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ABSTRACT. Motivated by a neural network model and a
population dynamics model, we consider a discrete Nagumo
system with time delay and nonlinear nonlocal interactions.
The existence of periodic traveling wave solutions is estab-
lished by using the symmetric Hopf bifurcation theory recently
developed, and the stability of periodic traveling wave solu-
tions under small spatially periodic perturbations is investi-
gated.

1. Introduction. In this paper we consider the spatio-temporal
patterns and global dynamics of the following functional differential
equations defined on a lattice on the real line

) _ o, ()~ 2t + o)

(1.1) + f(un(t); un1(t = 7), un(t — 7), ung1 (t — 7)),
nez

where d > 0, 7 > 0 and f: R* — R is a sufficiently smooth function.

A prototype of system (1.1) in the absence of delay, 7 = 0, is the
infinite system of coupled nonlinear differential equations

du,(t)
dt

Such a system can be viewed as a discretization of the well-known
Nagumo equation

(1.2) = d(Uun—1 — 2up + tnt1) + f(un), neZ.

ou &%y
5= D@ + flu),
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see McKean [23], and arises in various application fields. For example,
it occurs in the study of population genetics where spatially discretely
distributed populations of diploid individuals are considered, see Aron-
son and Weinberger [2] and Fisher [11]. System (1.2) was also proposed
as a model for propagation of nerve pulses in myelinated axons where
the membrane is excitable only at spatially discrete sites, see Bell [3],
Bell and Cosner [4], Chi, Bell and Hassard [6], Keener [17, 18], Zinner
[28-30] and references therein.

In system (1.1), the smooth function f accounts for the nonlinear
interaction between adjacent components, and we assume that the
system’s response to such nonlinear interaction is delayed. An example
is a network of infinitely many neurons distributed in a line and
connected by nearest neighborhood coupling. In certain situations,
such a network (after normalization) can be described by

18 20 - 0) 4 oo (t 1) + Buen(t - 7). i€z

where o, > 0, and 7 > 0 is used to account for the delay in
the response and communication between neurons. See Cohen and
Grossberg [9], Hopfield [16], Marcus and Westervelt [22] and Pineda
[24]. Another example is the following system

dualét(t) = dlui1 () + i1 (t) — 2ui(8)]

(14) + Tui(t) |:1 + aui(t)

—(1+a) Z ,8|j_i|u]'(t—‘l'):|, ) EZ,

l7—il<1

which was employed to describe the growth of a single species popula-
tion distributed over a patchy environment consisting of infinite number
of patches on the real line. Due to accumulation of the population’s
waste products, the growth rate decreases as the total population in-
creases. See Madras, Wu and Zou [21] for details and Britton [5] for a
spatially continuous analog.

The focus of the present paper is on the local existence and stability
of periodic traveling wave solutions of system (1.1). As will be shown,
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periodic traveling wave solutions of (1.1) subject to a spatially m-
periodic initial condition, i.e., wirm(t) = u;(t), for i € Z and t € R, is
completely described by phase-locked oscillations of the following finite
system on a periodic lattice

dun(t) = d[up—1(t) — 2un(t) + tnt1(t)]

(1.5) + F(n(t) tuno1(t = 7y tn(t — 7, i (£ — 7)),

n=0,1,... ,m—1 (mod m).

Here a phase-locked oscillation of (1.5) is a periodic solution satisfying
Un(t) = up—1(t + p/m) and uy(t) = u,(t +p) for t € R and n
(mod m). This observation enables us to apply the recently developed
symmetric Hopf bifurcation theory of functional differential equations
to establish the existence of periodic traveling wave solutions of system
(1.1). In Section 3 it is shown that, near several critical values of the
delay T, system (1.1) has periodic traveling wave solutions bifurcating
from a spatially homogeneous equilibrium. The smallest critical value
is of great importance, for only those bifurcating periodic traveling
wave solutions near this smallest value can be stable under small
perturbations.

The stability of bifurcating periodic traveling wave solutions is a very
difficult problem, even for those solutions near the aforementioned
smallest critical value. This is partially due to the multiplicity of
associated eigenvalues of the linearization of system (1.5) and partially
due to the lack of general stability theory suitable for system (1.1)
that consists of infinitely many components. In Section 4 we consider
the stability of (spatially) 2-periodic traveling wave solutions under
small spatially periodic (not necessarily of period 2) perturbations.
The restriction on the periodicity of perturbations eventually reduces
the stability problem to one for a finite system of functional differential
equations and so the well-developed stability theory of Hopf bifurcation,
see Chow and Mallet-Paret [7], Claeyssen (8], Hale [14] and Hassard,
Kazarinoff and Wan [15], can be applied. It is shown that such a
periodic traveling wave solution is asymptotically stable, if f is the
usual response function in neural networks and its third order derivative
satisfies a certain sign condition.
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2. Preliminaries. Consider the system

dz,(t)
dt

(2.1) = d(Az(t))n + f(zn(t), Tn-1(t — 7),

Tp(t —7),Zps1{t — 7)), mEZ,

where d > 0 is a given constant, f : R — R is a C* function and A is
the discrete Laplacian operator defined by

(Am)n =ZTp_1—2zn, + Tn+1,

= {In}iooo € loo’
where

* é {1' = {xn}iooo;mn €R forneZ and sup '-’Enl < OO}
ncZ

A traveling wave of (2.1) is a solution z(t) = {z,(t)}>°,, of (2.1) given
by

(2.2) zp(t) =pn+ct) forneZ, teR

for some positive constant ¢ and for a continuously differentiable map
¢:R—R.

The objective of this paper is to investigate spatially periodic travel-
ing waves, that is, traveling waves satisfying (2.2) and

(2.3) Tn(t) = Toim(t), tER, neZ

for some positive integer m. Clearly m is a period of ¢ and the periodic
traveling wave is also temporally periodic with a period m/c. Moreover,
a periodic traveling wave of (2.1) satisfying (2.2) and (2.3) gives a
solution y(t) = {yn(t)}ney, Yn(t) = z,(t), 1 < n < m, of the finite
system of delay differential equations

24) 220 — day(©)n + Fun(t), vt = 7),

Yn(t ~7), Ynsa2(t — 7)), n (mod m)
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satisfying

1
(2.5) Yn(t) = Yn—1 (t + Z)’ n (mod m), teR,
(2.6) Yn(t) = yn (t + %), n (mod m), te€R.

Conversely, any solution y(t) = {y,(¢)}7, of (2.4) satisfying (2.5) and
(2.6) gives a periodic traveling wave z(t) = {z,(t)}necz, defined by
zn(t) = yi(t) if n = km + for some integer k and some 0 <! <m—~1,
of (2.1) satisfying (2.3) and (2.2) with ¢(f) = ym(t/c), t € R.

Following Alexander and Auchumuty [1], and Wu and Krawcewicz
[26], we call a solution of (2.4) satisfying (2.5) and (2.6) a phase-locked
oscillation. The above argument claims that there exists a one-to-one
correspondence between a phase-locked oscillation of a finite system
(2.4) and a periodic traveling wave of the infinite system (2.1).

We will use a symmetric Hopf bifurcation theorem developed in [12,
19, 20] to establish the local existence of periodic traveling waves. To
this end, we first introduce this theorem.

Let N be a given positive integer and C, denote the Banach space of
all continuous functions from [—7,0] into R" with the supremum norm.
Consider the following one parameter family of retarded equations

d
(27) d—f = f(xt) /L),

wherez ¢ RN, u € R, f: C, xR — RY is a continuously differentiable
compact mapping satisfying the following conditions.

(P1) There exists an orthogonal representation p : Z, — GL(R") of
Z.. on RN such that

flp(r)o,p) = p(r) f(d, 1), ¢€Cr, peR, rel,,

where p(r)¢ € C; is defined as (p(r)$)(8) = p(r)¢(8) for 8 € [-7,0].

(P2) f(O,u) = 0 for all x € R and Df(0,0) : RN — RY is an
isomorphism, where f denotes the restriction of f to RY x R, and
D£(0,0) denotes the derivative of f with respect to the first variable
z, evaluated at (0,0).
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Let CV := RM +4R" and {ej,... ,en} denote the standard basis
of RN. For any A € C and 1 < j < N, define ete; : [-7,0] - CV
by e*e;(0) = e*%;, 6 € [-7,0]. Let A,(\) : CV — CV be defined by
AL(A) = AT — Df(0, p)(e*I) where

DF(0, ) (1) = (DF(0, m)(€¥e1), ., DF(O, w)(e>en)).

Denote by
cV=clecle. - -oCl

the isotypical decomposition of the Z,-action on CV, where C,N ,
0 <1< n-—1, is the direct sum of all one-dimensional Z,,-irreducible
subspaces V of CV such that the restricted action of Z, on V is
isomorphic to the Z,-action on C defined by

pu (e8I = 2T/, e C,0<j<n—1.

Clearly, A,(A\)CN < CY for 0 < I < n—1. So we can define
Api(A) = A“()‘”C{V’ 0 <1< n-—1 We further assume

(P3) There exist £¢, 6p and wp > 0 such that
(1) det Ag(u + iv) = 0 with (u,v) € 99 if and only if v = 0 and

v = wp, where Q = (0,£0) X (wp ~ €0, wp + €0);

(ii) det A, (iw) = 0 with (u,w) € [—dp, o] % [wo — £0,wo + 0] if and
only if 4 =0 and w = wy;

(iii) det Ays,(A) # 0 for A € 94

The following local symmetric Hopf bifurcation theorem is taken from
Krawcewicz and Wu [20] and represents an analog for differential delay
equations of the corresponding results in Fiedler [10] and Golubitsky,

Schaeffer and Steward [13] for ordinary and partial differential equa-
tions.

Theorem 2.1. If (P1)-(P3) are satisfied and
degp (det A*tsoﬂ‘(')’ Q) # degp (det A50,T(')7 Q)

for somer € {0,1,... ,n—1}, where degy denotes the Brouwer degree,
then there exists a sequence of triples {(z(®, u® W(M)}2  such that
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(1) p® = gy, w® o wy, z*)(t) — 0 uniformly for t € R as
k — oo;

(i) z® is a 27/wF -periodic solution of (2.7) with p = pg for
k=12,...;

i) p(e!@™/™N)z®)(t) = z*)(t — (2m/w*))(r/n)) for t € R and

(iii) p(
k=1,2,....

In later applications of Theorem 2.1, we have the situation where
n = N and Z, acts on R™ by permuting the variables cyclically,
ie., [p(e¥®/™)z]; = z;_1, j (mod n), z € R™. In this situation,
we have CN = {(1,¢7,...,6=U"\Tz:0 € R}, 0 < 7 < n — 1 with
€ = e@/™) and (iii) becomes 2\ (t) = 23 (t— (2 /w®))(r/n)), t € R,
k=1,2,.... :

3. Existence of periodic traveling waves. Throughout this
section we fix m > 1, and assume that there exists a constant k € R
such that f(k,k,k,k) = 0. Then K = (k,...,k) is a steady state of
system (2.1). Let

ao = filk,k,k, k) Bo = fa(k,k,k, k),
ﬂ? :f2(kak)k7k) /B4=f4(kak7k7k)7

where s
f] - f(u1?u27u3au4), ]: 1,2’3’4.
Buj
For technical reasons, we always assume
A
(Ao) B2=Pa=0.
The linearization of (2.1) at K is, writing n (mod m), given by

dr,(t)

(3.1) pr d(Az(t))n + aozn(t) + Bozn(t — 7)

+ Blxn_1(t = 7) + Zpg1(t — 7)]
or, using matrix expressions

(3.2) dz—(tﬂ = Mz(t) + Nz(t — 7),
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where
ag — 2d d 0 0 d
d ag — 2d d -0 0
M = 0 d ag—2d -+ 0 0
d 0 0 o d ap—2d
and
Bo B 0 O 0 g
B B B O 0 0
N=|0 B B B 0

g0 0 0 -+ B Bo
In the case 7 > 0, we normalize the time variable by y,(t) = z,(7t).
Then (2.1) and (3.2) become, respectively,

(219 220 Ay O+ 7F al8), vt~ D),

Yn(t — 1), ynt1(t = 1)), n (mod m)

and

(3.2%) WO _ riMy(e) + Nyt - 1)

Let A;(A) = AI—7M —7Ne~*, where [ is the m x m identity matrix.
Then the characteristic equation of (3.2*) is

(3.3) det A, ()) = 0.

Lemma 3.1. Under (Ag), we have

m—1
det A-(\) = [] ps(m, )
j=0



PERIODIC TRAVELING WAVES 405

where .
pi(T,A) = A — Tag + 47 dsin® %
- T(ﬁo + 28 — 43 sin? E)e—’\,
m

0<j<m-—1.

Proof. Let ¢ = €®™/™ and Wy, = (1,£%,... ,¢m~DRT 0 < k <
m — 1. Then {Wo,W1,... ,Wn_1} spans the space C™. Noting that
¢~k = ¢k, we have, for every j, k € {0,1,... ,m — 1} that
(Ar(NWi); = (A = 7(ao — 2d) — Thoe™ )€U D*

= T(d+ Be)(EUTHF 4 £7F)
=[A—T7(ap — 2d) — T80
— 7(d+ Be™ ) (£F + 7RIk
= [\ — Tag + 7d(2 — 2Re £¥) — e~ (By + 28Re £¥))eU Dk

= [)\ — Tag + Td(2 — 2cos 2]6—71-)
™m
—re™? (,80 + 28 cos Qk—ﬂ)] gU-Dk
m
= [)\ — Tayg + 47 d sin® k—ﬂ
m

—re A (,30 + 28 — 48sin? %r)] U1k,
Thus A, (\)Wi, = p(7, \) Wy and det A-(\) = [Tny pe(7,A). @

Lemma 3.2. The following statements hold.
(i) The equation

(34)3 Pj (7, ’\) =0

has purely imaginary roots A for some T > 0 if and only if

ag — 4d sin? ekl < |Bo ~l—2[3—4[3sin2l7—r
m m

(Hy)




406 X.ZOU AND J. WU

18 satisfied.

(ii) For each j € {0,1,...,m — 1} such that (H;) holds, the least
positive T for (3.4); to have purely imaginary roots is

-1 Wi
(33); 77 (Bo+ 26— 4sin®(jn/m)) ()

and the corresponding pair +iw; of the purely imaginary roots of
p;(7,A) =0 are given by
(3.6);
arccos(4dsin®(jm/m) — ap)/(Bo + 28 — 48sin’(j7/m))
if Bo + 28 — 4Bsin?(jm/m) < 0,
21 — arccos(4dsin®(jm/m) — ag)/(Bo + 26 — 4B sin?(jr/m))
if Bo + 28 — 4Bsin®(jw/m) > 0.

(.dj=

Proof. Substituting A = iw, w > 0, into (3.4); yields

tw — T<a0 — 4dsin® ﬂ) - T(BO + 28 — 48sin? J—W—)e_i“’ =0,
m m
which is equivalent to
{w = —7(Bo + 28 — 4Bsin*(j7/m)) sinw,
ap — 4dsin®(jm/m) = —(Bo + 26 — 48sin®(jr/m)) cosw.

Straightforward calculation and the monotonicity of z/sinx on (0, )
then leads to the conclusion. o

Let us now explore the symmetry of system (2.1*) in order to apply
Theorem 2.1. Define Z,, = {?>*/™)J;0 < j < m — 1}. Then Z,, is a
group with the usual operation

ei(21r/m)j1 . 61(2"/"1)]'2 — ei(27r/m)(j1+j2)’ J1, J2 (mod m)

Define the orthogonal representation p : Z,, — GL{R™) of the Z,,
cyclic permutation on R™ by

(p(e®™/™*YgY = x5 4, for x = (z1,22,...,7,)T €R™

and 7,k (mod m).
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Then we have the following result, the proof of which is straightforward
and is omitted.

Lemma 3.3. System (2.1*) is equivariant with respect to the above
Z,,.-action.

Now we can state and prove our local existence result.

Theorem 3.4. Assume that there exists a j € {0,1,...,[m/2]} such
that (H;) holds. Assume also that

00+ o + 26— 4(d + B)sin® 7 2 0
fork=0,1,...,[m/2].

(A1)

Then 7 = 1; determined by (3.5); and (3.6); is a Hopf bifurcation
value of synchronous (if j = 0) or phase-locked (if 7 # 0) oscil-
lations of (2.1*). More precisely, there exists a sequence of triples
{(y®, 7O, w®)} such that

Q) 0 - 75, W > w; and yW () — K uniformly fort € R as
I — o0;

(i) yV(t) is a 2m/w® -periodic solution of (2.1*) with 7 = 7 for
I=12....

(iii) g (t) = 4P (¢ + (@7 /wD)(G/m)) for t e R, 1 =1,2,..., and k
(mod m).

Proof. It is obvious that p;(7,A) is analytic both in A and 7. Now
since

8pj (Ta )‘)

297 -
B\ =1+ (,Bo + 20 cos ]ﬁ) e i

T=Tj,A=1wj
=1+iw; — 15 (ao — 4dsin? ]—W>
m
#0 (since w; > 0),

the implicit function theorem implies that there exist §; > 0 and a
unique continuously differentiable A : (r; — d;,7; + 8;) — C such that
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A(1j) = iw; and p;(1,A(7)) = 0 for 7 € (7; — 6,75 + J;). It can be
easily calculated that

d w?

—(Re (7)) = ! >0

dr( e AT)) r=r;  1;(1 = Tja0 + 7 dsin®(jm/m))? +w?

Thus, degg(p;(T;—¢,-), ) # degg(p;(1; +¢,-), ) for some sufficiently
small € > 0, where Q@ = (0,¢) x (w; — g,w; + €) and degg is the
Brouwer degree. Noting that det A, () is also analytic in 7 and A, the
conditions (i)—(iii) in (P3) of Theorem 2.1 can then be easily verified.
Clearly (P1) and (P2) in Theorem 2.1 are guaranteed by Lemma 3.3
and (A;) respectively. Therefore, the conclusions of this theorem follow
immediately from Theorem 2.1. o

Corollary 3.5. Under the assumptions of Theorem 3.4, near 7 = 75
and the equilibrium K, the system (2.1*) has a synchronous or phase-

locked oscillation z()(t) = (z (l)( t),... ) (t)) satisfying

» Tm—1

1 2 70
= (t) = 531(“*%7 )
o)
() = 20 (t + 0] )

Hence system (2.1} has periodic traveling solution(s) satisfying (i)—(ii)
with T® = (2770 /w1 and

oO(t) = U)((%/w(l))(ﬁ(’)/m)t) if § #0,
2 ((2nr® fwO)t), if j =0,

where w71 and j are as in Theorem 3.4.

In the remainder of this section, we consider some special values of
m. First let us take m = 3. Then (H;) becomes
(3.7) oo — 3d| < |G — B

and (A1) becomes

(3.8) ag+fo—B—3d7#0
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and
(3.9) ag + Bo + 26 #0.

Note that (3.8) is implied by (3.7). Thus we have the following explicit
criterion.

Corollary 3.6. Suppose (3.7) and (3.9) hold. Then system (2.1) has
periodic traveling wave solution(s) near the equilibrium K.

Next we let m = 4. Then (H;) and (Hs3) become respectively

(3.10) oo — 2d| < |Bol,
and
(3.11) oo — 4d] < |Bo — 261-

Furthermore, (A1) becomes

(3.12) ao + PBo + 28 #0,
(3.13) ao + fo — 2d # 0,
(3.14) oo+ fo— 20 —4d £ 0.

Hence, we have

Corollary 3.7. Assume either
(1) (3.10), (3.12) and (3.14), or
(i) (3.11), (3.12) and (3.13) hold.

Then system (2.1) has periodic traveling wave solution(s) near the
equilibrium K.

Remark 3.8. Corollary 3.6 and Corollary 3.7 show that, for fixed ay,
B and d, large |Bp| can induce periodic traveling waves. Also, for fixed
oy, fo and d, large || causes periodic traveling waves. In other words,
periodic traveling waves can arise if the delayed effect is significant and
if the delay is sufficiently large.
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4. Stability of traveling waves. Theorem 3.4 shows that, for
each fixed m > 1, if (H;) holds for some integer 0 < j < m — 1, then
system (2.1) has a bifurcation of periodic traveling waves near a certain
critical value 7; > 0. In the case where (H;) holds for several integers
j € {0,1,... ,m — 1}, the smallest critical value 75, = min{7;; (H;)
holds} is of most importance. This is because, when 7 is near 7; > 75,
the characteristic equation (3.3) always has zeros of positive real parts
and hence the bifurcated periodic solutions of (2.1*) are unstable under
small perturbations (or equivalently, the bifurcated periodic traveling
wave solutions of (2.1) are unstable under spatially m-periodic small
perturbations). The only bifurcating periodic traveling waves that
are possibly asymptotically stable under small perturbations (at least
under small spatially periodic perturbations) are those bifurcated waves
when 7 is near 7.,. Note that 7}, may depend on m as well.

In the sequel, we make the following assumptions
(Cl) ag <0, Bp<0,8>0.

(C2)B>d, Bo+28<0.

(C3) Bo + 28 — ap < 4(8 — d).

(C4) —fod < B(2d — a).

Lemma 4.1. Under (C1)-(C,4), we have the following conclusions:

i) there ezists a constant ™ > 0 suc at 75, = T for every
i) th st tant ™ > 0 such that T3, * f
positive integer k;

(i) 7 is given by T2 when m is even and Tp/y is defined by
iii) 75,.,, > T* for every positive integer k, so 7 = inf{r}; k € Z*}.
2k+1 k

Proof. Assume m is an even integer. By (C;) and (Cs3), we have
lao — 4d| = 4d — ap < 28 — fo = |28 — By

which means that (H, /) holds. Suppose (H;) holds with j € {0,1,...,
m/2—1}. Note that (4dx—ag)/(Bo+26—-408z) is an increasing function
of z under (Cy4). So sin?(jm/m) < sin?((m/2)m/m) implies
4dsin®(jm/m) — ap < 4dsin?((mm/2)/m) — ag
Bo + 28 — 4Bsin?(jr/m)  Bo + 26 — 48sin?((mn/2)/m)’
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which yields w; > wp,/2. Now, in terms of the expressions of 7; and
Tm/2 in Lemma 3.2, we can get 7; > Tp,/2. Thus 7% = 77, = 7,,,/5. Note
that 7,,/5 is in fact independent of the choice of the even integer m.
This justifies (i) and (ii). (iii) can be verified in a similar manner. a

It can be easily calculated that, when 7 = 0, all the eigenvalues of
(3.1) are real and are given by

/\j—_—a0+ﬁo+2ﬂ—4(ﬂ+d)sin2%, 0<j<m—1.

So, if (C;) and (C3) hold, then A; < 0 for j € {0,1,... ,m}.
In the remainder of this section, we always assume that (C;)-(Cy)

hold so that (2.1*) has phase-locked oscillation(s) occurring near 7 =
7" = T2, Where

1 w*
28 — Bo sinw*’
4d—a0
Bo—20°

Moreover, it is obvious that, for 7 € [0,7*] all the eigenvalues have
negative real parts, except for the pair of purely imaginary ones
tiw* = Fiwy,/; corresponding to (3.4)m/p at T = 7* = Tp,/2. Thus,
the algorithm for stability of Hopf bifurcations developed in Hassard,
Kazarinoff and Wan [15] is applicable to system (2.1*).

Let 7 = p + 7* and write (2.1*) as

%
T =Tm/2 =

w* = W, /o = arccos

(4.1) y(t) = Luye + Fuye,
where L, : C([-1,0; R™) — R™ is defined by

Lug = (u+ 7 )M$0) + (1 + 77 )Ng(-1),
and F, : C([-1,0];R™) — R™ is given by

(Fu¢)n = (H+ T*)[f(¢n(0)7¢n——1(_1)1¢n(_1)a¢n+1(—1))
— ap@n(0) — Bopn(-1) — Blén-1(-1)
= ¢nt1(-1))], n (mod m).
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L, can be expressed as

1]
L= / (6, 6(6),

where
n(0, 1) = (u+ 7*)[0(0)M + (6 + 1) N|,

and ¢ is the Dirac function. Let

0

Dom (A(u)) = {¢ € OH([-1,05R™; 60 = | dn(s,mqs(s)},

-1

$(6) if -1<6<0,
Awe0) =14 o ,
[ dnls,1)6(s) = Lus i£0=0.
Then (4.1) can be formally written as
(4.2) e = A(Rye + R(w)ye,
where

o, 550

For any ¢ € C([0,1];C™) and ¢ € C([—1,0],C™), define a sort of
“inner product” by

0 8
=T — v 8 — ) S.
(%, ) = BT (0)$(0) /9 . / (s = 0)dn(0,0)0(s)d

Let A*(0) be the adjoint operator of A(0) relative to the above inner
product. Then

Dom (A*(0)) = {1/16 CY([0,1]; C™); d(0F) = / dn¥ (s,0)¢ )}
—¢(3) if0<s<1,

A*(0)b(s) =
(,)1/]() {f,ol dnT(6,0)p(—0) if s =0.

It is straightforward to show that +iw* are eigenvalues of A(0) and
A*(0). Moreover, q(8) = "%V, 6 € [~1,0], is an eigenvector of A(0)
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corresponding to iw*, and ¢*(8) = De® °V 6 € |0, 1], is an eigenvector
of A*(0) corresponding to —iw* such that

(¢",9) =1 and (¢",q) =0,
where V = (1,-1,...,1,-1)T and

1
b= m[l + (4d — ap)T* — iw*]’

In what follows, we follow the notation and the algorithm developed
in Hassard, Kazarinoff and Wan [15] for determining the stability of
Hopf bifurcation of periodic solutions for general functional differential
equations.

Let
2(t) = (q", »),

w(z,2)(6) = :(8) — 2Re (2q(6)).

Then, at p = 0, (4.2) is reduced to an ordinary differential equation for
a single complex variable

(43) 5(t) = iw*2(8) + T (0P (2, 2),

where .
F(z,2) = Fo(w(z, Z) + 2Re (2q)) = Fo(y:).

Rewrite (4.3) as

(4.4) 2(t) = iw*z(t) + g(z, 2)
with
22 52
(4.5) w(z,z) = Wao 5+ w112z + woz 5+
and
_ 22 _ 32 22z
(4.6) 9(z,2) 29207 +g1122+g02? +g217+--- .

By Hassard, Kazarinoff and Wan [15], the stability and direction of
the Hopf bifurcation are determined by the coefficients go0, 911, go2 and
go1. So, in the next step, we calculate these.
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Note that

e (0) = w(z, 2)(0) + 2(t)q(8) + z(t)4(6).
Hence the nth component of y:(0) and y;(—1) for n=1,2,... ,m are
() =37(0) =w™(z,2)(0) + (-1)** (2 + 2),

A7) Qpa-1) =4 (1) = w™(z,2)(-1)
+(=1)"H(ze™" + ze™™).

We now specify the function f for the sake of simplicity. We assume

4

(48) f('l)l,’l)2,’l}3,'U4) =g<ZaJv])
j=1
with
A = Q4
‘R — Ris C4, 0) =0,
(4.9) g o)

9'(0) = sup,er ¢'(z) > 0,
and ¢”(0) = 0.

Such a function is frequently used as a response function (input-output
function, or activative function) in the study of neural networks. See
Hopfield [16], Marcus and Westervelt [22], Wu [25] and Wu and Zou
[27]. With the above assumption, we have

ap = a14'(0), Bo = asg'(0),
B = azg'(0) = aq, g'(0) = ag'(0).

Hence, in accordance with (C1)—-(C4), we assume

a; <0, a3 <0 and aéa2=a4>0;
ag'(0) > d, a3 + 2a < 0;
(a3 + 2a ~ a1)g’(0) < 4[ag’(0) — d];
—asd < a[2d - a19'(0)].

(4.10)
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Since all the second derivatives of f in this case are zero at the
equilibrium K = (0,0,...,0), we know that g0 = ¢g11 = goz = 0,
and hence we only need to calculate go;. A straightforward but tedious
calculation shows

(Foyt)n =17 II,(O)[alyn
+ a3y () (a2yn—1(t — 1) + asyn(t — 1) + a4¥n41)
+ a102yn (Hyn—1(t)(@2yn—1(t — 1) + agyn(t — 1) + a4yny1)
+ a183yn () yn(t — 1)(asyn(t — 1) + asynia(t — 1))
+ @184Yn () Yn+1(¢ — 1)aayn+1(t — 1)
+ a%y%—l(t = 1)(agyn—1(t — 1) + azyn(t — 1) + aq¥n41)
+ aza3yn—1(t — D)yn(t — 1)(azyn(t — 1) + a4ynp1(t — 1))
+ a204Yn-1(t = DyYni1(t ~ Dagynsa(t — 1)
+ a3y (t — 1)(aayn(t — 1) + aqynia(t ~ 1))
+ a3a4Yn(t — Dyn+1(t — L)agynia(t — 1)
+ a3yny1(t — 1)+ hot], n (modm),

and
9(z,z) = 3 (0)(Foye)
EVT(Foyt)
= D[(Foyo)1 + - - + (Fove) (my2)-1
— (Foye)2 — - - — (Foyt)my2]
= —7r*¢"(0)D[EZ*z +---],
where
E = Eye®” 4+ E1e” + Eg+ E_1e7%",
E; = 2a1[a(2a — a3) + asz(az — a)],
E; = 6a3a® — 9a® — 3a1a?
—2(2a — a3)(3a® + 2a3) + 6az(as — a)?,
Ey = 6a3 + 6a1a(2a — a3) + 4aya3(az — a),
E_) = —2a%(2a ~ a3).
Thus,
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where D is the conjugate of D appeared in the expression of the
eigenfunction ¢*(#). Therefore,

T*g/l/(o)
(14 (4d — a — 0)7*)2 + w*?]
+ (Ey — E_1)sinw®)
+ (14 (4d — 00)7*)(Eq cos 2w* + (Ey + E_1) cosw™® + Ey)].

Rec1(0) = 5 [w*(Eq sin 2w™

According to the general theory in Hassard, Kazarinoff and Wan [15],
the stability of the periodic solutions of Hopf bifurcation are determined
by the sign of Re¢;(0), and hence by the sign of ¢’/(0)T" where

ray [Egsin2w* + (E) — E_) sinw?]
-1 4 (4d — ap)77]
- [Eq cos2w* + (Ey — E_y) cosw® 4 Ep).

Therefore, we have the following result.

Theorem 4.2. Assume f is defined by (4.8) and satisfies (4.9) and
(4.10). Assume also that g’ (0)T # 0. Then the periodic solutions
of (2.1*) bifurcating at T = T* = T, /5 are asymptotically stable (re-
spectively unstable) if ¢’ (0)T < 0 (respectively ¢g"’'(0)T" > 0). Thus, if
¢"(0)T < 0,then near T = 7* system (2.1) with f defined by (4.8)—(4.10)
has pertodic traveling wave solutions that are asymptotically stable un-
der small perturbations of spatially m-periodic functions for arbitrary
even m; and if g”’(0) > 0, then near 7 = 7* system (2.1) with f
defined by (4.8)—(4.10) has unstable periodic traveling wave solutions.

Example 4.3. Let a; = —4, @ = 1 and a3 = —4. Then
Ey = —208, E—1 = -1231, By = —844 and E_; = —192. It
can be easily shown that (4.10) is satisfied if and only if ¢'(0) > 2d.
Let ¢’(0)/d = r. Then numerical calculation shows that T' = T'(r)
changes sign in r € (4.9,4.95). In fact, we have I'(4.9) = 8.405825 and
['(4.95) = —3.9044275. Therefore, the stability of the periodic traveling
wave solutions of the corresponding system may change as r varies.
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