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1 Introduction

Consider the reaction diffusion system
Ou(z,t)
ot

where u € R, D = diag(dy,ds,--- ,d,) withd; >0, ¢=1,--- ,n,and A is
the Laplacian operator with respect to the spatial variable zx, that is,

= DAu(z,t) + f(u(z,t)), t>0, z€QCR™ (1.1)

Au(z,t) = ZM’,ZM

Ox? ox?
k=1 k k=1 k

Eq. (1.1) is an very important type of partial differential equations, for such
equations have been used to model various problems arising from physics,
chemistry and biology, etc. Among various aspects for (1.1), are the so-called
traveling wave solutions, which are solutions of the form u(z,t) = ¢(z-0+ct),
where 8 = (61,02, --,0,,) is a unit vector describing the direction of the
wave and c¢ is a constant giving the velocity of the wave. Fisher [3] and
Kolmogonov et al. [7] first revealed that, like wave equations, a reaction
diffusion equation can also allow traveling wave solutions. Since then, there
have been many studies on traveling waves of reaction diffusion equations,
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and it has been found that traveling wave solutions play a crucial role in
describing the spatial-temporal patterns.

Substituting u(x,t) = ¢(x - 8 + ct) into (1.1) and denoting x - 8 + ct still
by t gives a system of ordinary differential equations for the profile ¢:

D" (t) —cg'(t) + f(¢(t)) = 0. (1.2)

If the profile ¢ is monotone and saturates at +oo, that is, lim;_, o ¢(¢) and
lim;_, o ¢(t) exist, then the traveling wave solution is called a traveling wave
front. If ¢(t) is periodic, then the traveling wave solution is called a periodic
traveling wave.

In many situations, time delay should be and has been incorporated into
the realistic models in applications. The recent monograph Wu [12] provides
a systematic coverage of the fundamental theory and some related topics in
respect to the reaction diffusion system with delay:

Ou(z,t)
ot

= DAu(z,t) + f(ue(z)), t>0, z€QCR™, (1.3)

where f : C([—7,0]; R") — R" is a functional satisfying some conditions,
and u(z) is an element in C([—7,0]; R™) parameterized by z € 2 and given
by u¢(z)(s) = u(z,t + s), s € [-7,0].

Traveling wave fronts for reaction diffusion systems without delay have
been extensively studied in the literature. The recent book review of Gard-
ner [5], the monographs of Fife [2], Britton [1], Murray [8] and Volpert et
al. [11] provide full discussion of the subject. But for delayed reaction dif-
fusion systems, very few papers on this topic are available in the literature.
Schaaf [9] is the pioneer work in this aspect, where scalar reaction diffusion
equations with a discrete delay were systematically studied for existence of
traveling fronts, using the phase-plane technique, the maximum principle for
parabolic functional differential equations and the general theory for ordi-
nary functional differential equations. Wu and Zou [13], and Zou and Wu
[14] made attempts to tackle the existence of traveling wave fronts of delayed
reaction diffusion systems with certain nonlinearities, by employing monotone
iteration technique and upper-lower solutions.

As far as periodic traveling waves are concerned for delayed reaction sys-
tems, bifurcation technique becomes a natural choice. See, for examples,
Kopell and Howard [6], and Stech and Xin [10]. But when time delay is
incorporated into the system (n > 2), the characteristic equation will be a
transcendental equation with degree of at least four, and analyzing such a
characteristic equation for the bifurcation purpose becomes, if not impossi-
ble, extremely difficult. That’s why so little has been done in the literature
on periodic traveling waves for delayed reaction diffusion systems. Thus it
seems quite natural and reasonable to pursue an alternative way, and this
constitutes the aim of this paper. In order to focus on the mathematical
ideas, we consider a reaction diffusion system of only two equations with
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only discrete delays, that is

2ulet) — dy Y, Talet + f(ula, 1), 0(w, 1), u(, t = 1), 0(@, t = 112)),

) — gy o, e ““ Tt + glulz, 1), v(, 1), ul@,t =), v(@,t = r22)),
(1.4)
where t > 0, z € R™, and d; > 0 and dy > 0 are diffusion coefficients.
Instead of bifurcation approach, we will apply a continuation theorem in
coincidence degree theory to establish existence of periodic traveling waves
for (1.4).

The rest of the paper is organized as follows. In Section 2, we set up the
problem into a form for which the continuation theorem will be employed,
and state an appropriate version of the continuation theorem. The main
results will be given and proved in session 3.

2 Preliminaries and the Main Result

We are concerned with the existence of periodic traveling waves for (1.4). Let
0 = (01,02, ,0,) be a unit vector, and ¢ > 0 be a constant. Substituting
u(z,t) = ¢1(x -0 + ct) and v(z,t) = ¢2(x - 0 + ct) into (1.4) yields

iy (t) = cdy(t) + F(@1(1), 2(8), 1 (E = ernr), da (b = eriz)) =0, g 4
oy (t) — e () + 9(d1(t), P2(2), d1(t — cran), Po(t — era2)) = 0. '

Letting y = ¢1 and z = ¢, (2.1) can be rewritten as

y"(t) + ary' (1) + fi(y(8), 2(8), y(t = 1), 2(t = 7)) =0, (2.2)
2'(t) + 012 (t) + f2(y(2), 2(), y(t — 73), 2(t = 7)) = 0. '

where a1 = 5, by = 7, 71 =cri1, T2 = Cri2, T3 =Cra1, T4 = Craz, and
= de , fa = dl—2 g. As we have seen in the introduction, a periodic solution
of (2.25 corresponds to a periodic traveling wave of (1.4). In what follows,
we will establish some results on existence of periodic solutions for (2.2)
by combining a continuation theorem of coincidence degree in Gaines and
Mawhin [4] with some differential inequality techniques for a priori bounds
of periodic solutions of system (2.2). To this end, we first state an appropriate
version of the continuation theorem.

Let X, Z be two Banach spaces, L : DomL C X — Z a linear mapping
and N : X — Z a continuous mapping. The mapping L will be called
a Fredholm mapping of index zero if dimKerL = CodimImL < +oco and
ImL is closed in Z. If L is a Fredholm mapping of index zero, then there
exist continuous projectors P : X — X and @ : Z — Z such that ImP =
KerL,ImL = KerQ = Im(I — Q). It follows that L|pomrnkerp : (I —
P)X — ImL is invertible. We denote the inverse of that map by Kp. If Q is
an open and bounded subset of X, the mapping N will be called L-compact
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on Q if QN(Q) is bounded and Kp(I — Q)N : O — X is compact. Since
Im(@ is isomorphic to KerL, there exists an isomorphism J : Im@ — KerL.

Lemma 2.1 ( see [4]). Let X and Z be Banach spaces and L: DomL N
X — Z a Fredholm mapping of index zero. Assume that Q0 is open and
bounded subset in X and N : Q — X is L-compact on Q. Suppose

(a) for each X € (0,1),z € () Dom L, Lz # ANz;

(b) for each x € QN Ker L, QNz # 0 and

deg{QN, QN KerL,0} #0,

where deg 1is the Leray-Schauder degree. Then Lz = Nz has at least one
solution in Q.

3 Existence of Periodic Traveling Waves

We first state our main results on the existence of 27- periodic solutions of
system (2.2).

Theorem 3.1. Assume that

(i) There exist constants as and b, such that

fi(w1, 22,23, 24) = apwy + g1(21, 72,23, 24)
Ja(w1, 22,73, 24) = oy + g2(21, T2, T3, 24),

for all (z1,xs,73,74) € R
(ii)) There exist some constants «; > 0, 8; > 0, M; > 0 such that

|9i (@1, T2, T3, T4)| < M + ai|zs| + Bilzal, i =1,2,V(x1,22,23,74) € R*

and

(111) min{|a2| - o1, |b2| — ,32} > max{ﬂl,ag}.
Assume also that one of the following conditions holds:
(iv) B >0 and B?A > B;(2n|bs|v/B2C + B2 B) + 27|az|\/Bi1 BC,

or
(v) D>0and DE > F,
where

A= |a2| — Qo1 — 27T|a2|\/|a2| + oy, B = |b2| — Qo —27T|b2|\/ |b2| + o,

C =2m|bo|\/ B2 +/B2B, D = |biba| — Ba(|b1] + 27|b2]),
FE = |a1a2| - a1(|a1| + 27i'|a2|)7 F= B1a2(|a1| + 27r|a2|)(|b1| + 27T|b2|)

Then system (2.2) has at least one 2m-periodic solution, that is, system (1.4)
has at least one 27-periodic traveling wave.

Theorem 3.2. Assume that the conditions in Theorem 3.1 hold, and
that

(vi) for x3 #0, x4 # 0, boxsg: (21, T2, T3, T4) # a22392(21, T2, T3,T4).
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(vi))  91(0,22,0,24) #0 for =x2,z4 € R; go(x1,0,23,0) # 0 for
r1,23 € R.
Then system (2.2) has at least one non-constant 2m-periodic solution. That
is, system (1.4) has at least one non-constant 2w-periodic traveling wave.

Theorem 3.3. Suppose fi; and fy are continuous. Assume that

(i) There exist some constants m; > 0,n; >0, p; > 0,r; >0and g; >0
such that

| fi(z1, 22, 23, 24)| < mi|z1| + ni|z2| + pilzs| + rilza|,

fori =1,2, (z1,22,73,24) € R*.
(ii) There exists a constant h > 0 such that when min{z1,23} > h,

fi(z1,m2,23,24) >0,  fir(—z1,22,—23,24) <0
and that when min{zs,z4} > h,

fo(z1, @, 23,24) >0,  folx1, —22,23,—24) < 0.
Assume also that one of the following two conditions holds:

(iii) 47%(ng +12) < 1, 47%(my +p;1) < 1 and

ll — 41 (ng + 1) | |1 = 4n%(my +p1)| > 167 (ny + 71) (M2 + p2)

or
(iv) |a1| > 27(m1 + p1), |b1]| > 27 (n2 + r2) and

|a1|—27r(m1 +p1) >47r2(n1 +r1)(m2 +p2).

l|b1| - 271’(712 + 7‘2)

Then system (2.2) has at least one 27-periodic solution. That is, system
(1.4) has at least one 2w-periodic traveling wave.

In the remainder of this section, we give the proofs of the above theo-
rems. In order to apply Lemma 2.1, it is crucial to find the required open
and bounded subset in the properly chosen space. This can be achieved by
establishing some a priori estimates, which is, as will be seen, quite technical.
In what follows, we will always let

27 %
lelle = ([ lst0Pdr) - for w e cr,m),
0

where | - | denotes the Euclidean norm.

Proof of Theorem 3.1. We first consider the case when (i), (ii), (iii)
and (iv) are satisfied.

In order to apply Lemma 2.1 to system (2.2), we consider the spaces

X ={(y(),2(t))" € C*(R, R?) : y(t +2m) = y(t), 2(t + 2m) = 2(t)}
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and
Z ={(y(1),2(1))" € C(R, R?) : y(t + 2m) = y(t), z(t + 2m) = z(¢)}
equipped with the norms respectively

T ! !
= m t)]+ m t)| + max t)]+ m t
1(y,2)" [|x te[oi,gir] ly(t)] te[OE}Z)Sr] |2(t)] t€[0.27] ly'(t)] te[oilz);] |2 (t)]

and
T = m t)|+ m t)|.
[|(y,2)" ||z te[&ﬁr] ly(t)] te[o%}ir] |2(t)]

With the above norms, X and Z are Banach spaces. Define the operators N
and L by

N [y] - [_alyl(t) —ay(t) — g1(y(t), 2(t), y(t — 1), 2(t — 1))
=b12'(t) — bez(t) — g2 (y(t), 2(¢),y(t — 73), 2(t — 74))

and

The two project operators P and @) of L to KerL and Z/ImL, respectively,
are given by

1 27
P:XX, P [y] - l? o%y(t)dt] , [y] € X.

2] 7L (bt z
. y] _ | [Tyt y
Q:7 =7, Q[z]_t% j”z(t)dt]’ [z]ez.

Since KerL = R? and

Im L = {[Z] EZ:/OQWy(t)dtzo,/O%z(t)dt:O},

ImL is closed and dimKerL =dimZ/ImL = 2. Therefore, L is a Fredholm
mapping of index 0.

In view of condition (i) in Theorem 3.1, for the above L and N, the
equation L(z,y)T = AN(z,y)T reads

y" () + Aary'(t) + Aazy(t) + Agi(y(t), 2(1), y(t — 1), 2(t — 72)) = 0,
2"(t) + Ab12'(t) + Ab22(t) + Aga(y(2), 2(¢), y(t — 73), 2(t — 14)) = 0.
(3.1)
Suppose that (y(t),z(t))T € X is a solution of system (3.1) for a certain
A € (0,1). Multiplying the first equation of system (3.1) by y and integrating
over [0, 2], we obtain

—[1'I5 + Aaz|yl[3 +A/0 ﬂy(t)gl(y(t),Z(t),y(t—n),Z(t—72)) =0,
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from which, it follows that

2m
lly'lI3 < laz| [|yll3 +/0 ly@OI[My + ar|y(t — )| + Baf2(t — 72) ]dt. (3.2)

Using inequality

b b 1/2 b 1/2
/ If(x)g(w)ldw§< / |f(x)|2dt) (/ |g(x)|2dt) (3.3)

and Hélder’s inequality

b b r/s
/|f(x)|rdt§(27r)(1”/s) (/ |f(w)|sds> for 0<r<s  (34)

to (3.2) gives

lly'113 < laz| [lyll3 + llyl|2[V2r My + ea|lyll3 + Bulz]l2]- (3.5)
Applying the inequality

(a+b)"<a"+b" for a>0,b>0 and 0<r <1, (3.6)

to (3.5) yields

1112 < Viaal+ aallylls +1llly [V2ry/ My + VB2 (3.7)

Similarly, multiplying the second equation of system (3.1) by z and integrat-
ing over [0, 2], an argument parallel to the one used in abtaining (3.7)) leads
to

12112 < v/Ioal + azllzllz + ll21ly* [V2r /2% + /Ballwlly*] - (38)
On the other hand, integrating the first equation of system (3.1), we obtain
27 27
ar [yt == [ guu(®, 200, — 1)t — )t
0 0
Thus there exists a point £ € (0, 27) such that
27
2rasy(©) =~ [ @i (y(®)20,y(t ~ ), 2(t — )t
0

Hence

2mas|ly(6)] < 2w My +/0 ﬂ[a1|y(t —7)| + Bilz(t — 72)ldt. (3.9)
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Applying (3.3) and (3.4) to (3.9) yields
2r|az|ly(§)| < 2 My + V2 [an ]yl + Bull2][2]- (3.10)

Since for V¢ € [0, 2],

ly(®)] < ly(§)] +/O ' ly' (®)ldt < [y(€)] + V2xlly'lz,

Vamlas| [yl < 2nlas|[ly(€)] + v2xly'|]]
< 20My + V2r[aa|lyll2 + Billzl|2 + 27|az] |ly']]2]-
That is
(laz| = an)llyllz < V21 My + Billz|l2 + 27|az| [ly']|2- (3.11)

Integrating the second equation of system (3.1), and by a similar argument,
we can parallelly establish

(Ib2| = a2)l|2]l2 < V21 Ms + Bo|lyll2 + 2m[ba| ||2"]]2- (3.12)
From (3.7), (3.8), (3.11) and (3.12), we obtain
Allyllz < V2rMy + Bull2lla + 2las] llylly* [/2705 + VB 12115%] (3.13)

and

Bll2ll> < V27, + Bollyllo + 2nlba 12113 [ V27 v/My + v/Ballyll3*]

(3.14)
Now, by (3.14) and (3.6), we obtain

1/2
2B||2||5/

IA

2t [V V3%, + VBl

a3 V2 /o + VW)
1/2

+4B [VarM; + Ballyllo] }

ar o] [2m/ Vs + /Balllly ]

+2vB [ Vot + VI

IA

Thus
Bl|z||3"* < v1 + 2nb2|v/Bz + /BBa)llylly (3.15)
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where v; = (27|ba| + v/ B)v/27y/M; > 0. Substituting (3.15) into (3.14), we
obtain

B2,

V2rBM; + BBa|lylla + 2nlbal [V2rv/Ma + /Ballylly?]

x [vr + (2nlbal /B2 + v/BB2) lylls”]

= uy +uslly|]? + {27r|b2|\/ﬂ_2 (27r|b2|\/,8_2+ ﬂzB) + Bﬂz} lyll2

(3.16)

where u; > 0 and uy > 0 are constants. Substituting (3.15) and (3.16) into
(3.13) gives

{B*A - B1 [27|bo|V/B2C + Bfs] — 2x|az| BVBLC} ||yl

1/2
< ug +udllylly’?,

IN

(3.17)

where uz > 0 and u4 > 0 are some constants. Now, from (3.17) and condition
(iv), it follows that there exists a positive constant R; such that

llyll2 < Ri. (3.18)

This in return, together with (3.16), implies that there exists a positive con-
stant Rs such that
12|l < Ro. (3.19)

Combining (3.18) and (3.19) with (3.7) and (3.8), we know that there exist
two positive constants R3 and R4 such that

lly'll2 < Rs,  [|2'[|2 < Ra. (3.20)

Multiplying the first equation and the second equation of system (3.1) by 3"
and 2", respectively, and integrating both over [0, 27], we obtain

" 113 < laz! 11y/13 + lly" |12 V270 + aallylle + Bullzlle]  (3:21)
and
12118 < [bal 112113 + 112" 1> [V27Ma + asllylls + Ballzll] . (3:22)

From (3.18)-(3.22), it follows that there exist two positive constants R and
Rg such that
ly"ll2 < Rs,  [|2"]]2 < Re. (3.23)

Consequently there exist four positive constants R}, R3, R3 and Rj such
that
(O <Ry, [z(0)] < B3, /()] <R3, |'()] < R
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Clearly, R} (i = 1,2, 3,4) are independent of A\. Denote
M =R +R;+R;+ R, +C,
where C' > 0 is taken sufficiently large so that
[min{|az| — a1, |b2| — B2} — max{f1, as}|M > My + M>.

Now we take Q = {(y(t),2(t))T € X :||(y,2)T||x < M}. Then condition (a)
in Lemma 2.1 is satisfied. Through an easy computation, we can find that
the inverse Kp of L has the form Kp : ImL — DomL N KerP,

y| _ ftdsfsy(u)du—% 2ﬂdtftdsfsy(u)du cviYl eq
p [z] [fzt ds f(o)s 2(u)du — % fZ% dt fzt ds fzs z(u)du] for v [z] €.

It is easy to show that QN and K,(I — Q)N are continuous by the Lebesgue
theorem. Moreover, QN(£2), K,(I — Q)N(f2) are relatively compact for
bounded set 2 C X. Therefore, N is L-compact on Q. When (y,2)T € 90N

KerL = 90N R?, (y,2)7T is a constant vector in R? with |y|+ |z| = M. Then

y —axy — 91(y, 2,9, 2)
N || = :
@ [Z] [—bzz —92(y,2,9,2)

Therefore,
QN (y,2)7| 2
= |_a2y_gl(y>zayaz)|+|_b2z_92(yazayaz)|
> (laz| —a1)ly| = M1 — Bi|z| + (|b2| = B2)|2| — az2ly| — M>
> [min{|as| — au, [b2| = B2} — max{Bi, a2 }|M — (M + M) > 0.

Consequently,
Y 0 Y
QN [z] #* [O] , for [z] € 00N KerL.

In order to compute the Leray-Schauder degree, we define the homotopy
¢ :DomL x [0,1] - X by

+gl(y:zay7z)
2, _ a ,b P T +(1-— axy )
¢(y ,U,) /J( 2Y, 02 ) ( /J’) |:b2z+g2(y7z7y7z)

for y,z € R, p € [0,1].
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When (y,2)T € 0QnKerL, (y,2)7T is a constant vector in R? with |y| +
|2| = M, and thus for p € [0,1],

ll6(y, z, )|
= |pagy + (1 — p)(azy + 91(y, 2,9, 2))|
+|pbaz + (1 = p)(b2z + g2(y, 2,9, 2))|
lazy + (1 — w)g1(y, 2,9, 2)| + |baz + (1 — ) g2(y, 2,9, 2)|
(laz| — a1)lyl — My — Bal2| + (|b2| — B2)|2] — az2ly| — Mo
[min(|az| — a1, |b2| — f2) — max (81, as)|M — (M1 + M3) > 0.

(AVARAY]

Therefore,

¢(yazap’) 7£ |:8:| ) for (Z/,Z)T € O N KerL.

As a result, we have
deg{QN(y,2)",QnKerL,(0,0)"} = deg((—asy, —b22)", QnNKerL, (0,0)T) #£ 0.

By now we know that all conditions of Lemma 2.1 are satisfied for the above
L, N and , and therefore, system (2.2) has at least one 27-periodic solution
in the case when (i), (ii), (iii) and (iv) are satisfied.

Next, we consider the case when (i), (ii), (iii) and (v) are satisfied. Mul-
tiplying the first equation and second equation by ¥'(¢) and 2'(t), and both
integrating over [0, 27], we obtain

amw@+éﬂymm@mﬂu»mwwnﬂa_m»ﬁzm

bMﬂ@+Aﬂ5@m@@J@LMﬁﬂﬂﬂﬁ—mﬁﬁ=&

The rest of the proof is similar to that of the case when (i), (ii), (iii) and (iv)
are satisfied and we omit it. This completes the proof of Theorem 3.1.
Proof of Theorem 3.2. Since the conditions in Theorem 3.1 are
satisfied, system (2.2) has at least one 27-periodic solution, say, (y(t),z(t))T.
Next we will prove that (y(t),z(t))T is not a constant vector solution. In
fact, if (y(t),z(t))T is identically equal to a constant vector (ci,c2)”, then
substituting (y(t),2(t))” = (c1,c2)T into system (2.2), we obtain

ascy + g1(ci,c2,¢1,c2) =0 (3.24)

and
baca + ga(ci,c2,c1,¢2) = 0. (3.25)
We consider two possible cases: (I). ¢ =0orecy =0; (II). ¢; #0,¢2 # 0.
(I) When ¢; =0 or c2 =0, (3.24) and (3.25) imply that

91(0,¢2,0,¢c2) =0 or g1(c1,0,¢1,0) =0,
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which contradicts condition (vii) in Theorem 3.2.
(IT) When ¢; # 0,ca # 0, (3.24) and (3.25) give

b20291 (01, C2,C1, Cz) = a20192(01; C2,C1, Cz),

contracdicting (vi) in Theorem 3.2. Therefore, (y(t),z(t))T can not be a
constant vector, and the proof is completed.

Proof of Theorem 3.3. We only consider the case when (i), (ii) and
(iii) are satisfied, and the proof for the case when (i), (ii) and (iv) hold can
be similarly carried out.

Let X and Z be as in the proof of Theorem 3.1 and define N : X — Z by

N [y] _ [—aly’(t) — fiy(1),2(8), y(t — 1), 2(t — 7))
z —b12'(t) — f2(y(t), 2(8), y(t — 73), 2(t — 1)) |’

Let L, P,Q, X also be the same as those in the proof of Theorem 3.1. Corre-
sponding to the operator equation Lz = ANz, A € (0,1), we have

2'(t) + Ab12'(8) + Afa(y(t), 2(2), y(t — 73), 2(t — 74))

{ y”(t) + /\alyl(t) +Af1 (y(t)a z(t),y(t - Tl)a Z(t - T2)) =0, (3 26)
y 0. )

Suppose that (y(t),z(t))T € DomL is a solution of system (3.26) for a certain
A € (0,1). Integrating system (3.26) over [0, 27] gives
2w
fl(y(t)az(t)ay(t_Tl)az(t_TQ))dt:0 (327)
0

and
2T

; Fa(y(t), 2(t), y(t — 73), 2(t — 74))dt = 0. (3.28)

From condition (ii) in Theorem 3.3 and (3.27), we know that there exists
7 € {0,71}, a point t* € [0,2n] and a constant M > 0 such that

y(t* — 1) < M. (3.29)
If it is not true, then for VM > 0 and ¢ € [0, 27], we have
y(t)ZM7 y(t_Tl)ZM7

which, in view of condition (ii), contradicts (3.27). Thus (3.29) holds. De-
noting t* — 7 = & + 2wk, here & € [0,27] and k is a integer, then

y(&) < M. (3.30)
Similarly, we can find a point & € [0,27] and a constant K > 0 such that

y(&) > —K. (3.31)
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Then from (3.30) and (3.31), we can obtain for V¢ € [0, 27],

27

y(®) < (@) + / " (0)ldt < T+ / or

and
t)|dt.

y(t)Zy(Ez)—/O 1/ (8)ldt > K /

Consequently,

ly()] < max {H+/02w |y'(t)|dt,K+/027r |y'(t)|dt}

27 2w
<M+K +/ ly'(t)|dt = “a+ / |y’ (t)|dt. (3.32)
0 0

By condition (ii) in Theorem 3.3 and (3.28) and using the same argument as
in obtaining (3.32), we have

|2(t)| < max {M* + /027r |2/ (t)|dt, K* + /027r |y'(t)|dt}

2 2w
< M*+K*+ / 12/ (t)dt < dy + / 12/ (t)|dt, (3.33)
0
where M* and K* are two positive constants.

On the other hand, multiplying the first equation and second equation by
y and z, respectively, and integrating over [0, 27], we have

||y||2—A/” Of W), 2Oyt =) 2(t—m))dt  (3.34)

and o
1218 =A [ 205200, 2(0). (¢ = ). (¢ = 7o, (3.35)
from which and condition (i), it follows that
Y115 < llyll2 [(ma + po)llyllz + (na +71)||2]|2] (3.36)
and
12']13 < [l2ll2 [(m2 + p2)l[yll2 + (n2 + r2)]|2||2] - (3.37)

Substituting (3.32) and (3.33) into (3.36) and (3.37) gives

)
19/13 < 27 [ds + VB ] |G + ) + o4 2) o+ VR +p0)

+V2r(ny 4+ 11)||2'|]2 (3.38)
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and
12'1[3 < 2 [d> + V2722 -

[(mz + p2)di + (n2 + r2)da + V2w (m2 + p2)|ly'|l2 + V21 (n2 + T2)||Z'||2] .

(3.39)
Combining inequality (3.6) with (3.38) and (3.39), we obtain
(1~ 4x*(ms + )]l
< 20v/Ew [2ma + p1)ds + (m +0)da + VIR (ma + 1)1
+G/1 = 472(my + p1)
/(= 4w + pr)2mds vV + )1

(3.40)
and
[1 = 47®(ns + r2)]||2'||2
< 20v/2r [(ma + pa)ds + 202 + 12)da +V2r(ma + pa)ly/ 2]
+H\/T—47%(ns + 12)
V(1= 42 + 72))/ 2rdeV B + p2) 913

(3.41)

where G and H are two positive constants. Combining (3.40) and (3.41)
gives

{[1 = 47> (na + r2)][1 — 47 (my + p1)] — 167" (01 + 1) (M2 + p2) } 1Y |2

1 1
< ds +da|ly'[|3 +dsly'll3 (3.42)

where d;(i = 3,4,5) are three positive constants, from which, it follows that
there exists a positive constant dg such that

[ly'|l2 < de.

By similar arguments to those of the corresponding parts in the proof of Theo-

rem 3.1, we can find a positive constant R* and take Q = { (y(t), 2(t))7 € X :

|(y,2)T||x < R*}, where R* is taken sufficiently large such that R* > 2h.
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When (y,2)T € 00N KerL = QN R?, (y,z)7T is a constant vector in R?
with |y| + |2| = R*, and thus,

on [t] = [z,

Therefore, when (y,z)T € 0N KerL,

ooy

by condition (ii) in Theorem 3.3. Finally, the condition that deg{QN,QnN
KerL,0} # 0 can verified by the homotopy ¢ : DomL x [0,1] = X defined
by

6009 = G4 [0 70

where y, z € R, u* € [0,1], and k; > 0, ks > 0 are sufficiently large constants
such that

min{k; —my — p1, k2 —ng —ro} > max{ny +ry,ms + p2}.

Hence, condition (b) of Lemma 2.1 is also satisfied for the above L, N and
Q. Theorefore, the coclusion of Theorem 3.3 follows by Lemma 2.1. This
completes the proof.
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