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a b s t r a c t 

In this paper a three-species food chain model is formulated to investigate the impact 

of fear. First, we derive the predator’s functional response by using the classical Holling’s 

time budget argument and formulate a three-species food chain model where the cost 

and benefit of anti-predator behaviours are included. Then we study the dissipativity of 

the system and perform analysis on the existence and stability of equilibria. At last, we 

use numerical simulations to more visually explore the effects of fear on three species. 

The results show that the predator’s fear effect can transform the system from chaotic 

dynamics to a stable state. Our results may provide some useful biological insights into 

ecosystems containing predator-prey interactions. 
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1. Introduction 

In ecosystems, predator-prey interactions play a very important role, and understanding the mechanism that drives 

predator-prey system is a great challenge in ecology and evolutionary biology. It is well known that predation has been 

considered the major factor in interactions between predator and prey. A predator consumes a prey by hunting and killing 

it in nature. However, increasing evidences indicate that many animals also can assess the risk of predation, thereby chang- 

ing their behaviours [19] . The fear of predator on prey, although not direct killing, still influences the population dynamics

of both predator and prey. And there is evidence that this indirect effect can be as large as the direct effect [5,13,25,30,40] .

Therefore, it is insufficient for us to consider only direct killing effect when studying the interactions between predator and 

prey [5] . 

As the prey becomes aware of the risk of predation, the prey may demonstrate certain types of anti-predator responses, 

such as changing its behaviours, its time of foraging and its reproduction [25,40] . Such responses will ultimately affect the

population density of the prey. In terms of foraging behaviour , the prey may choose to stay in a safer place away from the

high risk region to avoid being killed directly. In terms of foraging time , the prey species may also choose to reduce its

foraging activities with some risk, forcing it to adopt a hungry survival mechanism, consequently, its growth rate will be 

reduced [26,30] . For example, in a recent experimental study on free-living mesocarnivore (raccoon) populations, by using 

month-long playbacks of large carnivore’s vocalizations, Suraci et al. [30] showed that the foraging can be reduced due to 

the fear of predation risk, without direct killing. Altendorf et al. [1] predicted that mule deer would spend less time foraging

and have the higher vigilance behavior when it is in fear of being predated by mountain lions. 

In this context, several papers have shown that the presence of predators can cause significant reductions in some ani- 

mal reproduction. Yl ̈o nen [37] reported that mustelid predators can inhibit the reproduction of bank voles, and an explana- 
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tion was subsequently given that female’s behavior changed by the exposure to mustelid odours, which avoid copulations 

[27,38,39] . Creel et al. [4] also gave a similar conclusion: the reproductive cost of anti-predator behaviour may be high,

which has an important impact on the dynamics of prey. Recent experiments have shown that the control of fear can be

sufficient to affect ecosystem population dynamics, Zanette et al. [40] experimented throughout the sparrow’s entire breed- 

ing season, by eliminating direct killing and using predator’s voice playback to manipulate perceived risk. They observed 

that the reproduction rate of the song sparrows decreased by 40 percent due to the fear of predator alone. This suggests

that perception of predation risk is sufficient to affect the reproduction of some animals. 

Anti-predator behaviour of prey is ubiquitous, and the fear effect can be large, suggesting that the impact of fear on

population dynamics cannot be ignored. With this motivation, Wang et al. [32] proposed a two-dimensional predator-prey 

model by incorporating the cost of fear into the growth of prey. Their results show the anti-predator response plays an

important role on stabilizing the predator-prey system. They also observed that the Hopf bifurcation can occur and can be 

both supercritical and subcritical in the model incorporated with the cost of fear, which is different from previous classic 

predator-prey models. After this research, some different predator-prey systems incorporated with the fear effect have been 

proposed and analyzed, see, e.g., [3,6,8,14,15,21,23,24,28,29,31,33,34] and [35,36] . 

Among the above works, Panday et al. [23] proposed a three-species food chain model incorporated with the cost of 

fear into the reproduction of prey and middle predator, Panday et al. [24] also considered the cost of fear in foraging of the

middle predator. In [36] , motivated by the recent field experiment results in [30] , the authors considered a food chain system

consisting of four species; and depending on whether or not the top predator (large carnivore) is involved in predating the

middle mesocarnivore, they proposed and analysed a 3-D ordinary system and a 4-D ordinary system respectively, with fear 

effect incorporated in the layer of mesocarnivore or/and large carnivore. The results on these systems all showed that the 

fear effect can make the biological systems behave differently, leading to very rich and complicated population dynamics. 

As a long-term high level anti-predatory behaviour, it can lead to reduced production and foraging, there are both costs 

and benefits for the prey. The benefit of anti-predator behaviour mainly lies in reducing the predation, while the cost is

that starvation affects its growth due to reduced predation, and hence the fear of predation affects reproduction of prey. In

contrast, most analyses (if not all) of three-species food chain systems do not consider all costs and benefits of anti-predator

behaviour. 

In this paper, we will firstly revisit the functional responses in a three-species food chain system in the existence of

fear effect. We will follow the classical Holling’s handling time argument to derive new functional responses, and then 

incorporate the newly derived functional responses into a classical three-species food chain system to obtain our model in 

Sect. 2 . We consider the scenario that the fear of middle predator will reduce prey’s birth rate. Our proposed model can

also describe the fear effect on animal foraging activity based on the detailed analysis of the underlying mechanisms of 

animal foraging behaviours that incorporate the costs and the benefits of anti-predator behaviour. In Sect. 3 , we analyze

the dissipativity of the model; in addition, we present some results on the existence and stability of equilibria. Some of

our mathematical results are different from the classic models that ignore fear effects. We also perform some numerical 

simulations in Sect. 4 to demonstrate our results. We conclude the paper by Sect. 5 in which we present some discussions

on the biological implications of our analytic results, together with some more detailed discussions on the consequences of 

fear effect. 

2. Model formulation 

In this section, we derive a mathematical model to describe the influence of fear effect on a three-species food chain sys-

tem. Three ordinary differential equations are obtained below to describe the population dynamics of the prey, the middle 

predator or mesopredator which is also the prey of the top predator, and the top predator, with top-down cascade preda-

tion interactions. In the following modelling process, we will start from the classical three-species food chain system, and 

gradually introduce the fear effect of the middle predator on its prey and the fear effect of the top predator on the middle

predator into the food chain system. 

A classical three-species food chain system has the following general form 

dx 

dt 
= bx − dx − ax 2 − g 1 (x ) y, 

dy 

dt 
= e 1 g 1 (x ) y − g 2 (y ) z − d 1 y, 

dz 

d t 
= e 2 g 2 (y ) z − d 2 z, (2.1) 

where x (t) , y (t) , z(t) are populations of the prey, the middle predator and the top predator at time t respectively, b is

the birth rate of the prey, a is the intra-specifies competition coefficient of the prey, d, d 1 and d 2 are the natural mortality

rates of the prey, the middle predator and the top predator respectively, e 1 and e 2 are the conversion efficiencies of middle

predator and top predator respectively, g 1 (x ) and g 2 (y ) are the prey dependent functional responses of the middle predator

and the top predator respectively. 

From [32] , the fear effect of the middle predator on the prey mainly affects the birth rate b of the prey. This is because

the presence of the middle predator changes the reproductive habits and foraging behaviors of the prey. Considering the cost 
2 
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of anti-predator defence of the prey, we assume that the modified birth rate of prey becomes b/ (1 + αy ) . Here α reflects

the level of fear which drives the anti-predator behaviours of the prey. 

The fear effect of the top predator on the middle predator is mainly reflected in the feeding process of the middle

predator, which prolongs the feeding time. This means that the functional response g 1 (x ) of the middle predator should

be related to the top predator. We next introduce this fear effect into g 1 (x ) based on the classical Holling’s time budget

argument [12] . For more details on this method, please refer to the references [10] and [42] . 

Let T be the total time spent by a middle predator for gathering food from the prey. T is divided into three parts: 

(i) T ysx is the time spent by the middle predator for searching the prey; 

ii) T yhx is the time spent by the middle predator for handling the caught prey; 

ii) T yzw 

is the time wasted by the middle predator, when it is interfered by the top predator due to the fear effect. 

Here we do not consider the time wasted by the middle predator y for interfering with other middle predators y . 

Let αysx be the searching efficiency of the middle predator for the prey and αyze be the encounter rate between the

middle predator and the top predator. We assume that 

1) the number of the prey caught by per middle predator is proportional to the prey density and the search time; 

2) the total time spent on handling the caught prey is equal to the product of the total number of the caught prey and the

expected handling time t yhx on each caught prey; 

3) the number of the top predator encountered by per middle predator is proportional to the top predator density and the

search time; 

4) when a middle predator perceives/encounters a top predator, the intention of avoidance will cause a waste of time for 

the middle predator’s search for its prey, we assume that the wasted time is the same for all middle predators, and

denote it by t yzw 

. 

It follows from (A1) and (A2) that the total number of the prey caught by per middle predator is N yx = αysx xT ysx . Then 

T yhx = N yx t yhx = αysx t yhx xT ysx . (2.2) 

From (A3) and (A4), we conclude that the number of the top predator encountered by per middle predator is N yz = αyze zT ysx .

Hence 

T yzw 

= N yz t yzw 

= αyze t yzw 

zT ysx . (2.3) 

Combining (i)-(iii) with (2.2), (2.3) gives 

T = T ysx + T yhx + T yzw 

= T ysx + αysx t yhx xT ysx + αyze t yzw 

zT ysx . 

Therefore, the functional response of the middle predator reads 

g 1 (x, z) := 

N yx 

T 
= 

αysx x 

1 + αysx t yhx x + αyze t yzw 

z 
. (2.4) 

The classical functional response g 1 (x ) for the predation of y on x now becomes g 1 (x, z) , which depends not only on x but

also on z (the predator of species y ). Let the functional response of the top predator ( z) be of Holling type II, that is, 

g 2 (y ) = 

γαzsy y 

1 + γαzsy t zhy y 
, (2.5) 

where αzsy is the searching efficiency of the top predator for the middle, 1 − γ ∈ [0 , 1) is the reduced searching efficiency

due to the vigilance arising from fear of species z on y and t zhy is the expected handling time needed for an individual in

species z on each caught y individual. 

Combining all (2.1), (2.4) and (2.5) , we have the following three-species food chain model with fear effect 

dx 

dt 
= 

bx 

1 + αy 
− dx − ax 2 − αysx xy 

1 + αysx t yhx x + αyze t yzw 

z 
, 

dy 

dt 
= 

e 1 αysx xy 

1 + αysx t yhx x + αyze t yzw 

z 
− γαzsy yz 

1 + γαzsy t zhy y 
− d 1 y, 

dz 

d t 
= 

e 2 γαzsy yz 

1 + γαzsy t zhy y 
− d 2 z. (2.6) 

For the convenience of the following discussion, rescaling the parameters by 

a 1 = αysx , a 2 = γαzsy , h 1 = t yhx , h 2 = t zhy , β = αyze t yzw 

. 

Then the model (2.6) becomes 

dx 

dt 
= 

bx 

1 + αy 
− dx − ax 2 − a 1 xy 

1 + a 1 h 1 x + βz 
≡ x f 1 (x, y, z) , 
3 
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dy 

dt 
= 

e 1 a 1 xy 

1 + a 1 h 1 x + βz 
− a 2 yz 

1 + a 2 h 2 y 
− d 1 y ≡ y f 2 (x, y, z) , 

dz 

d t 
= 

e 2 a 2 yz 

1 + a 2 h 2 y 
− d 2 z ≡ z f 3 (x, y, z) . (2.7) 

In (2.7) , for the bottom species x, as in [32] , we only assume that the fear of species y on species x will cause a decline in

production rate reflected by the reducing function 1 / (1 + αy ) with the parameter accounting for the fear level by species x .

The top predator z, its predation on y is presented by nothing but a Holling Type II or Michaelis-Menten functional response.

For the middle species y, its predation on x is given by the functional response of a 1 x/ (1 + a 1 h 1 x + βz) ; it also reduces to

the Holling Type II functional response when β = 0 , which accounts for the scenario that foraging for and predation on the

prey x by middle predator y is not interfered (no fear) by the top predator z. However, when β > 0 , the predation rate is

changed from a 1 x/ (1 + a 1 h 1 x ) to a 1 x/ (1 + a 1 h 1 x + βz) , and thus, β is such a parameter that represents the level of the fear

that species y may perceive and respond to. In addition to the effect on its foraging for species x reflected by β > 0 , the

fear of species z on y species activates a vigilance which will make the species z’s searching for y more difficult, and thus,

the parameter a 2 = γαzsy (assuming a 2 < 1 ) also explains another effect of the fear for species y . In summary, the rescaled

model (2.7) contains three parameters ( α, β, and a 2 ) that are related to the fear effects of the two preys (bottom prey x

and meso-prey y ) in different aspects in the three-species food chain ecological system. This is in contrast to the existing

models mentioned above where generally only one fear parameter is incorporated, and hence, the effects at different levels 

and in different aspects cannot be separated. 

Considering the biological background of (2.7) , we will assume that all the parameters in (2.7) are positive unless explic-

itly stated otherwise, and will consider the solutions of (2.7) with nonnegative initial value, i.e., x (0) , y (0) , z(0) ≥ 0 . 

3. Mathematical analysis 

In this section, we first investigate some basic dynamical properties of system (2.7) , futhermore, we investigate the exis- 

tence and stability of equilibria. 

Lemma 3.1. R 

3 + is a positive invariant set of system (2.7) . Moreover, 

� = 

{
(x, y, z) ∈ R 

3 
+ 

∣∣∣x + 

y 

e 1 
+ 

z 

e 1 e 2 
≤ (b − d + μ) 2 

4 aμ

}
is a globally attracting region, which implies that system (2.7) is dissipative. 

Proof. It follows from (2.7) that 

x (t) = x (0) exp 

(∫ t 

0 

f 1 (x (s ) , y (s ) , z(s )) ds 

)
, 

y (t) = y (0) exp 

(∫ t 

0 

f 2 (x (s ) , y (s ) , z(s )) ds 

)
, 

z(t) = z(0) exp 

(∫ t 

0 

f 3 (x (s ) , y (s ) , z(s )) ds 

)
, 

which implies that solutions with initial condition in R 

3 + remain there for all forward times. 

Let 

P (t) = x (t ) + 

1 

e 1 
y (t ) + 

1 

e 1 e 2 
z(t ) 

and μ = min { d 1 , d 2 } . A direct calculation gives 

dP 

dt 
≤ x (b − d − ax ) − d 1 

e 1 
y − d 2 

e 1 e 2 
z 

≤ x (b − d − ax + μ) − μ(x + 

1 

e 1 
y + 

1 

e 1 e 2 
z) , 

hence 

dP 

dt 
+ μP ≤ x (b − d − ax + μ) 

= −a 

(
x − b − d + μ

2 a 

)2 

+ 

(b − d + μ) 2 

4 a 
≤ (b − d + μ) 2 

4 a 
. 

This means that 

P (t) ≤ (b − d + μ) 2 

4 aμ
(1 − e −μt ) + P (0) e −μt , 
4 
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and 

lim sup 

t→∞ 

P (t) = 

(b − d + μ) 2 

4 aμ
. 

Therefore, the conclusion of the lemma holds. �

Next, we investigate the existence and stability of equilibria. The possible equilibria or steady states of system (2.7) are

listed below: 

E 0 : (0 , 0 , 0) , E 1 : 

(
b − d 

a 
, 0 , 0 

)
, 

E 2 : (x 2 , y 2 , 0) , where (x 2 , y 2 ) satisfies 

b 

1 + αy 
− d − ax − a 1 y 

1 + a 1 h 1 x 
= 0 , 

e 1 a 1 x 

1 + a 1 h 1 x 
− d 1 = 0 , (3.1) 

E 3 : (x 3 , y 3 , z 3 ) , where (x 3 , y 3 , z 3 ) satisfies 

b 

1 + αy 
− d − ax − a 1 y 

1 + a 1 h 1 x + βz 
= 0 , 

e 1 a 1 x 

1 + a 1 h 1 x + βz 
− a 2 z 

1 + a 2 h 2 y 
− d 1 = 0 , 

e 2 a 2 y 

1 + a 2 h 2 y 
− d 2 = 0 . 

(3.2) 

In order to obtain the local stability of these equilibria, we first calculate the Jacobian matrix as 

J(x, y, z) = 

( 

a 11 a 12 a 13 

a 21 a 22 a 23 

a 31 a 32 a 33 

) 

, (3.3) 

where 

a 11 = 

b 

1 + αy 
− d − 2 ax − a 1 y (1 + βz) 

(1 + a 1 h 1 x + βz) 2 
, 

a 12 = − αbx 

(1 + αy ) 2 
− a 1 x 

1 + a 1 h 1 x + βz 
, a 13 = 

βa 1 xy 

(1 + a 1 h 1 x + βz) 2 
, 

a 21 = 

e 1 a 1 y (1 + βz) 

(1 + a 1 h 1 x + βz) 2 
, a 22 = 

e 1 a 1 x 

1 + a 1 h 1 x + βz 
− a 2 z 

(1 + a 2 h 2 y ) 2 
− d 1 , 

a 23 = − βe 1 a 1 xy 

(1 + a 1 h 1 x + βz) 2 
− a 2 y 

1 + a 2 h 2 y 
, a 31 = 0 , a 32 = 

e 2 a 2 z 

(1 + a 2 h 2 y ) 2 
, 

a 33 = 

e 2 a 2 y 

1 + a 2 h 2 y 
− d 2 . 

Theorem 3.1. If b < d, then E 0 is globally asymptotically stable; if b > d, then E 0 is unstable. 

Proof. From (3.3) , we have 

J(E 0 ) = 

( 

b − d 0 0 

0 −d 1 0 

0 0 −d 2 

) 

, 

which implies that E 0 is locally asymptotically stable if b < d, and if b > d, then E 0 is unstable. Note that if b < d holds, then

dx 

dt 
= 

bx 

1 + αy 
− dx − ax 2 − a 1 xy 

1 + a 1 h 1 x + βz 

≤ (b − d) x − ax 2 − a 1 xy 

1 + a 1 h 1 x + βz 
< 0 . 

(3.4) 

It is easy to see when b < d, x (t) goes to zero as t → ∞ by simple comparison, which triggers y (t) and z(t) going to zero as

well (this is also quite natural from biological meaning). Hence E 0 is globally attractive, implying that E 0 is indeed globally

asymptotically stable. �

Theorem 3.2. Assume that b > d, then E 1 exists. Moreover, E 1 is globally asymptotically stable if 

e 1 a 1 (b − d) 

a + a h (b − d) 
< d 1 . (3.5) 
1 1 

5 
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(

Proof. It follows from (3.3) that 

J(E 1 ) = 

⎛ 

⎜ ⎜ ⎝ 

d − b 
a 1 (d − b) 

a + a 1 h 1 (b − d) 
+ 

αb(d − b) 

a 
0 

0 

e 1 a 1 (b − d) 

a + a 1 h 1 (b − d) 
− d 1 0 

0 0 −d 2 

⎞ 

⎟ ⎟ ⎠ 

, 

which means that E 1 is locally asymptotically stable if b > d and (3.5) holds. 

From (2.7) , we have 

dy 

dt 
= 

e 1 a 1 xy 

1 + a 1 h 1 x + βz 
− a 2 yz 

1 + a 2 h 2 y 
− d 1 y 

< 

(
e 1 a 1 (b − d) 

a + a 1 h 1 (b − d) 
− d 1 

)
y. 

According to the comparison theorem, y (t) → 0 as t → ∞ if (3.5) holds. Furthermore, we also have z(t) → 0 as y (t) → 0 .

From the theory of asymptotical autonomous systems [20] , (2.7) reduces to a limiting system 

dx 

dt 
= bx − dx − ax 2 , (3.6) 

which implies that x (t) → (b − d) /a . This means that E 1 is globally attractive. Therefore E 1 is globally asymptotically

stable. �

Note that E 2 is obtained by solving (3.1) . A simple calculation gives 

x 2 = 

d 1 
e 1 a 1 − a 1 h 1 d 1 

, 

y 2 = 

−a 1 − αm + 

√ 

(a 1 + αm ) 2 + 4 a 1 α(b − d − ax 2 )(1 + a 1 h 1 x 2 ) 

2 a 1 α
, 

(3.7) 

where m = (d + ax 2 )(1 + a 1 h 1 x 2 ) . 

Theorem 3.3. Assume that 

d < b, d 1 < 

(b − d) e 1 a 1 
a + (b − d) a 1 h 1 

, 

then E 2 exists. Moreover, 

(i) if 

a > 

a 2 1 h 1 y 2 

(1 + a 1 h 1 x 2 ) 2 
and d 2 > 

e 2 a 2 y 2 
1 + a 2 h 2 y 2 

, (3.8) 

then E 2 is locally asymptotically stable; 

ii) if 

d 2 > 

e 2 
h 2 

and d 1 ≥ max 

{
e 1 − bh 1 

h 1 

, 
e 1 ((b − d) a 1 h 1 − a ) 

h 1 (a + a 1 h 1 (b − d)) 

}
, (3.9) 

then E 2 is globally asymptotically stable. 

Proof. The existence of E 2 is obvious. It follows from (3.3) that the local stability of E 2 is determined by 

J(E 2 ) = 

( 

a 11 a 12 a 13 

a 21 0 a 23 

0 0 a 33 

) 

, 

where 

a 11 = 

a 2 1 h 1 x 2 y 2 

(1 + a 1 h 1 x 2 ) 2 
− ax 2 , a 12 = − αbx 2 

(1 + αy 2 ) 2 
− a 1 x 2 

1 + a 1 h 1 x 2 
, 

a 13 = 

βa 1 x 2 y 2 
(1 + a 1 h 1 x 2 ) 2 

, a 21 = 

e 1 a 1 y 2 
(1 + a 1 h 1 x 2 ) 2 

, 

a 23 = − βd 1 y 2 
1 + a 1 h 1 x 2 

− a 2 y 2 
1 + a 2 h 2 y 2 

, a 33 = 

e 2 a 2 y 2 
1 + a 2 h 2 y 2 

− d 2 . 

If (3.8) holds, then 

a 11 < 0 , a 12 a 21 < 0 , a 33 < 0 , 
6 



P. Cong, M. Fan and X. Zou Commun Nonlinear Sci Numer Simulat 99 (2021) 105809 

 

 

 

(

(i

 

 

which imply that all three eigenvalues of the characteristic equation of J(E 2 ) have negative real parts, confirming the locally

asymptotic stability of E 2 . Therefore, (i) holds. 

Note that if d 2 > e 2 /h 2 , then 

dz 

d t 
= 

e 2 a 2 yz 

1 + a 2 h 2 y 
− d 2 z < 

(
e 2 
h 2 

− d 2 

)
z, 

which implies that z(t) → 0 as t → ∞ . Thus, (2.7) reduces to a limiting system ⎧ ⎪ ⎨ 

⎪ ⎩ 

dx 

dt 
= 

bx 

1 + αy 
− dx − ax 2 − a 1 xy 

1 + a 1 h 1 x 
, 

dy 

dt 
= 

e 1 a 1 xy 

1 + a 1 h 1 x 
− d 1 y. 

(3.10) 

By the results in [32] , ( x 2 , y 2 ) is globally asymptotically stable for (3.10) if (3.9) holds. From the theory of asymptotically

autonomous systems [20] , (ii) holds. �

We now investigate the existence and stability of E 3 . It follows from (3.2) that 

y 3 = 

d 2 
e 2 a 2 − d 2 a 2 h 2 

, z 3 = 

a 1 y 3 / (q − ax 3 ) − (1 + a 1 h 1 x 3 ) 

β
, (3.11) 

where q = b/ (1 + αy 3 ) − d. In order to explore the biologically meaningful existence of the equilibrium E 3 , we let 

A 1 = −2 aq − d 2 aa 1 h 1 

e 1 e 2 β
, A 2 = q 2 + 

e 2 βad 1 y 3 + d 2 qa 1 h 1 − ad 2 
e 1 e 2 β

, 

A 3 = 

d 2 q − d 2 a 1 y 3 − d 1 y 3 qe 2 β

e 1 e 2 β
. 

Then we have 

bx 

1 + αy 
− dx − ax 2 − d 1 

e 1 
y − d 2 

e 1 e 2 
z = 0 , (3.12) 

with x 3 satisfying 

f (x ) := a 2 x 3 + A 1 x 
2 + A 2 x + A 3 = 0 . (3.13) 

It is clear that 

A 1 < 0 , f ′ (x ) = a 2 x 2 + A 1 x + A 2 . 

From (3.11) , if x 3 > 0 , z 3 > 0 , then x 3 < q/a . Next we use the Descartes sign rule to explore the number of positive root(s) of

(3.13) in (0 , q/a ) . 

Lemma 3.2. In the interval (0 , q/a ) , the following conclusions hold. 

(i) when A 3 > 0 , (3.13) has a positive root; 

ii) when A 3 < 0 and A 2 < 0 , (3.13) has no positive root; 

ii) when A 3 < 0 and A 2 > 0 , 

(iii-a) if one of the following conditions is true, then (3.13) has no positive root. 
• � < 0 and x ∗ > q/a ; 
• � > 0 ; 
• � = 0 and A = 0 ; 
• � = 0 , A 
 = 0 and x ∗ > q/a ; 

(iii-b) if one of the following conditions is true, then (3.13) has two positive roots. 
• � < 0 and x ∗ < q/a ; 
• � = 0 , A 
 = 0 and x ∗ < q/a ; 

where 

� = (A 1 A 2 − 9 a 2 A 3 ) 
2 − 4(A 

2 
1 − 3 a 2 A 2 )(A 

2 
2 − 3 A 1 A 3 ) , x ∗ = −A 1 + 

√ 

A 

2 
1 

− 3 a 2 A 2 

3 a 2 
. (3.14)

Proof. (i) When A 3 > 0 , the number of sign changes of adjacent non-zero coefficients in f (x ) is two. According to the

Descartes sign rule, (3.13) has two positive roots or no positive root. Note that 

f (q/a ) = −d 2 a 1 y 3 
e 1 e 2 β

< 0 . (3.15) 

Thus (3.13) has a positive root in (0 , q/a ) (see Fig. 1 (a)). 
7 
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Fig. 1. The graph of the unary cubic equation (3.13) corresponding to the cases (i), (ii), (iii-a) and (iii-b). ( a ) The sign of adjacent non-zero coefficients 

in the unary cubic equation (3.13) changes twice and f (a/q ) < 0 , so (3.13) has two positive roots. ( b ) The number of sign changes in f (x ) is only one, 

(3.13) has one positive root. When the number of sign changes in f (x ) is three and (3.13) has three positive roots, ( c ) x ∗ > q/a, ( d ) x ∗ < q/a . 

 

 

 

 

 

 

 

(ii) When A 3 < 0 and A 2 < 0 , the number of sign changes of adjacent non-zero coefficients in f (x ) is only one. From

Descartes sign rule, (3.13) has a unique positive root. But (3.15) holds, this means that in this case the equation has no

positive root in (0 , q/a ) (see Fig. 1 (b)). 

(iii) When A 3 < 0 and A 2 > 0 , the number of sign changes of adjacent non-zero coefficients in f (x ) is three, (3.13) has

one or three positive roots. Then from [11] we get the following cases. 

(1) If � < 0 , then (3.13) has three unequal real roots. It follows that x ∗ is the smaller root of f ′ (x ) = 0 . From (3.15) and

x ∗ > q/a, the equation has no positive root in (0 , q/a ) (see Fig. 1 (c)); 

(2) If � < 0 and x ∗ < q/a, then (3.13) has two positive roots in (0 , q/a ) (see Fig. 1 (d)); 

(3) If � > 0 , then (3.13) has a unique real root, but it is outside (0 , q/a ) . Hence the equation has no positive root in

(0 , q/a ) ; 

(4) If � = 0 and A = 0 , then (3.13) has three equal real roots, thus the equation has no positive root in (0 , q/a ) ; 

(5) If � = 0 and A 
 = 0 , then (3.13) has three real roots where two real roots are equal. When x ∗ > q/a, the equation has

no positive root in (0 , q/a ) . When x ∗ < q/a, (3.13) has two equal positive roots in (0 , q/a ) . �

Lemma 3.2 gives conditions on the existence of x 3 in the interval (0 , q/a ) , therefore, the following existence theorem

about E 3 can be obtained from Lemma 3.2 . 

Theorem 3.4. If (i) or (iii-b) in Lemma 3.2 holds and 

d 2 < 

e 2 
h 

, 1 < 

a 1 y 3 
(q − ax )(1 + a h x ) 

(3.16) 

2 3 1 1 3 

8 
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(

holds, then E 3 exists. 

Remark 3.1. Note that while the first inequality in (3.16) is explicit, the second is implicit because it is expressed in terms of

x 3 and y 3 , not directly in terms of the model parameters. However, once the model parameters are given, the coefficients of

(3.13) can be directly calculated, and then x 3 can be obtained from (3.13) by the new extracting formula (Shengjin’s formula)

in [11] and y 3 can be calculated by (3.11) , thereby verifying whether (3.16) holds or not. 

We next explore the stability of E 3 . The Jacobian matrix at E 3 takes the form of 

J(E 3 ) = 

( 

a 11 a 12 a 13 

a 21 a 22 a 23 

0 a 32 0 

) 

, 

where 

a 11 = 

a 2 1 h 1 x 3 y 3 

(1 + a 1 h 1 x 3 + βz 3 ) 2 
− ax 3 , a 12 = − αbx 3 

(1 + αy 3 ) 2 
− a 1 x 3 

1 + a 1 h 1 x 3 + βz 3 
, 

a 13 = 

βa 1 x 3 y 3 
(1 + a 1 h 1 x 3 + βz 3 ) 2 

, a 21 = 

e 1 a 1 y 3 (1 + βz 3 ) 

(1 + a 1 h 1 x 3 + βz 3 ) 2 
, a 22 = 

a 2 2 h 2 y 3 z 3 

(1 + a 2 h 2 y 3 ) 2 
, 

a 23 = − βe 1 a 1 x 3 y 3 
(1 + a 1 h 1 x 3 + βz 3 ) 2 

− d 2 
e 2 

, a 32 = 

e 2 a 2 z 3 
(1 + a 2 h 2 y 3 ) 2 

. 

The characteristic equation of the Jacobian matrix is 

λ3 + c 1 λ
2 + c 2 λ + c 3 = 0 , 

where 

c 1 = −(a 11 + a 22 ) , c 2 = a 11 a 22 − a 12 a 21 − a 23 a 32 , c 3 = −a 32 (a 13 a 21 − a 11 a 23 ) . 

In the following, we consider the case that there exists only one positive equilibrium point. 

Theorem 3.5. Assume that E 3 exists. Then 

(i) if c 1 > 0 , 0 < c 3 < c 1 c 2 , then E 3 is locally asymptotically stable; 

ii) if 

(b−d−p+ ax 3 ) 
2 

4 a 
+ dx 3 + 

d 1 y 3 
e 1 

+ 

d 2 z 3 
e 1 e 2 

< 

bx 3 
1+ αQ 

, 

e 1 a 1 x 3 − a 2 z 3 
1+ a 2 h 2 Q < d 1 , e 2 a 2 y 3 < d 2 

(3.17) 

holds, then E 3 = (x 3 , y 3 , z 3 ) is globally asymptotically stable, where 

Q = 

(b − d + μ) 2 

4 aμ
, μ = min { d 1 , d 2 } , p = 

a 1 y 3 
1 + a 1 h 1 Q + βQ 

. (3.18) 

Proof. (i) follows directly from the Routh-Hurwitz criteria. For (ii) , we consider the Lyapunov function defined by 

V = 

(
x − x 3 − x 3 ln 

x 

x 3 

)
+ 

1 

e 1 

(
y − y 3 − y 3 ln 

y 

y 3 

)
+ 

1 

e 1 e 2 

(
z − z 3 − z 3 ln 

z 

z 3 

)
. 

Differentiating V with respect to t, we have 

dV (x (t) , y (t) , z(t)) 

dt 
= 

(
1 − x 3 

x 

)
dx 

dt 
+ 

1 

e 1 

(
1 − y 3 

y 

)
dy 

dt 
+ 

1 

e 1 e 2 

(
1 − z 3 

z 

)
dz 

dt 
. 

According to the Lemma 3.1 , since 0 < e 1 , e 2 ≤ 1 , there exists a T such that when t > T , x (t) , y (t) , z(t) < Q and 

dV 

dt 
≤bx − dx − ax 2 − bx 3 

1 + αQ 

+ dx 3 + ax 3 x + a 1 x 3 y − d 1 (y − y 3 ) 

e 1 
− px + 

a 2 y 3 z 

e 1 

− d 2 (z − z 3 ) 

e 1 e 2 
− a 2 z 3 y 

e 1 (1 + a 2 h 2 Q ) 

≤ − a 

(
x − b − d − p + ax 3 

2 a 

)2 

+ 

(b − d − p + ax 3 ) 
2 

4 a 
− bx 3 

1 + αQ 

+ dx 3 + 

d 1 y 3 
e 1 

+ 

d 2 z 3 
e 1 e 2 

+ 

(
a 1 x 3 − d 1 

e 1 
− a 2 z 3 

e 1 (1 + a 2 h 2 Q ) 

)
y + 

(
a 2 y 3 

e 1 
− d 2 

e 1 e 2 

)
z, 

where Q = (b − d + μ) 2 / 4 aμ, μ = min { d 1 , d 2 } and p = a 1 y 3 / (1 + a 1 h 1 Q + βQ ) . It is observed that if 

(b − d − p + ax 3 ) 
2 

4 a 
+ dx 3 + 

d 1 y 3 
e 

+ 

d 2 z 3 
e e 

< 

bx 3 
1 + αQ 

, 

1 1 2 
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Fig. 2. Illustration of convergence to equilibrium dynamics of system (2 . 7) with initial value (0.7, 0.5, 0.2). The parameter values are given in Table 1 for 

(a), (b), (c) and (d) respectively, and they satisfy the conditions in Theorems 3.1, 3.2, 3.3 and 3.4 respectively, and hence, supporting the dynamics of 

convergence to the equilibria E 0 , E 1 , E 2 and E 3 , respectively. They demonstrate four different scenarios: (a) x cannot survive and accordingly, neither can y 

and z; (b) x can survive but y and z cannot; (c) x and y can survive but z cannot; (d) all three species can survive. 

 

 

 

 

 

 

 

 

 

 

 

 

e 1 a 1 x 3 < d 1 + 

a 2 z 3 
1 + a 2 h 2 Q 

, e 2 a 2 y 3 < d 2 

holds, then d V (·) /d t ≤ 0 , d V (·) /d t = 0 if and only if (x, y, z) ≡ (x 3 , y 3 , z 3 ) . Consequently, by Lyapunov-Lasalle’s invariance

principle [18] , the interior equilibrium E 3 (x 3 , y 3 , z 3 ) is globally asymptotically stable if (3.17) holds. �

In the above, we have discussed the conditions of the existence and stability of all equilibria. All these analytical results

can be numerically confirmed. For a demonstration, we present some simulation results in Fig. 2 , that illustrate the dynamics

of convergence to equilibria. In Fig. 2 (a), the parameters are chosen (see Table 1 ) such that the growth rate of the bottom

prey x is sufficiently small ( b < d, the scenario of Theorem 3.1 ), and thus, as predicted by Theorem 3.1 , all three species go

to intinction. Similarly, Fig. 2 (b), Fig. 2 (c), and Fig. 2 (d) corresponding to the scenarios of Theorems 3.2, 3.3 , and 3.4 that

demonstrate the convergence to equilibria E 1 , E 2 , and E 3 respectively, with the parameters given in Table 1 . 

In addition to the aforementioned dynamics of global convergence to an equilibrium obtained in Theorems 3.1 –3.4 , we

have also numerically observed periodic dynamics and bistable dynamics by choosing parameters that violate those condi- 

tions for global convergence to an equilibrium. See Fig. 3 for cyclic dynamics and Fig. 4 for bistable dynamics for system

(2.7) . 

4. Impact of the fear effects 

This section is devoted to some discussions on the role of the fear effect on the dynamics of the model. Note that,

species x and y, as the prey of y and z respectively, each has an anti-predation response when perceiving a risk from its

predator ( y and z respectively). The response of x in this model is to reduce its production, with the level reflected by the

parameter α > 0 . The response of the species y, however, are two-fold: (I) the vigilance of species y makes the species z’s
10 
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Table 1 

Parameter values for attractors of (2.7) presented in Fig. 2 . 

Figures Parameters Attractors 

Fig. 2 (a) b = 0 . 5 , d = 0 . 7 , d 1 = 0 . 5 , d 2 = 

0 . 5 , α = 21 . 2 , β = 20 . 7 , a = 

0 . 5 , h 1 = 3 , a 1 = 0 . 37 , e 1 = 

0 . 6 , a 2 = 0 . 25 , h 2 = 4 , 

e 2 = 0 . 6 

E 0 is an attractor, the 

condition of total extinction 

in the system 

Fig. 2 (b) b = 0 . 5 , d = 0 . 4 , d 1 = 0 . 5 , d 2 = 

0 . 5 , α = 21 . 2 , β = 20 . 7 , a = 

0 . 5 , h 1 = 3 , a 1 = 0 . 37 , e 1 = 

0 . 6 , a 2 = 0 . 25 , h 2 = 4 , 

e 2 = 0 . 6 

E 1 is an attractor, where the 

middle predator and the top 

predator become extinct 

Fig. 2 (c) b = 0 . 5 , d = 0 . 1 , d 1 = 0 . 1 , d 2 = 

0 . 5 , α = 21 . 2 , β = 20 . 7 , a = 

0 . 1 , h 1 = 3 , a 1 = 0 . 37 , e 1 = 

0 . 9 , a 2 = 0 . 1 , h 2 = 4 , e 2 = 0 . 6 

E 2 is an attractor, where the 

prey and the middle 

predator can coexist at the 

equilibrium 

Fig. 2 (d) b = 1 . 3 , d = 0 . 1 , d 1 = 0 . 1 , d 2 = 

0 . 1 , α = 15 , β = 23 , a = 

0 . 4 , h 1 = 1 , a 1 = 0 . 8 , e 1 = 

0 . 8 , a 2 = 0 . 8 , h 2 = 1 . 5 , 

e 2 = 0 . 8 

All species coexist. E 3 is an 

attractor, the solution of 

(2 . 7) tends to a steady state 
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time
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0 500 1000 1500
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Fig. 3. Some cyclic dynamics of the system (2 . 7) . Solutions starting at (0.7, 0.5, 0.2). ( a ) The top predator z is extinct while the prey x, the middle predator 

y coexist cyclically ( b = 1 . 2 , d = 0 . 5 , d 1 = 0 . 1 , d 2 = 0 . 1 , α = 3 . 2 , β = 26 . 4 , a = 0 . 03 , a 1 = 0 . 37 , h 1 = 3 , e 1 = 0 . 6 , a 2 = 0 . 25 , h 2 = 4 , e 2 = 0 . 6 ). ( b ) The prey, the 

middle predator and the top predator coexist cyclically ( b = 1 . 3 , d = 0 . 1 , d 1 = 0 . 1 , d 2 = 0 . 1 , α = 0 . 5 , β = 23 , a = 0 . 4 , a 1 = 0 . 8 , h 1 = 1 , e 1 = 0 . 8 , a 2 = 0 . 8 , h 2 = 

1 . 5 , e 2 = 0 . 8 ). 

 

 

 

 

 

 

 

 

predation on y more difficult and this effect is reflected by the parameter a 2 = γαzsy ; (II) the vigilance of species y also

affects its own foraging effort for its prey x and this is measured by the parameter β = αyze t yzw 

. In the rest of this section,

we will numerically explore the impacts of the three parameters a 2 , α, and β on the dynamics of (2.7) to observe biological

implications. 

4.1. impact of top predator z’s fear on its foraging for y via a 2 

For this purpose, we set α = β= 0 and observe how changes of a 2 will impact the dynamics of (2.7) . To this end, we

consider the following parameter values set: 

b = 1 . 4 , d = 0 . 4 , d 1 = 0 . 4 , d 2 = 0 . 01 , a = 1 , a 1 = 5 . 5 , h 1 = 0 . 6 , e 1 = 0 . 9 , 

e 2 = 0 . 9 , h 2 = 4 . 
(4.1) 

With the above values, and by varying a 2 to four different values, we obtain numeric results shown in Fig. 5 . Fig. 5 (a) shows

chaotic dynamics of the system (2 . 7) when a 2 = 0 . 5 ( a 2 = γαzsy , γ = 1 ), and the trajectories of this chaotic dynamics can

be observed in the phase space. Then from Fig. 5 (b) in which a 2 = 0 . 2 ( γ = 2 / 5 ) is used, we observe periodic oscillations.

When a is further decreased to a = 0 . 15 ( γ = 3 / 10 ), the model demonstrates convergence to the positive equilibrium, as
2 2 
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Fig. 4. System (2 . 7) allows a bistable scenario. The blue dot-dash line and red solid curve represent the solution starting at (2.7, 2.5, 2) and the solution 

starting at (0.7, 0.5, 0.2), respectively. They are attracted by two different equilibria ( b = 1 . 5 , α = 15 . 4 , d = 0 . 01 , a = 0 . 3 , a 1 = 0 . 6 , h 1 = 0 . 3 , e 1 = 0 . 3 , a 2 = 

0 . 9 , h 2 = 0 . 3 , d 1 = 0 . 05 , e 2 = 0 . 8 , d 2 = 0 . 2 , β = 73 . 9) . (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

 

 

 

 

 

 

 

 

 

 

is shown in Fig. 5 (c). When a 2 = 0 . 01 , γ is very small and the periodic oscillations appear again, z(t) is driven to extinction

(see Fig. 5 (d)). 

We can also demonstrate the effect of a 2 in the form of bifurcation diagram with respect to a 2 as in Fig. 6 . From the

diagrams, we see that there are four subintervals for a 2 : (i) if a 2 is sufficiently large, the system demonstrates chaotic

dynamics. In this case, the interference ability of z is weaker than the interference from foraging activities of y . (ii) When

a 2 is located in a medial range, the model produces the patterns of periodic dynamics. (iii) When a 2 is further reduced to

a smaller medial range, the model supports the dynamics of convergence to the unique positive (co-existence) equilibrium. 

(iv) When a 2 is very small, the x (t) and y (t) resume periodic dynamics while z(t) is driven to extinction. 

4.2. impact of middle predator y ’s fear on prey x ’s birth rate via α

In their field study, Zanette et al. [40] have observed that the fear effect could affect reproduction even in the absence

of direct killing. Such an effect is represented by the parameter α. To numerically explore the impact of α, we assume the

top predator has no fear effect on the middle species’ foraging for prey (i.e., β = 0 ). We adopt the values of parameters in

(4.1) except changing h 2 = 4 to h 2 = 16 together with taking a 2 = 0 . 15 . We then find that system can also exhibit chaotic 

dynamics as α varies. As shown in Fig. 7 , the system has a chaotic attractor for α = 0 . 02 (see Fig. 7 (a)), a periodic attractor

for α = 0 . 7 (see Fig. 7 (b)), and a unique stable interior equilibrium for α = 1 (see Fig. 7 (c)), respectively. The bifurcation

diagrams in Fig. 8 with respect to the parameter α describe the switches between the above mentioned three types of 

dynamics for the system. As an additional way of judging chaotic dynamics, a variation of the maximum Lyapunov exponent 

for α is plotted in Fig. 9 (a). 
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Fig. 5. Solutions of system (2 . 7) when α = 0 = β but with various values for a 2 . Other parameters are given in (4.1) . ( a ) Chaotic dynamics when a 2 = 0 . 5 ; 

( b ) periodic pattern when a 2 = 0 . 2 ; ( c ) stable focus when a 2 = 0 . 15 ; ( d ) periodic pattern when a 2 = 0 . 01 where z(t) is driven to extinction. 

 

 

 

 

The above simulations are done by fixing the other two parameters (a 2 , β) at (0 . 15 , 0) and letting α vary. We point

out that if (a 2 , β) are fixed at different values, varying α may lead to different dynamics. To see this, we fix β = 73 . 9 ,

a 2 = 0 . 9 , and take α at three different values for α = 0 , α = 15 . 4 and α = 20 . We observe that the longtime dynamics

undergo changes from cyclic oscillation (see Fig. 10 (a) when α = 0 ) to a bistable scenario (see Fig. 10 (b) when α = 15 . 4 ),

and to a stable focus (see Fig. 10 (c) when α = 20 ). 
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Fig. 6. Bifurcation diagram of the system (2 . 7) with respect to the parameter a 2 . Values of other parameters are the same as those in Fig. 5 , given in (4.1) . 
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Fig. 7. Phase plot of system (2 . 7) . ( a ) Chaotic dynamics; ( b ) periodic pattern; ( c ) stable focus. Here a 2 = 0 . 15 , β = 0 , h 2 = 16 , other parameters are setting 

as (4.1) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3. impact of top predator z’s fear on middle predator y ’s foraging for x via β

Next, we consider the effect of the top predator on the middle predator. To this end, we assume there is no fear effect

of the middle predator on the bottom prey ( α = 0 ), but let β vary. As for the case of varying α in the above subsection,

adopting the same parameter values in (4.1) except changing h 2 = 4 to h 2 = 16 together with taking a 2 = 0 . 15 , we observe

three different types of long time dynamics, as shown in Fig. 11 : chaotic dynamics for β = 0 . 01 (see Fig. 11 (a)), convergence

to a periodic attractor for β = 2 (see Fig. 11 (b)), and convergence to a positive equilibrium for β = 8 (see Fig. 11 (c)), respec-

tively. Bifurcation diagrams with respect to the parameter β are given in Fig. 12 . And a variation of the maximum Lyapunov

exponent for β is plotted in Fig. 9 (b). 

In the above three subsections, among the three parameters a 2 , α and β that represent the fear effect at differential

level, we numerically explored the impact of each of them by fixing the other two. We may also explore the joint effect of

two of the three to have a better overview. For example, let us only fix a 2 = 0 . 15 and numerically explore the joint impact

of α and β in the form of two-parameter bifurcations. Using the same set of parameter values as in (4.1) except changing

h 2 = 4 to h 2 = 16 , the bifurcation surfaces with respect to the parameters α and β are plotted in Fig. 13 , respectively for

x, y and z variables. 

In addition, in order to more clearly express the impact of the introduction of the fear in the food chain, we consider the

sign of the largest Lyapunov exponent in two-dimensional parameter space with varying two parameters α and β . Lyapunov 

diagrams for the α − β plane for the largest Lyapunov exponent are given in Fig. 14 . The different color regions correspond

to different dynamical behavior, the occurrence of chaotic dynamics is given by positive Lyapunov exponent and corresponds 

to blue regions; and green, yellow and red regions correspond to stable state and periodic orbits. 
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Fig. 8. Bifurcation diagram of the system (2 . 7) with respect to the bifurcation parameter α. Parameters are the same as those in Fig. 7 , that is, they are 

given in (4.1) . (d)-(e)-(f) are enlargements of (a)-(b)-(c) for small values of α corresponding to the chaotic dynamics in Fig. 7 -(a). 
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Fig. 9. A variation of the maximum Lyapunov exponent for α and β, respectively. Here (a) β = 0 , (b) α = 0 , and other parameters are the same as (4.1) . 
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Fig. 12. The bifurcation diagram of the system (2 . 7) with respect to the bifurcating parameter β, parameters are the same as those in Fig. 11 . 
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Fig. 13. Bifurcation surfaces for the prey x, the middle predator y and the top predator z, respectively, the bifurcation parameters are α and β . Here 

a 2 = 0 . 15 , h 2 = 16 , other parameters are setting as (4.1) . 

Fig. 14. Lyapunov diagrams for the α − β plane for the largest Lyapunov exponents. In blue the positive Lyapunov exponents indicate chaotic dynamics. 

Stable state and periodic orbits dynamics correspond to green, yellow and red regions. Here a 2 = 0 . 15 , h 2 = 16 , other parameters are setting as (4.1) . (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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5. Conclusions and discussions 

We have proposed a 3-D ODE model and rescaled system (2.6) to system (2.7) , for a food chain ecosystem of three

species, incorporated with the fear of the middle predator y on the bottom prey x, and the fear of the top predator z on

the meso-prey y . These fear effects are reflected by three parameters: α accounts for the response of species x to the fear

of species y, leading to a reduced production for species x ; β and a 2 account for the responses of species y to the fear of

species z, leading a reduced foraging for species x and a reduced predation by species z. 

We have theoretically analyzed the dynamics of the model (2.7) to obtain results about the longtime dynamics of (2.7) .

These results are described in terms of the model parameters, and hence, they can shed some lights on how the fear effects

will affect the outcome of the interactions in the food chain system. Particularly, we have also numerically explored the 

impacts of the three parameters a 2 , α and β, and presented the results in the form of figures which are more visual and

convenient for general readers. Our results show that, depending on the ranges of parameters, this system can have very 

rich dynamics including convergence to a unique co-existence equilibrium, bistability, sustained oscillations (or periodic 

behaviour), and even chaotic behaviour. 

In particular, our numerical exploration on the impacts of the three fear related parameters has led to some interesting 

and meaningful observations, clearly showing how the fear effect in each related channel affects the longtime dynamics. 

For example, in the case β = 0 and a 2 = 0 . 15 , we can see from Figs. 7 and 8 that when the fear level α is increased, the

system experiences a bifurcation path of chaotic → periodic → equilibrium . So, large α will stabilize the system to a coexistence

equilibrium. Such a phenomenon is also observed in [32] for the predator-prey model. But since the model in [32] is 2-D,

there cannot be a chaotic behaviour for any range of parameters. Also, in the range of α supporting convergence to a coex-

istence equilibrium, as α increases, the densities of x and z decrease while the density of y increases. Such a phenomenon

of trophic cascade is similar to the one experimentally reported in [30] and mathematically predicted in [36] , but is caused

by different factors: the trophic cascade is caused by the middle predator’s fear on the bottom species, while in [30,36] , the

trophic cascade is caused by the top predator’s fear on meso-species. 

Note that the way the other fear parameter β is involved unique and novel: it is associated with the z variable governed

by the third equation in the model but it occurs in both the first and the second equations. Its impact is also interesting.

For example, for the case α = 0 and a 2 = 0 . 15 , from Fig. 11 and Fig. 12 , we can see that, when β is increased (foraging

of y for x is reduced), the system qualitatively experiences the same bifurcation path (surprisingly) as described in the 

preceding paragraph for increasing α: chaotic → periodic → equilibrium . However, quantitively the densities of x and y increase

and the density of z decreases as β increases, differing from trophic cascade observed in the preceding paragraph. These 

observations show that the roles of the two fear parameters α and β can be different. 

We have also observed that when both cost and benefit of the fear effect on the three species are considered, the system

(2 . 7) may allow a bistable scenario within a certain range of the parameters, as shown in Fig. 4 . In such a scenario, there is

the issue of the basin of attraction for each stable equilibrium, which is important as it determines the final destination of a

solution by the initial value. Unfortunately, this is very challenging mathematically. We point out that a bistability scenario 

is also observed in [32] for the 2-D predator-prey system, but that bistability is for a stable equilibrium and a stable periodic

solution, while the bistability observed here is for two stable equilibria. 

The rich dynamics revealed from the system (2.7) can have some biological/ecological implications in biological control 

and biodiversity. Indeed, depending on the specific species in the food chain, one may have different goals/desires for these 

species on their extinction or persistence, and in the case of persistence, on their levels of densities. These goals may be

achieved by creating some situations that can mimic some characteristics (e.g., vocal and visual) of the predators involved 

in the food chain, by which, the related fear effect(s) can be enhanced, helping to reach the desired longtime outcomes.

Therefore, our results on the fear effect can help to maintain ecological balance and can be applied in ecological conservation

effort s. We point out that our model is not specific to any particular three species forming a food chain, and thus, is of

universality. However, we admit that, this study is mainly mechanistic, aiming to understand the mechanism of propagation 

of fear effect in a food chain. In general, activating a model with fear effect remains a challenge because in general it is not

easy (if not impossible) to quantify the parameter(s) representing the fear effect. 

We remark that, as far as we know, in the existing predator-prey models with fear effect, the fear effects are incorpo-

rated intuitively . In this paper, the fear parameter β is incorporated by a rigorous derivation by using the Holling’s handling

time argument, leading to the functional response a 1 x/ (1 + a 1 h 1 x + βz) in the species y ’s predation term. We believe this

provides a new and reliable approach for incorporating fear effects to various predator-prey models. Recall that the well- 

known Beddington-DeAngelis functional response for the species y ’s predation is of the form ax/ (1 + ahx + cy ) . Comparing

our derived functional response a 1 x/ (1 + a 1 h 1 x + βz) with the Beddington-DeAngelis functional response, one finds that the

term 1 + ahx + cy in the denominator is replaced by 1 + a 1 h 1 x + βz. This is because in our derivation, we have only con-

sidered the time wasted by each middle predator due to the interference by the top predator (hence βz) caused by the

fear effect, but we have ignored the time wasted by each middle predator due to the interference caused by intra-species

competition (hence cy ). The predator-prey system with Beddington-DeAngelis functional response [2,7] has been considered 

in many papers, see, e.g., [9,16,17,22,41] . Thus, it is interesting and worthwhile to explore the situation with interferences

from both fear effect and intra-species competition for the middle species y . This should lead to a functional response of

the form ax/ (1 + ahx + cy + βz) , which is expected to generate more complicated population dynamics. We leave this as a

future research project. 
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