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Abstract. In this paper, we study the effect of chemotactic movement of
CTLs on HIV-1 infection dynamics by a reaction diffusion system with chemo-

taxis. Choosing a typical chemosensitive function, we find that chemoattractive

movement of CTLs due to HIV infection does not change stability of a positive
steady state of the model, meaning that the stability/instability of the model

remains the same as in the model without spatial effect. However, chemorepul-

sion movement of CTLs can destabilize the positive steady state as the strength
of the chemotactic sensitivity increases. In this case, Turing instability occurs,

which may result in Hopf bifurcation or steady state bifurcation, and spatial

inhomogeneous pattern forms.

1. Introduction. Some living organisms or cells, such as somatic cells and lym-
phocytes, have the ability to detect certain chemicals in their environment and
adapt their movement accordingly, moving either toward or away from the chem-
ical stimulus. This phenomenon is called chemotaxis or generally chemosensitive
movement. In the mathematical literature, the term chemotaxis is used broadly
to describe general chemosensitive movement responses, including chemoattraction
(positive chemotaxis) and chemorepulsion (negative chemotaxis). However, in the
experimental community, for example, in leukocytes trafficking mechanism, the term
chemotaxis is defined only as chemoattraction, that is, an active movement of leuko-
cytes toward chemokinetic agents, while chemorepulsion is referred to as fugetaxis,
describing the active movement of leukocytes away from chemokinetic agents. In
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this paper, we use chemotaxis to mean the general chemosensitive movement, either
chemoattraction (positive chemotaxis) or chemorepulsion (positive chemotaxis).

Cytotoxic T lymphocytes (CTLs), or effector CD8+ T cells, play a critical role in
host defense against human immunodeficiency virus type 1 (HIV-1) infection. Nor-
mally, effector T cells leave lymph nodes and traffic to peripheral sites of infection.
However, in HIV-1 infection, the majority of HIV-1 replication occurs in lymphoid
tissues. To implement their antiviral activity, CTLs must migrate reversely back
into infected lymphoid tissues, and remain within them . Thus the recruitment of
CTLs is very important for the clearance of HIV-1. The movement of lymphocytes
between the circulatory system and specific tissues is coordinated by Chemokines
and their receptors. For example, inflammatory chemokines guide effector T cells
to exit lymphoid tissues and home to peripheral sites of infection. HIV-1 infection
and replication in the lymphoid tissues changes the chemotactic and cellular en-
vironments. As HIV-1 disease progresses, the homing ability of CTLs to infected
lymph nodes may be disrupted, due either to reduced lymph node chemokine levels
or reduced CTLs chemokine receptor expression, and thus affect the cytotoxic effect
of CTLs in advanced HIV-1 infection [5].

Many viruses encode chemotactically active proteins. For instance, the enve-
lope protein gp120 of HIV-1 has been shown to act as a T-cell chemoattractant
via binding to the chemokine receptor and HIV-1 coreceptor CXCR4. However,
some studies [4, 18] showed that HIV-specific CTLs move toward or away from
the CXCR4-binding HIV-1 gp120 in a concentration-dependent manner. The high
concentration of CXCR4-binding HIV-1 gp120 repels HIV-specific CTLs, while low
concentration of gp120 attracts CTLs with specific interaction with CXCR4. The
repellant activity of HIV-1 gp120 on CTLs causes the active movement of HIV-
1-specific CTLs away from the site of infection, which allows the virus to evade
immune recognition and invade immune system.

In this paper, we study the effect of chemotactic movement of CTLs during HIV-
1 infection by mathematical modeling. We denote by T (x, t), I(x, t) and E(x, t) the
population densities of uninfected CD4+ T cells, infected CD4+ T cells and CTLs
at location x at time t respectively. Assuming that the virus population is at a
quasi-steady state [15], we consider the following model.

∂T

∂t
= DT∆T + h− dTT − βTI,

∂I

∂t
= DI∆I + βTI − dII − pIE, (1)

∂E

∂t
= DE∆E +∇ · [EΨ(E, I)∇I] +

cEI

1 + ηE
− dEE.

Here, we assume that uninfected CD4+ T cells are recruited at a constant rate h,
and infected at a rate βTI. The infected cells are cleared by CTLs at a rate pIE.
The CTLs proliferate in response to antigenic simulation with a rate cEI, and the
rate of CTLs expansion saturates as the number of CTLs grows to relatively high
numbers. 1/η represents the saturation level. Uninfected CD4+ T cells, infected
CD4+ T cells and CTLs are lost at rates dTT , dII and dEE respectively.

In this model, we assume that uninfected CD4+ T cells and infected CD4+ T cells
move randomly, with the diffusion coefficients DT and DI respectively. In contrast,
the diffusion of CTLs consists of two parts, the random diffusion and the chemo-
tactic movement. The random diffusion coefficient is assumed to be DE , that is,
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the diffusion flux of CTLs is proportional to their density gradient JD = −DE∇E.
As mentioned above, the HIV-1 viral protein gp120, binding with the coreceptor
CXCR4, acts as a chemoattractant or chemorepellant for CTLs. Thus, the chemo-
taxis flux JC of CTLs depends on the their own density, the density of HIV-1 viral
protein gp120, and the density gradient of this protein. Here we assume that the
density of viral protein gp120 binding to CXCR4 is proportional to the density of in-
fected CD4+ T cells, and the chemotaxis flux of CTLs is JC = −EΨ(E, I)∇I. The
derivation of this chemotactic term can be referred from the works of Painter [12] and
Hillen [8]. The function Ψ(E, I) represents the chemotactic response, which denotes
chemoattraction (chemorepulsion) if it is negative (positive). Notice that movement
of CD4+ T cells may be very slow comparing with CTLs, that is, DT � DE , or
they even do not diffuse at all in the lymphoid tissue. Here we assume that DT > 0
but very small compared with DE for the sake of mathematical consideration.

For the PDE model system (1), we consider the no-flux boundary conditions:

∂T

∂ν
=
∂I

∂ν
=
∂E

∂ν
= 0, ∀x ∈ ∂Ω, t > 0. (2)

The rest of the paper is organized as follows. In section 2 we discuss the well-
posedness of the model. Linear stability of the steady states are shown in section 3.
The conditions for Turing instability and pattern formation are derived in section
4. Numerical simulation about the stability of positive steady state, steady state
bifurcation, Hopf bifurcation and pattern formation are shown in section 5. Finally,
we present conclusions and discussions in section 6.

2. Global existence of solutions. We assume that Ω is a bounded domain in
Rn with smooth boundary ∂Ω. For the chemosensitive function Ψ(E, I), we post
the following standard hypothesis:

(H) Ψ ∈ C2(R2
+,R+), satisfying (i) Ψ(0, I) = 0, Ψ(E, 0)=0; (ii) there exists suffi-

ciently large EM > 0, such that Ψ(E, I) = 0, for E ≥ EM ; (iii) for chemore-
pulsion case Ψ(E, I) > 0 for 0 < E < EM , and for chemoattractive case
Ψ(E, I) < 0 for 0 < E < EM .

Let ρ > n so that the space W1,ρ(Ω,R3) is continuously embedded into the
continuous function space C(Ω,R3) (see, e.g.,[1]). We consider solutions of (1)-(2)
in the following solution space

X :=

{
w ∈W1,ρ(Ω,R3) | w(Ω̄) ∈ R3

+,
∂w

∂ν
= 0 on ∂Ω

}
.

System (1)-(2) can be rewritten as the following abstract quasilinear parabolic
problem {

wt +A(w)w = F(w),

Bw = 0,
(3)

where for z = (z1, z2, z3)

A(z)w = −
n∑

j,k=1

∂j(ajk(z)∂kw), Bw =
∂w

∂ν
,

a(z) = (aj,k(z))3×3 =

 DT 0 0
0 DT 0
0 z3Ψ(z3, z2) DE

 ,
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and for w = (T, I, E),

F(w) =

(
h− dTT − βTI, βTI − dII − pIE,

cEI

1 + ηE
− dEE

)T

.

We see that a(z) ∈ C2(R3
+,L(R3)), where L(R3) denote the space of all 3× 3 real

matrices, and the eigenvalues of a(z) are all positive for each z ∈ R3
+. Moreover,

the boundary value problem (A,B) is normally elliptic (see, e.g., [3]).
We consider (1)-(2) with the following initial conditions{

T (0, x) = T0(x) ≥ 0, I(0, x) = I0(x) ≥ 0, E(0, x) = E0(x) ≥ 0,

with (T0(x), I0(x), E0(x)) ∈ C(Ω̄, R3
+).

(4)

Existence and uniqueness, as well as nonnegativity of solution of (1)-(2) are obtained
in the following two theorems.

Theorem 2.1. The following statements hold:

(i) The problem (1)-(2) has a unique solution (T, I, E) with

(T, I, E) ∈ C([0, τ0),X) ∩C2,1((0, τ0)× Ω̄,R3),

defined on a maximal interval [0, τ0)×Ω where τ0 depends on the initial data
(T0, I0, E0);

(ii) T (t, x) ≥ 0, I(t, x) ≥ 0, E(t, x) ≥ 0, for all (t, x) ∈ [0, τ0)× Ω;
(iii) If (T, I, E)|([0,τ0)∩[0,τ ]) is bounded in C(Ω̄,R3) and bounded away from the

boundary of R3
+ for evrey τ > 0, then τ0 = +∞, namely, the solution exists

globally.

Proof. Noting that System (3) is normal eliptic and triangular, (i) follows from
Amann [2](Theorem 1) or Amann [3] (Theorem 14.4 and Theorem 14.6). From
Amann [3] (Theorem 15.1), we get (ii), the nonegativity of the solution. Apply
Amann [2] (Theorem 5.2) , we obtain (iii), the condition for global existence of a
solution.

The following theorem confirms that the existence of solution is indeed global if
DT = DI .

Theorem 2.2. Assume that DT = DI . Suppose that (T, I, E) is the solution
obtained in Theorem 1, then it is a global solution to system (1).

Proof. In order to prove the global existence of the solution, by (ii) and (iii) of
Theorem 1, we only need to prove that (T, I, E) is bounded from above.

From the T and I equations of (1), we see that

∂

∂t
(T + I) = DT∆(T + I) + h− dTT − dII − pIE

≤ DT∆(T + I) + h− dm(T + I),

where dm = min{dT , dT∗}. By Lemma 1 in Lou and Zhao [9], h̄/dm is globally
attractive in C(Ω̄,R) for the scalar parabolic equation

∂w(t, x)

∂t
= DT∆w(t, x) + h− dmw(t, x), x ∈ Ω, t > 0,

∂w

∂ν
= 0, x ∈ ∂Ω, t > 0.
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The parabolic comparison theorem (see, e.g., Theorem 7.3.4 in [13]) implies that
T + I is bounded on [0, τ). This together with the non-negativity of T (t, x) and
I(t, x) further implies that T (t, x) and I(t, x) are both bounded. We assume 0 ≤
T (t, x) ≤ TM , 0 ≤ I(t, x) ≤ IM .

Let EM = c
ηdE

IM . Define the differential operator P by

PE = Et −DE∆E −∇ · (EΨ(E, I)∇I) +

(
dEE −

cEI

1 + ηE

)
.

For any solution of system (1), we have PE = 0. However, for EM = c
ηdE

IM
sufficiently large, by (H), we have

PEM = dEEM −
cEMI

1 + ηEM
≥ dEEM −

c

η
IM = 0.

On the boundary ∂Ω, ∂EM

∂ν = 0. Therefore, E = EM is a upper solution of the E
equation in system (1). By the comparison principle, we then obtain that E(t, x) ≤
EM . Therefore, the solution (T, I, E) is bounded from above, completing the proof.

Notice that we assumed DT = DI in the proof of Theorem 2, and this will be
assumed in what follows.

3. Linear stability analysis. System (1) has three possible spatially homoge-
neous steady states:

(i) the infection-free steady state S0 = (h/dT , 0, 0) always exists;
(ii) if R0 := hβ/dIdT > 1, there exists a virus-established steady state S1 =

(T1, I1, 0), where

T1 =
dI
β
, I1 =

h

dI
− dT

β
;

(iii) if cI1 > dE , which is equivalent to R0 > 1 +βdE/cdT , there exists a positive
steady state S∗ = (T ∗, I∗, E∗), where

T ∗ =
1

2β

−( dT cp
βdEη

+
p

η
− dI

)
+

√(
dT cp

βdEη
+
p

η
− dI

)2

+ 4h
cp

dEη


I∗ =

h

βT ∗
− dT

β
, E∗ =

1

p
(βT ∗ − dI).

Notice that if there is no saturation of CTL, that is η → 0, the positive steady state
tends to S∗0 = (T ∗0 , I

∗
0 , E

∗
0 ) where

T ∗0 =
hc

dT c+ βdE
, I∗0 =

dE
c
, E∗0 =

1

p
(βT ∗ − dI).

It can be verified that under the assumption cI1 > dE , the following holds

I∗0 < I∗ < I1.

Indeed,

I∗ < I1 ⇐⇒ βT ∗ > dI

⇐⇒
(
dT cp

βdEη
+
p

η
− dI

)2

+ 4h
cp

dEη
>

(
dT cp

βdEη
+
p

η
+ dI

)2
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⇐⇒ 4h
cp

dEη
> 4dI

(
dT cp

βdEη
+
p

η

)
⇐⇒ h

dI
>
dT
β

+
dE
c

⇐⇒ cI1 > dE .

I∗0 < I∗ ⇐⇒ βT ∗ <
hcβ

dT c+ dEβ

⇐⇒
(
dT cp

βdEη
+
p

η
− dI

)2

+ 4h
cp

dEη

<

[
2hcβ

dT c+ dEβ
+

(
dT cp

βdEη
+
p

η
− dI

)]2
⇐⇒ 4h

cp

dEη
<

(
2hcβ

dT c+ dEβ

)2

+
4hcβ

dT c+ dEβ

(
dT cp

βdEη
+
p

η
− dI

)
⇐⇒ p(dT c+ dEβ)

βdEη
<

hcβ

dT c+ dEβ
+
dT cp

βdEη
+
p

η
− dI

⇐⇒ hcβ

dT c+ dEβ
− dI > 0

⇐⇒ cI1 > dE .

It is straightforward to verify that cI1 > dE is equivalent to

R0 > 1 +
βdE
cdT

.

The formulas of the positive steady state (T ∗, I∗, E∗) are very complex. Before
discussing the stability of the steady states, we investigate the dependence of the
positive steady state on parameters. One can easily verify that T ∗ is an increasing
function of p, c, dI , and a decreasing function of β, η, dT , dE ; I∗ is an increasing
function of β, η, dE , and a decreasing function of p, c, dT , dI ; E

∗ is an increasing
function of c, and a decreasing function of η, dE . Here, we take the parameter c
as an examples to demonstrate that as c increases, T ∗ and E∗ increases while I∗

decreases.

For c > 0, let f(c) :=
dT cp
βdEη

+
p
η − dI , g(c) := 4h

cp
dEη

, and F(c) := −f(c) +√
f(c)2 + g(c), then T ∗(c) = 1

2βF(c), and

F ′(c) = −f ′(c) +
2f(c)f ′(c) + g′(c)

2
√
f(c)2 + g(c)

=
f ′(c)√

f(c)2 + g(c)

[
g′(c)

2f ′(c)
−F(c)

]
.

Furthermore,

f ′(c) =
dT p

βdEη
, g′(c) = 4h

p

dEη
, F ′(c) =

2βf ′(c)√
f(c)2 + g(c)

[
h

dT
− T ∗

]
> 0.

Therefore,

T ∗′(c) =
1

2β
F ′(c) > 0, I∗′(c) = − hT

∗′(c)

βT ∗(c)
2 < 0, E∗′(c) =

β

p
T ∗′(c) > 0.

In a similar way, we can show the dependence of T ∗, I∗ and E∗ on other parameters.
In what follows, we discuss the linear stability of the steady states. In the absence

of spatial effect, we know that S0 is locally asymptotically stable if R0 < 1; S1 is
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locally asymptotically stable if R0 > 1 and cI1 < dE ; S∗ is locally asymptotically
stable if cI1 > dE . In fact, these results can be obtained from the discussion below
as a special case when the spatial effect disappears.

Let Ŝ = (T̂ , Î, Ê) be a steady state of the system (1). Then the linearization of

system (1) at Ŝ is given by
∂u

∂t
= (D∆ + A)u, (5)

where

D(Ŝ) =

 DT 0 0
0 DT 0

0 Ψ̂ DE

 , A(Ŝ) =

 −dT − βÎ −βT̂ 0

βÎ βT̂ − dI − pÊ −pÎ
0 cÊ

1+ηÊ

cÎ

(1+ηÊ)2
− dE

 ,

and u = (u1, u2, u3, u4)T , Ψ̂(Ŝ) := ÊΨ(Ê, Î). Notice that Ψ̂(S0) = 0, Ψ̂(S1) = 0

and Ψ∗ := Ψ̂(S∗) = E∗Ψ(E∗, I∗).
The corresponding characteristic polynomial of the linearized system (5) is

| λI + Dk2 −A |= 0, (6)

where k ≥ 0, called the wavenumbers or the wave modes, are the eigenvalues of
Laplace operator on a finite domain with no-flux boundary conditions. For instance,
in one-dimensional domain [0, L], k2 = n2L2/π2, or in two-dimensional domain
[0, Lx] × [0, Ly], k2 = (n2/L2

x + m2/L2
y)π2, where n and m are integers. λ is the

eigenvalue which determines temporal growth. The steady state Ŝ is linearly stable
if Reλ < 0, for every eigenvalue λ of (6) (see, e.g., [11]).

Theorem 3.1. The infection-free steady state S0 = (h/dT , 0, 0) is linearly stable if
R0 < 1, and unstable if R0 > 1

Proof. For the infection-free steady state S0 = (h/dT , 0, 0), we have

D(S0) =

 DT 0 0
0 DT 0
0 0 DE

 , A(S0) =

 −dT −βh/dT 0
0 βh/dT − dI 0
0 0 −dE

 ,

and the characteristic equation of the linearized system at S0 is∣∣∣∣∣∣
λ+DT k

2 + dT βh/dT 0
0 λ+DT k

2 − βh/dT + dI 0
0 0 λ+DEk

2 + dE

∣∣∣∣∣∣ = 0.

It has eigenvalues λ1 = −DT k
2−dT , λ2 = −DT k

2+βh/dT −dI , λ3 = −DEk
2−dE .

Note that λ1 < 0, λ3 < 0, and λ2 = −DT k
2 + dI(R0 − 1). If R0 < 1, then λ2 < 0

for all k. Therefore, if R0 < 1, the steady state S0 is linearly stable. If R0 > 1,
then λ2 > 0 for some small modes k, including k = 0, which means S0 is unstable,
completing the proof.

Theorem 3.2. The virus-persistence steady state S1 = (T1, I1, 0) is linearly stable if
R0 > 1 and cI1 < dE (i.e., R0 > 1+βdE/cdT ). It is unstable if R0 < 1+βdE/cdT .

Proof. For the steady state S1 = (T1, I1, 0), we have

D(S1) =

 DT 0 0
0 DT 0
0 0 DE

 , A(S1) =

 −dT − βI1 −βT1 0
βI1 βT1 − dI −pI1
0 0 cI1 − dE

 .
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Noticing that βT1 = dI and dT +βI1 = hβ/dI , the characteristic polynomial of the
linearized system at S1 is given by∣∣∣∣∣∣

λ+DT k
2 + hβ/dI dI 0

−hβ/dI + dT λ+DT k
2 pI1

0 0 λ+DEk
2 − cI1 + dE

∣∣∣∣∣∣ = 0.

One eigenvalue is λ1 = −DEk
2 + cI1 − dE , which is negative for all k ≥ 0 as

cI1 < dE . Other eigenvalues are determined by

λ2 + a1(k2)λ+ a2(k2) = 0, (7)

where

a1(k2) = 2DT k
2 +

hβ

dI
,

a2(k2) = D2
T k

4 +
DThβ

dI
k2 +

1

dIdT
(R0 − 1).

It is obvious that a1(k2) > 0 and a2(k2) > 0 if R0 > 1. Thus the roots of (7) have
negative real parts for all k. Therefore, if R0 > 1 and cI1 < dE , the steady state
S1 is linearly stable. In contrarily, S1 is unstable if R0 < 1 or cI1 > dE , since if
cI1 > dE , λ1 > 0 for some small k including k = 0; if R0 < 1, a2 < 0 for some small
k, which implies (7) has at least one eigenvalue with positive real part, completing
the proof.

Theorem 3.3. Assume cI1 > dE so that S∗ = (T ∗, I∗, E∗) exists. Then it is
linearly stable if b3(k2) > 0 and b1(k2)b2(k2) − b3(k2) > 0 for k ≥ 0, where b1, b2
and b3 are given below by (9), (10) and (11) respectively; otherwise, it is unstable.

Proof. For the positive steady state S∗, the characteristic polynomial is given by∣∣∣∣∣∣
λ+DT k

2 + dT + βI∗ βT ∗ 0
−βI∗ λ+DT k

2 pI∗

0 Ψ∗k2 − cE∗

1+ηE∗ λ+DEk
2 + dE − cI∗

(1+ηE∗)2

∣∣∣∣∣∣ = 0,

that is,

λ3 + b1(k2)λ2 + b2(k2)λ+ b3(k2) = 0. (8)

Here

b1(k2) = (2DT +DE)k2 + dT + βI∗ + dE

(
1− 1

1 + ηE∗

)
> 0, (9)

b2(k2) = c1k
4 + c2k

2 + c3, (10)

where

c1 = D2
T + 2DTDE > 0,

c2 = (DT +DE)(dT + βI∗) + 2DT dE

(
1− 1

1 + ηE∗

)
− pI∗Ψ∗,

c3 = (dT + βI∗)dE

(
1− 1

1 + ηE∗

)
+ pdEE

∗ + β2I∗T ∗ > 0,

b3(k2) = d1k
6 + d2k

4 + d3k
2 + d4, (11)
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where

d1 = D2
TDE > 0,

d2 = DT

[
DE(dT + βI∗) +DT dE

(
1− 1

1 + ηE∗

)]
−DT pI

∗Ψ∗,

d3 = DT (dT + βI∗)dE

(
1− 1

1 + ηE∗

)
+DT pdEE

∗ +DEβ
2T ∗I∗

−(dT + βI∗)pI∗Ψ∗,

d4 = pdEE
∗(dT + βI∗) + β2T ∗I∗dE

(
1− 1

1 + ηE∗

)
> 0,

Also

b1(k2)b2(k2)− b3(k2) = h1k
6 + h2k

4 + h3k
2 + h4, (12)

where

h1 = 2DT (DT +DE)2 > 0,

h2 = (DT +DE)

[
(dT + βI∗)(3DT +DE) + 4DT dE

(
1− 1

1 + ηE∗

)]
−(DT +DE)pI∗Ψ∗,

h3 = 2DTβ
2I∗T ∗ + (DT +DE)

[
pdEE

∗ + (dT + βI∗)2
]

+2

[
(2DT +DE)(dT + βI∗) +DT dE

(
1− 1

1 + ηE∗

)]
dE

(
1− 1

1 + ηE∗

)
−dE

(
1− 1

1 + ηE∗

)
pI∗Ψ∗,

h4 =

[
(dT + βI∗)2 + (dT + βI∗)dE

(
1− 1

1 + ηE∗

)
+ pdEE

∗
]

×dE
(

1− 1

1 + ηE∗

)
+ (dT + βI∗)β2I∗T ∗ > 0.

By Routh-Hurwitz Criteria, Re(λ) < 0 for every eigenvalue λ if and only if b1(k2) >
0, b3(k2) > 0 and b1(k2)b2(k2)− b3(k2) for k ≥ 0. Note that b1(k2) > 0 for k ≥ 0.
Therefore, S∗ is linearly stable if and only if b3(k2) > 0 and b1(k2)b2(k2) − b3(k2)
for k ≥ 0.

Notice that, in the absence of diffusion, that is, in the spatial homogeneous case
(k = 0), b3(0) = d4 > 0 and b1(0)b2(0) − b3(0) = h4 > 0, which imply that the
positive steady state S∗ is linearly stable if it exists, that is, if cI1 > dE . In contrast,
under the same condition, the homogeneous steady state S∗ can be unstable to
small spatial perturbations when diffusion is present, for instance if b3(k2) < 0 or
b1(k2)b2(k2) − b3(k2) < 0 for some modes k. This diffusion-driven instability is
called Turing instability [11].

4. Turing instability and pattern formation. Among the two conditions
b3(k2) > 0 and b1(k2)b2(k2) − b3(k2) for k ≥ 0 in Theorem 3.3 that ensure the
stability of S∗, violation of each will lead to different consequences: when b3(k2)
changes from positive to negative, typically there will be steady state bifurcation
resulting in occurrence of a spatially heterogeneous steady state; whereas when
b1(k2)b2(k2)− b3(k2) changes from positive to negative, Hopf bifurcation will occur
causing temporally periodic solution oscillating about the constant steady state S∗
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(see, e.g., Yu [19]). Thus, it is worthwhile to explore the possible sign changes for
those two quantities.

We expect spatial pattern formation when the homogeneous positive steady state
S∗ loses its stability, that is when b3(k2) < 0 or b1(k2)b2(k2) − b3(k2) < 0. To
investigate conditions for Turing instability, we denote φd(s) =: b3(s) and φh(s) =:
b1(s)b2(s)− b3(s), that is

φd(s) = d1s
3 + d2s

2 + d3s+ d4, φh(s) = h1s
3 + h2s

2 + h3s+ h4,

where s is assumed to be s ∈ R. We see that φd(s) has a negative root, since d1 > 0,
φd(−∞) = −∞ and φd(0) = d4 > 0. Now if d2 ≥ 0 and d3 ≥ 0, then φd(s) > 0
for s ≥ 0, and there is no bifurcation. We only need to worry the case of either
d2 < 0 or d3 < 0 for which φd(s) may have two (up to multiplicity) or no positive
roots, by the Descarte’s rule of signs, and in the latter case, b3(k2) = φd(s) remains
positive for all s ≥ 0. A steady state bifurcation occurs if φd(s) has two distinct
positive roots. The conditions for the existence of two distinct positive roots of
φd(s) can be determined by the sign of φd(s

d
+), where sd+ is one of the roots of

φ′d(s) = 3d1s
2 + 2d2s+ d3, say

sd± =
1

3d1

(
−d2 ±

√
d22 − 3d1d3

)
.

According the the signs of d2 and d3, we have the following three cases.

(i) If d3 < 0, then
√
d22 − 3d1d3 > |d2|, sd+ > 0 and sd− < 0. In this case, φd(s)

has two distinct positive roots, if and only if φd(s
d
+) < 0.

(ii) If d3 > 0 and d2 < 0, then for different cases of d22 − 3d1d3, we have that

(ii)-1 d22 − 3d1d3 > 0 =⇒
√
d22 − 3d1d3 < |d2| =⇒ sd+ > sd− > 0;

(ii)-2 d22 − 3d1d3 = 0 =⇒ sd± = − d2
3d1

> 0 =⇒ φ′d(s) ≥ 0 for s ∈ R;

(ii)-3 d22 − 3d1d3 < 0 =⇒ φ′d(s) > 0 for s ∈ R.
In the case (ii)-1, φd(s) has two positive roots, if and only if φd(s

d
+) < 0,

and in the cases (ii)-2 and (ii)-3, φd(s) does not have any positive root and
φd(s) > 0 for s ≥ 0.

(iii) If d3 = 0 and d2 < 0, then sd+ > 0, sd− = 0, and φd(s) has two distinct positive

roots if and only if φd(s
d
+) < 0.

From the above, we conclude that φd(s) has two positive roots if one of the
following conditions is satisfied.
(C1) d3 < 0, φd(s

d
+) < 0;

(C2) d3 ≥ 0, d2 < 0, d22 − 3d1d3 > 0, φd(s
d
+) < 0;

In these cases, for some values of s = k2, b3(k2) becomes negative destroying the
stability of S∗.

Similarly, let φh(s) =: b1(s)b2(s)− b23(s) = h1s
3 + h2s

2 + h3s+ h4 and denote

sh± =
1

3h1

(
−h2 ±

√
h22 − 3h1h3

)
.

Then, φh(s) can become negative only when it has two positive real roots, and this
is implied by one of the following two conditions:
(C3) h3 < 0, φh(sh+) < 0;

(C4) h3 ≥ 0, h2 < 0, h22 − 3h1h3 > 0, φh(sh+) < 0.
Turing instability may occur if one of the conditions (C1)-(C4) is satisfied, re-

sulting formation of patterns. Notice that the formula of φd(s
d
+) can be simplified



A SYSTEM MODELING VIRUS DYNAMICS AND CTLS RESPONSE 2577

to the following form

φd(s
d
+) =

2

3

(
d3 −

d22
3d1

)
sd+ +

(
d4 −

d2d3
9d1

)
,

applying the fact that φ′d(s
d
+) = 3d1(sd+)

2
+ 2d2s

d
+ + d3 = 0.

A challenging problem for chemotaxis models is the blow-up of solutions in finite
time. Blow-up of solutions implies the whole population concentrate in a single
point in a finite time. To avoid a blow-up, various mechanisms are introduced
[7, 8, 14, 17]. One mechanism is to consider the volume-filling effect [12, 17], which
supposes only a finite number of cells can be accommodated at any site. We assume
the chemotactic response function has the form Ψ(E, I) = χ(I)q(E), where the
chemotactic sensitivity function χ(I) is chosen to be a constant χ. The volume-
filling effect is described by q(E) satisfying q(EM ) = 0, and q(E) ≥ 0 for all
0 ≤ E < EM , where EM is the upper bound of the CTLs population E in the
model, which shows the maximum number of cells those can be accommodated at
any site. The function q(E) is considered as the probability of the cells finding a
space at its neighboring location depends upon the availability of space. In this
paper, we choose a simple form q(E) = 1− E

EM
for the volume-filling effect of CTLs

to prevent the blow-up of solutions of the model. Thus we adopt the following form
for the chemosensitivity function Ψ(E, I):

Ψ(E, I) = χ

(
1− E

EM

)
, for a chemorepulsion system (13)

and

Ψ(E, I) = −χ
(

1− E

EM

)
, for a chemoattraction system. (14)

Furthermore, we have

Ψ∗ = χE∗
(

1− E∗

EM

)
> 0, for a chemorepulsion system (15)

and

Ψ∗ = −χE∗
(

1− E∗

EM

)
< 0, for a chemoattraction system. (16)

For a chemoattraction system, Ψ∗ < 0 implies that d2, d4, h2 and h4 are all
positive, meaning that S∗ is always linearly stable and thus, Turing instability will
not occur. However, for a chemorepulsion system, Turing instability may occur. To
demonstrate this we choose χ, the strength of the chemotactic sensitivity, as the
bifurcation parameter and numerically explore the occurrence of Turing instability.
Naturally, one would expect that there exists a critical value χc such that there is
no pattern formation if χ < χc, while pattern will be formed if χ > χc. Notice that
d1, d4, h1 and h4 are independent of χ, while d2(χ), d3(χ), h2(χ) and h3(χ) are
linear strictly decreasing functions of χ, with dj(0) > 0, hj(0) > 0, dj(+∞) = −∞,
and hj(+∞) = −∞, (j = 2, 3). Thus, d22(χ) − 3d1d3(χ) and h22(χ) − 3h1h3(χ)
are quadratic functions, which tend to positive infinity as χ → +∞. Furthermore,
[φd(s

d
+)](χ)→ −∞, [φh(sh+)](χ)→ −∞, as χ→ +∞. Therefore, as χ increases, at

least one of the conditions (C1)-(C4) holds. The Turing instability threshold values
can be determined according to the conditions (C1)-(C4).

For example, to determine the threshold for steady state bifurcation, let χd2 and
χd3 be the roots of d2(χ) = 0 and d3(χ) = 0 respectively, that is, d2(χd2) = 0
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and d3(χd3) = 0. If χd3 ≤ χd2, then at χ = χd3, we have d3 = 0, d2 ≥ 0, sd+ =

0 and φd(s
d
+) = d4 > 0. Let χS1 be the smallest value that satisfies χS1 > χd3,

[φd(s
d
+)](χS1 ) = 0, and [φd(s

d
+)](χ) < 0 for χS1 < χ < χS1 + δ1, where δ1 > 0. Then

the condition (C1) holds for χS1 < χ < χS1 + δ1.
In contrast, if χd2 < χd3, then at χ = χd2, we have d2 = 0, d3 > 0, d22 − 3d1d3 =

−3d1d3 < 0. Let χd4 be the root of d22(χ) − 3d1(χ)d3(χ) = 0 satisfying χ4 > χ2 ,
then χd4 < χd3. At χd4, we have d22 − 3d1d3 = 0, d3 > 0, d2 < 0, and [φd(s

d
+)](χd4) =

d4 − d2d3
9d1

> 0. The condition (C2) does not hold for χ ≤ χd4. Let χS2 be the

smallest value that satisfies χS2 > χd4, [φd(s
d
+)](χS2 ) = 0, and [φd(s

d
+)](χ) < 0 for

χS2 < χ < χS2 + δ2, where δ2 > 0. In this case, if χS2 ≤ χd3, then the condition (C2)
holds for χS2 < χ < χS2 + δ2, while the condition (C1) holds for χS2 < χ < χS2 + δ2
if χS2 > χd3.

Therefore, the value χS1 or χS2 , which is determined by the roots of [φd(s
d
+)](χ) =

0, presents the threshold for steady state bifurcation. Similarly, the threshold value
χH1 or χH2 for Hopf bifurcation can be derived according to the conditions (C3) and
(C4), which is determined by the roots of [φh(sh+)](χ) = 0.

From the above analysis, we know that S∗ may lose its stability leading to bi-
furcation when φd(s

d
+) = 0 or φh(sh+) = 0. The bifurcation occurs at critical values

χ = χSc and χ = χHc which are determined by φd(s
d
+)
∣∣
χS
c

= 0 and φh(sh+)
∣∣
χH
c

= 0.

Among these two critical values, χSc is a steady state bifurcation value, while χHc is
a Hopf bifurcation value. If χSc < χHc and χSc < χ, φd(s) has two positive solutions
sd1 and sd2 which give a range of unstable wave numbers k2 ∈ (sd1, s

d
2). Similarly, if

χHc < χSc and χHc < χ, φh(s) has two positive solutions sh1 and sh2 which also give
a range of unstable wave numbers k2 ∈ (sh1 , s

h
2 ).

Notice that when we derive the bifurcation thresholds, we assumed s (i.e k2)
to be continuum. However, with finite spatial domains, there is a discrete set of
possible modes k as mentioned above. Therefore, the threshold values χSc and χHc
obtained here may be not the exact bifurcation values. χSc and χHc give the lower
bound of the bifurcation values. The exact bifurcation values may be somewhat
greater than χSc and χHc , depending on the size of the domain and the shapes of
φd(s) and φh(s).

In a special case, if the uninfected cells and infected cells cannot diffuse (DT = 0),
we have d1 = 0, d2 = 0 and h1 = 0. Thus φd(s) = d3s + d4 and φh(s) = h2s

2 +
h3s + h4. It is easy to see that the Turing instability conditions change to (H1)
d3 < 0, or (H2) h2 < 0, or (H3) h2 ≥ 0, h3 < 0, h23 − 4h2h4 > 0. If (H1) holds, a
steady state bifurcation occurs, while there is a Hopf bifurcation if any of (H2) and
(H3) is satisfied. The threshold value for steady bifurcation is χSc = χd3, the root of
d3(χ) = 0. From the formulas of h2 and h3, we know that the root χh2 of h2(χ) = 0
is always smaller than the root χh3 of h3(χ) = 0. Thus, the threshold value for Hopf
bifurcation is χHc = χh2 , according to the conditions (H2) and (H3).

5. Numerical simulation. In this section, we use the framework of section 4 to
perform some numerical simulations to explore the aforementioned bifurcations. To
this end, we choose χ as the bifurcation parameter and other baseline parameters as
h = 10, dT = 0.1, dI = 0.2, dE = 0.1, β = 0.1, p = 0.5, c = 0.2, η = 0.01 and EM =
2000, then R0 = 50 > 1, I1 − dE

c = 48.5 > 0, and S∗ = (64.0197, 0.5620, 12.4039).

The space is assumed to be one-dimensional and Ω = [0, lπ], then k2 = n2/l2,
where n is an integer and l = 3. In what follows, we suppose that k assumes
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continuous values (i.e. s is continuous), in order to derive the threshold values of χ
for bifurcation. We choose Ψ(E, I) as (13), and χ as the bifurcation parameter.

First, we consider the case DT = 0. Assuming DE = 1, we obtain χSc = χd3 =
0.6650 and χHc = χh2 = 0.0451 (see Fig. 2-(a) and (b)). Since χHc < χSc , Hopf
bifurcation may occur at χ = χHc = 0.0451, and pattern forms for χ > χHc . Fig.
1 shows the pattern formation of the model when χ = 0.5 and χ = 0.6. We can
determine the unstable wave modes from Fig. 2-(c). For χ = 0.05, the zero point
of φh(s) = 0 is s1 = 38.1088, and φh(s) < 0 for s > s1. The minimal unstable
mode k1 = n1/l is the smallest k = n/l that greater than

√
s1 = 6.1732. Here, we

obtain n1 = 19, and pattern forms for modes k = n/l, where n ≥ 19. Similarly,
for χ = 0.06, we obtain that the zero point of φh(s) = 0 is s2 = 12.6025, and the
unstable wave modes are k = n/l, where n ≥ 11.

Figure 1. Temporal and spatial evolution of T (x, t), I(x, t) and
E(x, t). First row: χ = 0.05. Second row: χ = 0.06.

(a) (b) (c)

Figure 2. (a) Graph of φh(s, χ) = h2(χ)s2 + h3(χ)s + h4 = 0.
(b) Graph of φd(s, χ) = d3(χ)s + d4 = 0. The horizontal lines are
s = n2/l2, where l = 3, and n is a positive integer, 1 ≤ n ≤ 51. (c)
Graphs of φe(s) when χ = 0.05 and χ = 0.06.
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Next we consider the case when DT > 0. To show two different bifurcations,
steady state bifurcation and Hopf bifurcation, we choose two sets of different dif-
fusion rates of the populations: (I) DT = 0.005, DE = 0.1, and (II) DT = 0.1,
DE = 0.1. For the case (I), we see from Fig. 3-(a) that steady state bifurcation
may occur for some modes k and some range of χ, and Hopf bifurcation can also
occur for some other modes k and χ. In contrast, for the case (II), Fig. 3-(b)
shows that steady state bifurcation may occur for some wave modes k, and Hopf
bifurcation cannot occur, since χ satisfying b3 = 0 (i.e. φd = 0) is always smaller
than χ satisfying b1b2 − b3 = 0 (i.e. φh = 0), for all modes k.

(a) (b)

Figure 3. Graphs of φd(s, χ) = d1s
3 +d2(χ)s2 +d3(χ)s+d4 = 0

(black) and φh(s, χ) = h1s
3 + h2(χ)s2 + h3(χ)s+ h4 = 0 (red). (a)

DT = 0.005, DE = 0.1. (b) DT = 0.1, DE = 0.1. The horizontal
lines are s = n2/l2, where l = 3, and n is a positive integer, (a)
1 ≤ n ≤ 35, (b) 1 ≤ n ≤ 13.

For the case (I), that is, when DT = 0.005 and DE = 0.1, the curves of d22(χ)−
3d1d3(χ), [φd(s

d
+)](χ), h22(χ) − 3h1h3(χ) and [φh(sh+)](χ) are shown in Fig. 4-(a),

Fig. 4-(b), Fig. 4-(c) and Fig. 4-(d) respectively. The roots of these functions in
the corresponding regions are χd0 = 0.0288, χdc = 0.0321, χh0 = 0.0186 and χhc =
0.0209 respectively. The functions d2(χ), d3(χ), h2(χ) and h3(χ) are linear strictly
decreasing functions of χ, and roots of these functions are given by χd2 = 0.0045,
χd3 = 0.0722, χh2 = 0.0052 and χh3 = 1.8747 respectively.

(a) (b) (c) (d)

Figure 4. (a) d22(χ)−3d1d3(χ). One zero point: χ = 0.0288. (b)
[φd(s

d
+)](χ). One zero point: χ = 0.0321. (c) h22(χ) − 3h1h3(χ).

One zero point: χ = 0.0186. (d) [φh(sh+)](χ). One zero point:
χ = 0.0209.
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Applying the bifurcation conditions (C1)-(C4), we find the bifurcation threshold
values χSc = χdc = 0.0321 and χHc = χhc = 0.0209. Since χHc < χSc , Hopf bifurcation
may occur at χ = χHc and temporal periodic and spatial inhomogeneous pattern
forms for χHH < χ < χSc . For χ > χSc , the positive steady state is unstable and
spatial heterogeneous pattern forms, which may be not temporal periodic.

Figure 5. Temporal and spatial evolution of T (x, t), I(x, t) and
E(x, t). The homogenous positive steady state S∗ is stable when
χ = 0.02 (< χHc ).

Figure 6. Temporal and spatial evolution of T (x, t), I(x, t) and
E(x, t). when χ = 0.029 (χHc < χ = 0.029 < χSc ). The homoge-
neous positive steady state S∗ is unstable, and spatial patterns are
formed.

Fig. 5 shows that the positive steady state S∗ is stable as χ = 0.02 < χHc . As χ
increases so that χ > χHc but χ < χSc , the positive steady state S∗ becomes unstable,
and Hopf bifurcation occurs. Fig. 6 shows the temporal and spatial evolution of
T (x, t), I(x, t) and E(x, t). From the end part of the these time evolution figures
(i.e., the figures in second row of Fig. 6), we see the form of spatial patterns and
temporal periodicity of the solutions. Fig. 7 shows the periodic solutions at space
locations x = 1.5π and x = 3π. The amplitudes of the periodic solutions vary in
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different space locations as shown in Fig. 7. We see that the amplitudes at x = 1.5π
are greater than those at x = 3π for T (x, t), I(x, t) and E(x, t) respectively. When
χ = 0.033 which exceeds the threshold value χSc , the positive steady state also loses
its stability and spatial heterogeneous pattern forms, which may be not periodic,
as shown in Fig. 8.

Figure 7. Temporal evolution of T (x, t), I(x, t) and E(x, t).
First row: x = 1.5π; Second row: x = 3π. When χ = 0.029
(χHc < χ = 0.029 < χSc ), Hopf bifurcation occurs for the system,
and there are periodic solutions.

Figure 8. Temporal and spatial evolution of T (x, t), I(x, t) and
E(x, t). The homogenous positive steady state S∗ is unstable and
spatial patterns form when χ = 0.033 (> χSc ).

For the case (II), that is, when DT = 0.1 and DE = 0.1, Fig. 9-(a) and Fig.
9-(b) show the curves of d22(χ)−3d1d3(χ) and [φd(s

d
+)](χ) respectively, as Fig. 9-(c)

and Fig. 9-(d) show the curves of h22(χ) − 3h1h3(χ) and [φh(sh+)](χ) respectively.

Roots of these functions in the corresponding regions are χd0 = 0.0474, χdc = 0.0561,
χh0 = 0.1187 and χhc = 0.1373 respectively. The functions d2(χ), d3(χ), h2(χ) and
h3(χ) are linear strictly decreasing functions of χ, and roots of these functions are
given by χd2 = 0.0048, χd3 = 0.1814, χh2 = 0.0193 and χh3 = 5.2828 respectively.
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(a) (b) (c) (d)

Figure 9. (a) d2(χ)2−3d1d3(χ). One zero point: χ = 0.0474. (b)
[φd(s

d
+)](χ). One zero point: χ = 0.0561. (c) h2(χ)2 − 3h1h3(χ).

One zero point: χ = 0.1187. (d) [φh(sh+)](χ). One zero point:
χ = 0.01373.

Applying the bifurcation conditions (C1)-(C4), we obtain the bifurcation values
χSc = χdc = 0.0561 and χHc = χhc = 0.1373. Since χSc < χHc , we know that steady
state bifurcation may occur at χ = χSc and spatial pattern forms for χ > χSc . The
positive steady state S∗ is stable when χ is less than the steady state bifurcation
value χSc . However, when χ exceeds the bifurcation value χSc , the positive steady
state loses its stability and spatial inhomogeneous pattern forms, as shown in Fig.
10, where χ = 0.06. In this case, Hopf bifurcation cannot occur, which can be seen
from Fig. 3-(b), showing that b3(χ) always reaches zero before b1(χ)b2(χ) − b3(χ)
reaching zero for all mode k ≥ 0.

Figure 10. Temporal and spatial evolution of T (x, t), I(x, t)
and E(x, t). The homogenous positive steady state is unstable and
spatial patterns form when χ = 0.06 (> χSc ).

6. Conclusion and discussion. In this paper, we have studied the effect of
chemotactic movement, including chemoattaction and chemorepulsion, of CTLs on
the HIV-1 infection dynamics by a reaction diffusion model with chemotaxis. In the
absence of spatial effect, that is, without random diffusion and chemotactic move-
ment, the homogeneous positive steady state is locally stable. Choosing the typical
chemotactic sensitivity function (14), we found that chemoattraction movement of
CTLs also cannot destabilize the homogeneous positive steady state, and there is
no heterogeneous pattern formation.

In contrast, chemorepulsion movement of CTLs can lead to instability of the ho-
mogeneous positive steady state and formation of spatially heterogeneous patterns.
Using the typical chemotactic sensitivity function (13) and choosing the strength
of chemotactic sensitivity χ as the bifurcation parameter, we found that Turing
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instability occurs when χ exceeds some threshold. The bifurcation may be steady
state bifurcation or Hopf bifurcation depending on χ and other parameters, such
as the diffusion coefficients DT and DE . We identified four conditions (C1)-(C4)
from which bifurcation thresholds may be derived. With a finite domain in one
dimensional space, we demonstrated the stability of positive steady state, steady
state bifurcation and Hopf bifurcation for different diffusion coefficients DT and DE

and chemotactic sensitivities χ.
The chemotactic movement of CTLs leads to the instability of the homogeneous

positive steady state and pattern formation or periodic solutions of the system
for some range of parameter values. With stable patterns or periodic solutions, the
concentration of infected cells and virus load cannot stabilize at a constant level, but
show heterogeneous distributions or oscillations. This is important for experimental
or clinic estimation of virus load. Due to the heterogeneous distributions or periodic
oscillations, lower (or higher) virus load detected at a site and at a moment does
not indicate the same lower (or higher) load at different sites for a long time. The
oscillations of viral load levels in the plasma are also plausible under the effects of
immune responses or delays in the virus infection dynamics (e.g., see [6]).

In order for CTLs to successfully control HIV-1 infection, they must home effi-
ciently to infected tissue sites and migrate within the infected tissue to the virus-
infected cells. In this paper, we only considered the chemotactic sensitivity functions
(13) and (14) for chemorepulsion and chemoattraction models respectively. For the
chemoattraction model with (14), the negativity of Ψ∗ drives the positive steady
state to be stable. If other chemotactic sensitivity functions are chosen so that Ψ∗

is not always negative, then it is possible that Turing bifurcations may also occur
for chemoattraction model. For example, for the Macroscopic form of Lapidus and
Schiller (with receptor response law)[10],

χ(I) = − ρ

(K + I)2
,

we have

Ψ∗ = −E∗
(

1− E∗

EM

)
ρ

(K + I∗)2

(
1− 2

K + I∗

)
,

which is positive for some K. For small K, there may be Turing bifurcation and
pattern formation. More intensive investigation is needed for this, which is left as
possible future work.

In our chemorepulsion model, the chemotactic sensitivity is assumed to be con-
stant and positive. However, some experiments (e.g., [4]) demonstrate that gp120
elicits bidirectional T-cell movement in a receptor-mediated, concentration-depen-
dent manner, attracting CD8+ lymphocytes and HIV-specific CTLs maximally at
low concentration of gp120 and repelling the same cells at a higher concentra-
tion of gp120. Therefore, the chemotactic sensitivity function should be negative
(chemoattraction) for low concentration of gp120 and positive (chemorepulsion) for
high concentration of gp120. Relating to our simplified model, the chemotactic sen-
sitivity function should be negative (chemoattraction) for low level of I(x, t) and
positive for high level of I(x, t). Considering this in our model, the analysis would
be more difficult mathematically, and is thus also left for our future work.
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