @) By — 4dsin’®(kn/n),
k=0,1,...,n-1.

Proof. Let
Wi = (1,€F,..., V0T o<k<n-1.

Then, {Wp, W1, ...,W,_1} spans the space C". Note that (H1) holds

and _
Eh=¢gk=¢rk  0<k<n-1

We have, for every j,k € {0,1,...,n — 1}, that
(L(d) Wk)j = ra{(j—l)k + d(g(j—i’)k — 2€(j—1)k + gjk)
= r(1+0)(Bj-1 + Bj-a€" + -+ + BogU~D*
+ B 4+ B, e DRy
= [ra+d(E™* ~ 2+ 65 = r(1 + @) (826U
+5j_2§—(j-2)’°+ v Lo+ PR+ - +5n_j§jk)] gU-Dk
= [ra—r(1 + ) Br + d (2 Retk — 2)] gDk
= [ra — r(1 + a) By, + 2d(cos(2kn/n) — 1)]¢U-Dk
= [ra — r(1 + @) By — 4dsin®(kx/n)]¢U~Dk
= /\k(d)f(j‘l)k.

Thus
[AId — L(d)] Wk = [A — Ax(d)] Wk,
and hence
n-1
det [Ad — L(d)] = ] A - Ax(d)]-
k=0

This completes the proof. 8]

From the above lemma, we know that L(d) has eigenvalues

Ak(d) = ra — 4dsin? I_cér_ - (1 + a)By,
k=0,1,...,n—1.
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Under assumption (H1), By isreal and B,,_; = By for k € {0,1,...,n—
1}, where B, = By. So, each Ag(d) is a real number and Ai(d) =
An-k(d), k=0,1,...,n -1

It is straightforward to verify the following:

Lemma 3.2. Let
B —_
(Ck) <1 a

hold for some k € {1,2,...,n — 1}. Then for

dedu = ra—r(1+ a)Bg
T 4sin®(kn/n)

we have
M(de) =0 and Ni(di) #0.

It is naturally expected that a bifurcation of equilibria occurs near
d = di. As system (3.1) is equivariant with respect to the action
of D, (Lemma 2.1), the associated eigenvalues are not simple and
the standard steady state bifurcation theory does not apply. On the
other hand, the presence of symmetry in the system suggests that the
possible bifurcated equilibria possess a certain symmetry. We refer to
Golubitsky, Schaeffer and Stewart [20] for general results.

We now establish the following results on the existence of bifurcation
of spatially periodic equilibria by degree-theoretical arguments.

Theorem 3.3. Assume that there exists a ko € {1,2,...,n/2} such
that (Cx,) holds, i.e., By, < a/(1+ a)). Let k be the greatest common
divisor of n and kg, and denote m = n/k and ly = ko/k. If

a-(1+a)B; , a—(1+a)By,
4sin®(jw/n) 4sin®(kom/n)
for 1 < j < [n/2] and j # ko, then (3.1) has a bifurcation of equilibria

bifurcated from (1,1,...,1)T near d = d, and the bifurcated equilibria
satisfy

(3.5)

(36) Ti+m = Tj, J = 1,. sy .
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Furthermore, m is the least (spatial) period of such bifurcated equilibria.

Proof. 1t is easy to show that
[n/2]
R" = { Z (ajWij+a;Wnh_j); a; €C,0<j < [n/2]}
j=0
Let S,, be the subspace of R" consisting of £ € R™ such that
Zj = Tjtm, ISJS"
Then one can show that
Sw={ Y (asW;+mWasy)i 03¢ C,0< i <[n/2), Wi
0<j<(n/2), klj
Let F(d) : R* — R" be defined by
n
(F(d)x); = r [1+ ] [az.- -(1+a) Zﬂlj—ilzj]

j=1
+d [:c,~+1 + i1 — 237:‘] )
1<i<n.

Then F(d) (Sm) C Sm. Denote by Fy,(d) = F(d)|s,, the restriction of
F(d) on S,,. It can be easily verified that

L(d) [o;W; + @jWh-;] = Aj(d) [o;W; + GG W}

Therefore, for the derivative Ly, (d) of Fy,,(d) at the point (1,...,1)T €
S, we have

det D\ - Ly(d)]= [ [r-x(d).
0<i<In/2], kI

So L,.(d) has the eigenvalues {;(d),0 < j < [n/2), k|7 }. At d = di,
the only eigenvalue which vanishes is A\jox(dk,). Using Lemma 3.2, we
then have

sign (det L, (dx, — €)) # sign (det Ly, (di, + €))
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for sufficiently small ¢ > 0. By the classical topological steady state
bifurcation theory (see Demling [10] or Krawcewicz and Wu [30]), we
can conclude that d = di, is a bifurcation of zeros of the parametrized
mapping F,,(d). This justifies the existence of a branch of equilibria
which are bifurcated from (1,...,1)T € R" near d = dj, and satisfy
Tj=Tjymforj=1,... ,n

We now use the nonresonance condition (3.5) to show that m is
the least (spatial) period of the bifurcated equilibria. By way of
contradiction, if p < m is the minimal period, then m = pq for some
integer ¢ > 1. The well-known implicit function theorem then implies
that 0 must be an eigenvalue of L,(di,). But

det Ly(d) = II .

0<7<[n/2], qkls

So under the nonresonance condition (3.5), there exists an integer u > 1
such that ko = gku. Therefore, as n = pgk, we know that ¢k is a
common factor of kg and n, a contradiction to the definition of & as
g > 1. This completes the proof. o

Example 3.1. Let n=3,5 =0 =fand p=1-20,0<0<1/3.
Direct calculation leads to By = B; = 1 — 30. So, for any fixed
a € (0,00), we have By = B < a/(1+a) if § > 1/(3(1 + a)). Thus,
(Ci1) holds for 1/(3(1+¢a)) < 8 < 1/3, @ € (0,00). In this case,
n = 3 and the genericity condition (3.5) holds trivially. Therefore,
by Theorem 3.3, if 1/(3(1 + a)) < 6§ < 1/3 and a € (0,00), then
(3.1) has spatially heterogeneous steady state solutions bifurcating from
(1,1,...,1)T when d passes through

g = ra-r(l+a)B; _ r[30(1+a)-1]
YT 4sin?(n/3) 3 '

Example 3.2. Let n =4, fy =0, /) = B2 = 3 = 1/3. Then
B, = By = B3 = —1/3. Thus, for any a > —1/4,

-1/4
a /4

1
T¥a 1-14- 3-Bx k=123
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So, (Ck) holds for k = 1,2,3. Take ko = 2. A direct verification
shows that the genericity condition (3.5) holds. Therefore, (3.1) has a
bifurcation of equilibria bifurcating from (1,1,...,1)7 when d passes
through
ra—r(l+a)B; r(da+1)
dy = —3 = >
4sin®(w/4) 6

and these bifurcated equilibria have the period 2 (that is, 2y = z3, 22 =
.’E4).

0

4. Hopf bifurcations. This section deals with the Hopf bifurcation
of system (2.3). As mentioned in the previous section, (0,0,...,0)T
and (1,1,...,1)7 are the only spatially homogeneous steady equilibria
of system (2.3) in the positive orthant, and (0,0,...,0)T is always
unstable for any 7 > 0, r > 0, d > 0, « > —1 and B; > 0,
j=12,...,nmod (n). We will concentrate on Hopf bifurcation from
the positive steady equilibrium (1,1,...,1)T.

Set z;(t) = u;(t) — 1. Then, (2.3) becomes

%zi(t) =r (1 + z(t)] [az;(t) -1+ a) Z,B'j-ﬂlj(t - ‘r)]
(4.1) =t
+dfzi41(t) + 2zi-1(t) — 22:(2)],
i=1,2,...,n mod (n).

So, the linearization of (2.3) at (1,1,...,1)T is

GO =rlan(®) - 0+ @) Y- Ay-aaste = 7)]
(4.2) =1
+d [:L'H.l(t) + .’L‘i_l(t) - 21:,-(t)] ,
i=12,...,n mod (n).

In Section 3, we have seen that (4.2) only has real eigenvalues when
7 = 0, and hence no Hopf bifurcation occurs if 7 = 0. In the rest of this
section, we will use 7 > 0 as the bifurcation parameter, and determine
whether or not and when Hopf bifurcation occurs when we increase 7.
The spatial-temporal patterns of the bifurcating solutions will also be
considered.
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Normalizing the delay by y;(t) = z;(7t), (4.2) becomes

F T OR TORIC) D MRS
j=1
+dr [yita () + yi-1(t) - 29:(2)]
i=1,2,...,n mod (n),

4.3)

or using matrix expression
%Y(t) = (rarld +1dN) Y (t) ~ (1 + o) MY (¢ — 1),
where Id, M and N are as in Section 3.
For fixedr>0,a>—-1and d > 0, let
AN :=(A-7ra)ld+ e rr(14+ o) M — 7dN.

Denote by A the generator of the semigroup generated by the solutions
of (4.3). Then, X is an eigenvalue of A if and only if

(4.4) det A.(A) =0.
The following lemma is an analogue of Lemma 3.1.

Lemma 4.1. Under (H1), we have

n—1

det A.()) = H qi(T,A)
k=0

where

(1, X) = A= Tra+ e~ rr(l + a)By
+4rdsin®(kr/n), k=0,1,...,n—1,

n-1

Be=) Bi¢%, k=0,1,...,n-1,
Jj=0
£ = ei2r/n)
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The proof is similar to that of Lemma 3.1 and thus is omitted.
Lemma 4.2. The following statements hold:
(i) The equation
(4.5k) gk(1,A) =0
has purely imaginary roots A for some 7 > 0 if and only if

|ro: — 4dsin®(kn /n)|

(Ax) | Be| > rd+a)

holds.

(i) For each k € {0,1,...,n — 1} satisfying (Ax), the least positive
T for (4.5x) to have purely imaginary roots and the corresponding pair
+iwy of the purely imaginary roots are given by

7 _ wk
k= Bir(1 + a) sinwy !
ra — 4dsin®(kr/n) )
(4.6x) ) arccos Bl a) if By > 0,
“e = 4dsin®(kn/n)
ro— ,
L 27 — arccos "B+ ) if Br < 0.

Proof. Substituting A = iw into (4.5;), we get
iw — 1ra + e~ "“rr(l + @) By + 4rdsin®(kr/n) = 0.

As mentioned in Section 3, B is real for k = 0,1,...,n — 1. We thus
have

w=17r(l+ a)Bsinw,

ra — Adsin®(kr/n) = r(1 + a) B cosw.

Conclusion (i) follows immediately from the above equations. Since
we only need to solve for w > 0 and 7 > 0, and since the function
w/(sinw) is increasing in (0, 7) and decreasing in (—,0), we can easily
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see that the least positive solution of (4.7;) for 7 is given by (4.6%).
This completes the proof. o

By Lemma 4.2, for each k € {0,1,...,n — 1} satisfying (Ax), (4.6)
determines the least positive 7, such that (4.5;) has a pair of purely
imaginary roots at 7 = 7. Hence, by Lemma 4.1, the characteristic
equation (4. 42 has purely imaginary roots at 7 = 7. Since sin®((n —
k)m/n) =sin“(kr/n) and By_y = By for k =0,1,...,n—1, by Lemma
4.1, the purely imaginary roots of (4.4) at 7 = 7x have even multiplicity
except for k = 0, or k = n/2 (when n is even). Thus, the standard Hopf
bifurcation theorem is not applicable in the cases k # 0 and k # n/2
(when n is even). In what follows, we are going to use the symmetric
topological bifurcation theory developed in Geba, Krawcewicz and Wu
[18] and Krawcewicz and Wu [28,29] to establish the existence of the
local Hopf bifurcation of periodic solutions of (2.3). Examples will also
be given to show that both cases ¥k = 0 and k # 0 could happen,
corresponding to synchronous oscillations and discrete waves.

We first introduce the symmetric Hopf bifurcation theory developed
by Geba, Krawcewicz and Wu [18] and Krawcewicz and Wu [28,29]
based on an equivariant degree theory. Let N be a given positive
integer and C, denote the Banach space of all continuous functions
from [~7,0] into RN with the supremum norm. Consider the following
one parameter family of retarded equations

(48) = f(xty ﬂ),

where z € RY, py € R, f : C. x R = RY is a continuously
differentiable compact mapping satisfying the following conditions

(P1) there exists an orthogonal representation p : Z, — GL(R") of
Z, on RY such that

flp(r)o,u) = p(r)f(d,n), SPEC,, peR, 1€y,

where p(r)¢ € C; is defined as (p(r)9)(0) = p(r)¢(6) for 6 € [-7,0].
(P2) f(0,u) = 0O for all 4 € R, and Df(0,0) : RY — R is an
isomorphism, where f denotes the restriction of f to RV x R, and

Df(0,0) denotes the derivative of f with respect to the first variable
z, evaluated at (0,0).
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Moreover, for any continuous z : R - RY and t € R, z, € C, is
defined as z,(s) = z(t + s) for s € [-7, 0].

Let CV := RN +iR¥ and {e),...,en} denote the standard basis of
RN, For any A € C and 1 < j < N, define e*¢; : [-7,0] = CN by

e*e;(0) = e*e;, 0 € [-7,0].
Let A,()\) : CN — CV be defined by
A4(3) = AT = D (0, u)(eMT)
where

Df(0,w)(e*I) = (DF(Q, w)(e*e1), .., DF(O, u)(e>en)).

Denote by
cN = C{,"@C{V@---@Cﬁ’_l

the isotypical decomposition of the Z,-action on CV, where CY,
0 < r < n -1, is the direct sum of all one-dimensional Z,,-irreducible
subspace V' of CV such that the restricted action of Z, on V is
isomorphic to the Z,-action on C defined by

pr (€3I 5 = £ 27Ti/n) 5 2€C, 0<j<n-1.
Clearly, A,(A)CY c CY for 0 < r < n— 1. So, we can define
Bur(A) = 8u(Nlew 0<r<n-1
We further assume

(P;) there exist 9,09 and wp > 0 such that

(i) det Ao(u + iv) = 0 with (u,v) € 99 if and only if u = 0 and
v = wo, where Q = (0,¢0) X (wo — €0, wo + €0);

(ii) det A,(iw) = 0 with (u,w) € [~dp, 8] X [wo — €0, w0 + €0] if and
only if 4 =0 and w = wp;

(iii) det Ays(N) # O for X € 69

Theorem 4.3. Assume (P1)—(P3) are satisfied and
deg p(det A_g,,r(+), ) # deg p(det Agy (), )
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for somer € {0,1,...,n—1}, where deg p denotes the Brouwer degree.
Then there exists a sequence of triples {(z(®, u®), w®*))}22 | such that

(1) p® =0, w® = wy, zF)(t) = 0 uniformly fort € R as k = oo;

(i) z® is a (27/wi)-periodic solution of (4.8) with p = w for
k=1,2,...;

(iii) p(e'@/MN®(t) = 2®(t — (2n/wi)(r/n)) for t € R and
k=12,....

Remark 4.4. The above result is taken from Krawcewicz and Wu
[29]. Symmetric Hopf bifurcations have been extensively investigated
in the literature. A general result of analytic nature was obtained
by Golubitsky and Stewart [21] for ordinary differential equations.
Similar results were obtained and global continuation was described
by Fiedler [12] for parabolic differential equations. We refer to the
monograph of Golubitsky, Schaeffer and Stewart [20] and the paper of
Fiedler [12] for a detailed account of the subject. Theorem 4.3 was
established in Krawcewicz and Wu [29] by using equivariant degree-
theoretical arguments and is of topological nature. In particular,
one does not need non-resonance condition, dimension restrictions on
some fixed point subspaces and maximality assumptions on a certain
isotropy group. The drawback, however, is that we do not know if
the symmetry described by (iii) exactly corresponds to the isotropy
group of the bifurcated periodic solutions and that we cannot describe
the asymptotic form as well as the stability of the obtained periodic
solutions. Also, we cannot show if the bifurcations are supercritical or
subcritical.

We now turn to (4.2) and the corresponding subrepresentation p :
Z, — GL(R") defined in Lemma 2.1. In this situation, we have

Cf’={(1,€r,_-_,€(n—l)r)7'x; z € R}, 0<r<n-1
with & = €7/ and (iii) of Theorem 4.3 becomes
k k 2t r

), teR, k=1,2,....
Wk N

(P1) of Theorem 4.3 is clearly satisfied by (4.1). For (P;), we need
the following
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Lemma 4.5. For each k € {0,1,...,n — 1} satisfying (Ac), there
erist 8 and a continuously differentiable \ : (7 — Ok, 7k + 0x) = C
such that

(T, M) =0 for 7€ (7 — Ok, 7k + k),
/\(Tk) = iwk
and

d 1 wi
& BeX)| == Z e T o2
T =t Tk (1~ 1)ra + 4dresin®(kr/n))” + wi

The proof is a direct application of the implicit function theorem,
and hence is omitted.

Remark 4.6. Lemma 4.5 implies that for each k € {0,1,...,n — 1}
satisfying (Ag), we have

deg B (ak(7k — €,-), ) # deg B (gk(Tk +¢,°), Q)
for sufficiently small ¢ > 0, where deg 5 is the Brouwer degree and

Q=(0,€) X (wg — &,wg +€).

We will also need the following condition which implies (P;) for (4.1):
(H2) (1 + a)By — ra + 4dsin®(kw/n) # 0, ke {0,1,...,n—1}.

That is, we will consider the values of parameters at which equilibrium
bifurcation does not take place.

Now we can employ Theorem 4.3 to obtain

Theorem 4.7. Assume that (H1) and (H2) are satisfied, and (Ag,)
holds for some ko € {0,1,...,n — 1}. Then, there ezists a sequence of
triples {(u®,7V,w")} such that
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(i) ™ o1 =7, w 5wy, asl = 0o and

u® = WP ), ud @), ..., uP )T — (1,1,...,1)T
uniformly for t€ R asl— oo.

(i) u® = (ugl)(t),u(l) @®), ..., uP )T is a (2r/w®)-periodic solu-
tion of (2.3) withr =7W for1=1,2,....

(iii) ug.lll(t) = uy)(t — (2n/w®D)(ko/n)) fort € R, 1 =1,2,... and
i=12,...,nmod (n).

Remark 4.8. Note that if ko = 0, then, from (iii) of Theorem 4.7, we
have

ug.lll(t)=u§-l)(t) forteR, j=1,2,...,n mod(n)
andl =1,2,...,

which means that the sequence of the bifurcated periodic solutions
{u®(t)} of (2.3) are spatially homogeneous (such periodic solutions are
called synchronous oscillations). If ko # 0, then each u), 1 =1,2,...,
is a spatially heterogeneous periodic solution of (2.3) which is called
a discrete wave or phase-locked oscillation in the literature. (See
Alexander and Auchmuty [3], Krawcewicz and Wu [29], and Wu and
Krawcewicz [38]).

Remark 4.9. We only consider the subrepresentation p : Z, —
GL(R"), and we detect synchronous oscillations and phase-locked
oscillations. By considering the (full) representation g : D, —
GL(R"™), we should be able to detect other bifurcations (standing waves
and mirror reflection waves) as the monograph by Golubitsky, Schaeffer
and Stewart [20] shows (for ordinary differential equations).

In the remainder of this section, we are going to give some numerical
examples which exhibit the complexity of the dynamics and spatial-
temporal patterns of the considered system.

First, note that if a € (—1,~1/2], then
— Ad <in2
|ra — 4dsin®(kr /n)| S || -1
r(l+a) T 1l4+a”
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By the definition of By, we can easily verify that |By| < 1 = By. So,
(Ax) cannot hold for any k € {0,1,...,n — 1}, and thus no Hopf
bifurcation can occur in this case. (Actually, it can be easily shown
that if @ € (=1,—1/2], then the equilibrium (1,1,...,1)7 of (2.3) is
asymptotically stable for all + > 0.) So, in the sequel we only need to
consider the case where a € (—1/2, ).

Example 4.1. Let n = 3,d = sr, 8, = B2 =0, fp = 1. Then
By =B; = B, = 1. Fix a € (—1/2,00). Note that (Ag) holds and that
(H2) is satisfied. Since

. .2 —
[ro.— 4dsin®(kn/3)| | _Ja—3s| | ol _, oo o+
r(l+a) k=1 1to l+ea

we have | — 3s()|/(1 + @) < 1 = B; for sufficiently small s = s(a) >
0. Thus (4,) also holds for sufficiently small s = s(a) > 0. Now

a—-3s(a) a
14 14+«

implies that

=wy <w —arccosa_3s(a)<1r
I+a 0517 l+a ’

0 < arccos

and hence

o = 1 Wo < 1 w1
Tt +a)sinwy (1 +a)sinw,

=Ti.

So, when s > 0 is sufficiently small, synchronous oscillations occur first
as one increases 7 > 0 to 79 > 0, and then there come discrete waves
when one further increases 7 > 0 to 1 > 7p.

On the other hand, if s > 0 is sufficiently large, then |a — 3s|/(1 + o) >
1, and hence (A;) does not hold. Therefore, only synchronous oscilla-
tions occur in this case.

Remark 4.10. The results of Example 4.1 can be easily extended
to general dimension n. Thus, we can conclude that in the case
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where @ > —1/2 and the nonlocal effect is ignored (3; = 0 for
j =1,2,...,n — 1), only synchronous oscillations can bifurcate from
the positive equilibrium if the diffusion is large, but both synchronous
oscillations and phase-locked oscillations can bifurcate if the diffusion is
small. In the latter case, phase-locked oscillations always appear after
synchronous oscillations as one increases v > 0.

Remark 4.11. In Wu and Krawcewicz [38], the following system

%xi(t)=mi(t) [1 x’(tK T)]

+d[ziy1(t — o) — 2zi(t — o) + zi—1(t — 0)]
i=1,2,...,n mod(n)

(4.9)

was studied. It was observed that for (4.9),—0, small d induces while
large d prevents phase-locked oscillations. Note that when Gy = 1,
Bi = 0for j = 1,2,...,n~1 and o = 0, system (2.1) reduces
to (4.9)s=0, and the conclusions of Remark 4.10 coincide with their
results. Thus, we have extended their results to a larger class of
systems (o € (—1/2,00) instead of a = 0) where both instantaneous
and delayed intra-competition (local interaction) are present.

The following example exhibits the impact of nonlocal interaction in
accordance with the dispersion.

Example 4.2. Let n =3, =0,=0,3=1~-2,0<08<1/3
and d = sr. Then, By =1,and By = B; =1-36. Fix a € (—1/2, 00);
then (Ap) holds for all 8 € [0,1/3]. Now,

|ra — 4d sin®(kw/3))| _ |a—3s]
r(l+ a) xe1 | l4a

For fixed 8 = 6(c) > 0 which is sufficiently small, we have

ol
i+a <|1-38 <1,
and hence 3
la = 33| < |1 - 36|

1+a
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0.18 0.2 0.22 0.24 ©.26 6.28 0.3 0.32
d

FIGURE 1. Consider the case where n =3, ) =82 =86, fp =1 - 26,

d=3 a=1 r=1, 8 =1/4. In this case d = 1/6, and the curve

7 = 1(d) defined on (1/2‘,‘)1/6 + €0) for some small &g > 0 is given by
1

sinw’

Near the curve one has the coexistence of spatially heterogeneous equilibria

and phase-locked oscillations.

T =

w1 = arccos(2 — 6d).

for sufficiently small s = s(e,8) > 0 which means that (4;) and (A42)
hold, and

lo - 35 > |1 - 36|
l1+a
for large s > 0 which means that (A;) and (A;) do not hold. We
thus know that when the nonlocal interaction exists but is small
(81 = B2 = 9 sufficiently small), the conclusions in Remark 4.10 remain
valid.

On the other hand, for fixed a € (—1/2,00) and s > 0 with ~3s # 0,
(A1) and (A2) cannot hold for 8 close to 1/3. Note that as 8 = 1/3,
Bi = B2 = Bo = 1/3. This implies that nearly identical nonlocal effect
among patches may prevent phase-locked oscillations.
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We conclude this paper by demonstrating the coexistence of equi-
librium bifurcations and Hopf bifurcations of phase-locked oscillations.
Consider Example 4.2 again. For simplicity, let = 1. By the result in
Example 3.1, if

o

4.1 30 < ——,
(4.10) 1 30<1+a

then an equilibrium bifurcation takes place at

a—(1+a)(1—30).

(4.11) d(=s)=d = =

One can easily show by the global bifurcation theorem (Theorem 29.1
of Deimling [10]) that this bifurcation takes place in the direction
of increasing d. Therefore, there exists eg > 0 such that for each
d € (di, d1 +&0) system (2.3) has a spatially heterogeneous equilibrium
near the positive spatially homogeneous equilibrium. For each such
fixed d(= 3) € (dl, d + Eo), if

(4.12) a>3s

then

a-3s _|a-3s|
l+a  14a

Consequently, Example 4.2 shows that a Hopf bifurcation of phase-
locked oscillations of (2.3) occurs at

1-30|=1-36>

: w1
4.13 =7 =

(4.13) TENM=T =301+ a)sinw;’

where

(4.14) Wy = arccos a—3s

1-30)1+a)

Clearly, (4.13) and (4.14) give a curve 7 = 7(s) (= 7(d)) for s(=d) €
(d1, dy + &) near which both phase-locked oscillations and spatially
heterogeneous equilibria coexist. See Figure 1.
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