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Abstract. In this paper, we establish the existence of traveling wavefronts for
delayed reaction diffusion systems without quasimonotonicity in the reaction term,
by using Schauder’s fixed point theorem. We show the merit of our result by applying
it to the Belousov-Zhabotinskii reaction model with two delays.

1. Introduction. Traveling wave solutions for reaction diffusion systems without
time delay have been extensively and intensively studied, see, for example, the books
Britton [1], Fife [2], Murray [6], Volpert et al [11], the book review Gardner[3], the
recent model study on this topic by Satnoianu et al [7], and the references therein.
But little work has been done on traveling wave solutions for reaction diffusion
systems with time delay. Schaaf [8] is the pioneer work, where systematically stud-
ied is a scalar reaction diffusion equation with a single discrete delay by using the
phase-plane technique, the maximum principle for parabolic functional differential
equations and general theory for ordinary functional differential equations.

Zou and Wu [15] consider systems with quasimonotonicity and a single delay, and
establish existence of traveling wavefronts by first truncating the unbounded domain
and then passing to a limit. Recently, Wu and Zou [13] further study more general
reaction diffusion systems with general finite delays, where both quasimonotone
and non-quasimonotone reaction terms are explored. The approach in Wu and Zou
[13] is a monotone iteration scheme combined with upper-lower solutions technique.
In addition to the applications in Wu and Zou [13], the main theorems in [13] have
been applied to various delayed systems in S. Gourley [4], So, Wu and Zou [9] and
So and Zou [10].

Ma [5] goes along the direction of Wu and Zou [13], but gives up the monotonicity
of the iteration. Instead, he employs the Schauder’s fixed point theorem to the
operator used in Wu and Zou [13] in a properly chosen subset in the Banach space
C(R,Rn) equipped with the so called exponentially decay norm. The subset is
constructed in terms of a pair of upper-lower solutions, which is less restrictive than
the upper-lower solutions required in Wu and Zou [13]. This makes the searching
for the pair of upper-lower solutions less harder. For example, an upper solutions
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does not have to be in the profile set. But Ma [5] only considers systems with
quasimonotone reaction terms, that is, systems of the form

∂

∂t
u(x, t) = D

∂2

∂x2
u(x, t) + f(ut(x)), (1.1)

with f : C([−τ, 0]), Rn) → Rn satisfying the following quasimonotonicity:

(QM) There exists a matrix β = diag(β1, · · · , βn) with βi ≥ 0, i = 1, · · · , n, such
that

f(φ(x)) − f(ψ(x)) + β[φ(x)(0) − ψ(x)(0)] ≥ 0

for φ(x), ψ(x) ∈ X = C([−τ, 0];Rn) with 0 ≤ ψ(x)(s) ≤ φ(x)(s) ≤ K for
s ∈ [−τ, 0].

Here, t ∈ R+, x ∈ R, u ∈ Rn,D = diag(d1, . . . , dn) with di > 0, i = 1, · · · , n; f :
C([−τ, 0]), Rn) → Rn is continuous, f(0) = 0 = f(K) and f(u) �= 0 for u ∈ (0,K).
For any fixed x ∈ R, ut(x) ∈ C([−τ, 0], Rn) is defined by ut(x)(θ) = u(t + θ, x) for
θ ∈ [−τ, 0]. In the sequel, when there is no confusion, we will drop the x and write
ut(x) = ut.

On the other hand, it is quite common that the reaction term in a model system
arising from a practical problem may not satisfy (QM). A simple but typical and
important example is the so called Hutchinson equation

∂

∂t
u(x, t) = D

∂2

∂x2
u(x, t) + u(x, t)[1 − u(x, t − τ)]. (1.2)

Thus, it is worthwhile to further explore this topic for systems without quasimono-
tonicity, and this constitutes the purpose of this paper.

In this paper we will consider the existence of traveling wavefronts of (1.1).
Motivated by Wu and Zou [13], we will propose a less restrictive condition on the
reaction term as follows:

(QM∗): There exists a matrix β = diag(β1, · · · , βn) with βi ≥ 0, i = 1, · · · , n,
such that

f(φ(x)) − f(ψ(x)) + β[φ(x)(0) − ψ(x)(0)] ≥ 0

for φ(x), ψ(x) ∈ X = C([−τ, 0];Rn) with (i) 0 ≤ ψ(x)(s) ≤ φ(x)(s) ≤ K for
s ∈ [−τ, 0]; and (ii) eβs[φ(x)(s) − ψ(x)(s)] non-decreasing in s ∈ [−τ, 0].

As in Ma [5], we will construct a subset in the Banach space C(R,Rn) equipped
with the exponential decay norm, and apply the Schauder’s fixed point theorem to
the operator used in Wu and Zou [13] and Ma [5] to establish the existence of a
traveling wavefront. The subset is obtained from a pair of upper-lower solutions,
but unlike in Ma [5], we also take into account the fact that the reaction term only
satisfies (QM∗). A merit of our main theorem is that we do not require that the
upper solution ρ̄(t) be monotone and satisfy limt→−∞ ρ̄(t) = 0. This brings certain
convenience in searching for an upper solution. For example, in the system case,
some components of an upper solution can be chosen to be constants, and thereby,
the corresponding wave system can be decoupled to some extent. Such a merit
will be demonstrated by applying the main theorem to the Belousov-Zhabotinskii
reaction model with two delays, to which, the original theory in Wu and Zou [13] is
not easy (if not impossible) to apply and the main result in Ma [5] does not apply.
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2. Preliminaries. In this paper, we use the usual notations for the standard or-
dering in Rn. That is, for u = (u1, . . . , un)T and v = (v1, . . . , vn)T . we denote
u ≤ v if ui ≤ vi, i = 1, . . . , n,and u < v if u ≤ v but u �= v. In particular,
we denote u � v if u ≤ v but ui �= vi, i = 1, . . . , n. If u ≤ v, we also de-
note (u, v] = {w ∈ Rn : u < w ≤ v}, [u, v) = {w ∈ Rn : u ≤ w < v},and
[u, v] = {w ∈ Rn : u ≤ w ≤ v}. Let | · | denotes the Euclidean norm in Rn and || · ||
denote the supremum norm in C([−τ, 0], Rn) .

A traveling wave solution of (1.1) is a solution of the special from u(x, t) =
φ(x + ct) where φ ∈ C2(R,Rn), and c > 0 is a positive constant accounting for the
wave speed. Substituting u(x, t) = φ(x + ct) and denoting x + ct by t, we obtain
the corresponding wave equation

Dφ′′(t) − cφ′(t) + fc(φt) = 0 (2.1)

where fc(φs) : Xc = C([−cτ, 0], Rn) → Rn is defined by

fc(ψ) = f(ψc), ψc(s) = ψ(cs), s ∈ [−τ, 0]. (2.2)

If for some c > 0, (1.1) has a monotone solution φ defined on R, subject to the
following asymptotic boundary condition

lim
t→−∞φ(t) = φ− and lim

t→+∞φ(t) = φ+, (2.3)

then the corresponding solution u(x, t) = φ(x + ct) is called a traveling wave front
with wave speed c. Therefore, (1.1) has a traveling wavefront if and only if (2.1)
has a solution on R satisfying the asymptotic boundary condition (2.3). Without
loss of generality, we assume φ− = 0 and φ+ = K, thus (2.3) can be replaced by

lim
t→−∞φ(t) = 0 and lim

t→+∞φ(t) = K. (2.4)

Correspondingly, we make the following hypotheses:

(A1) f(0̃) = f(K̃) = 0 with 0 < K, where by ũ : [−τ, 0] → Rn is the constant
function with value u for all t ∈ R.

(A2) There exists a positive constants L > 0 such that

|f(φt) − f(ψt)| ≤ L||φ − ψ||.
for φ, ψ ∈ C([−τ, 0], Rn) with 0 ≤ φ(s), ψ(s) ≤ K, s ∈ [−τ, 0].

As mentioned in the introduction, we will use a pair of upper-lower solutions of
(2.1) to construct a subset of C(R,Rn) in which the Schauder’s fixed point theorem
can be applied to the related operator. To this end, we need to make it clear what
upper and lower solutions mean.

Definition 2.1. A continuous function ρ : R → Rn is called an upper solution
of (2.1) if ρ′ and ρ′′ exist almost everywhere (a.e.) in R and they are essentially
bounded on R, and if ρ satisfies

Dρ′′(t) − cρ′(t) + fc(ρt) ≤ 0, a.e. in R. (2.5)

A lower solution of (2.1) is defined in a similar way by reversing the inequality in
(2.5).

In what follows, we assume that an upper solution ρ̄ and a lower solution ρ of
(2.1) are given so that (H1) 0 ≤ ρ ≤ ρ̄ ≤ K, t ∈ R,

(H2) limt→−∞ ρ(t) = 0, limt→∞ ρ̄(t) = K,
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(H3) The set

Γ(ρ, ρ̄) =




φ ∈ C(R,Rn) :

(i) φ is nondecreasing in R, and ρ(t) ≤ φ(t) ≤ ρ̄(t);
(ii) eβt[ρ̄(t) − φ(t)] and eβt[φ(t) − ρ(t)] are

nondecreasing in t ∈ R;
(iii) eβt[φ(t + s) − φ(t)] is nondecreasing

in t ∈ R for every s > 0.




is non-empty.
We will further explore the properties of Γ(ρ, ρ̄) in Section 3.

Assume that (QM∗) holds. Define H : C(R,Rn) → C(R,Rn) by

H(φ)(t) = fc(φt) + βφ(t) φ ∈ C(R,Rn) (2.6)

where β is as in (QM∗). The operator H enjoys the following nice properties:
Lemma 2.1 (Wu and Zou [13]) Assume that (QM∗) and (A1) hold. Then for
any φ ∈ Γ(ρ, ρ̄) we have (i) H(φ)(t) ≥ 0, t ∈ R,
(ii) H(φ)(t) is nondecreasing in t ∈ R
(iii) H(ψ)(t) ≤ H(φ)(t) for t ∈ R and ψ ∈ C(R,Rn), with 0 ≤ ψ(t) ≤ φ(t) ≤ K

and eβt[φ(t) − ψ(t)] non-decreasing in t ∈ R.
In terms of H, (2.1) can be rewritten as

Dφ′′(t) − cφ′(t) − βφ(t) + H(φ)(t) = 0, t ∈ R. (2.7)

Define

λ1i =
c −

√
c2 + 4βidi

2di
, λ2i =

c +
√

c2 + 4βidi

2di
.

Let C[0,K](R,Rn) = {φ ∈ C(R,Rn) : 0 ≤ φ(s) ≤ K, s ∈ R}. By (H1)-(H3),
Γ(ρ, ρ̄) ⊂ C[0,K](R,Rn). Define F : C[0,K](R,Rn) → C(R,Rn) by

(Fφ)i(t) =
1

di(λ2i − λ1i)

[ ∫ t

−∞
eλ1i(t−s)Hi(φ)(s)ds +

∫ ∞

t

eλ2i(t−s)Hi(φ)(s)ds
]

(2.8)
for i = 1, . . . , n and φ ∈ C[0,K](R,Rn). It is easy to show that F is well-defined on
C[0,K](R,Rn), and for any φ ∈ C[0,K](R,Rn), F (φ) satisfies

D(Fφ)′′ − c(Fφ)′ − β(Fφ) + H(φ) = 0 (2.9)

Thus, if F (φ) = φ, i.e., φ is a fixed point of F , then (2.7) has a solution φ. If this
solution is monotone and satisfies the boundary condition (2.4), then we obtain a
traveling wave front for (1.1).

Corresponding to Lemma 2.1, we have the following lemma for F , which is a
direct consequence of Lemma 2.1.
Lemma 2.2 Assume that (QM∗) and (A1) hold, then for any φ ∈ Γ(ρ, ρ̄), we
have

(i) F (φ)(t) is nondecreasing in t ∈ R;
(ii) F (ψ)(t) ≤ F (φ)(t) for t ∈ R and ψ ∈ C[0,K](R,Rn) with 0 ≤ ψ(t) ≤ φ(t) ≤ K

and eβt[φ(t) − ψ(t)] non-decreasing in t ∈ R.
In the next section, we will apply Schauder’s fixed point theorem to F in the

subset Γ(ρ, ρ̄). For this purpose, we need to introduce a topology in C(R,Rn).
Let µ > 0 be such that µ < min{−λ1i, λ2i, i = 1, . . . , n.}. Equip C(R,Rn) with
the exponential decay norm defined by |φ|µ = supt∈R|φ(t)|Rne−µ|t|. Denote corre-
spondingly Bµ(R,Rn) = {φ ∈ C(R,Rn) : supt∈R|φ(t)|Rne−µ|t| < ∞}. Then it is
easy to show that (Bµ(R,Rn), | · |µ) is a Banach space.
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3. Main result. Now we state our main theorem.
Theorem 3.1 Assume that (QM∗), (A1) and (A2) hold. In addition to (H1)-
(H3) , we assume the upper solution ρ̄(t) and the lower solution ρ(t) further satisfy
(H4) f(ũ) �= 0, for u ∈ (0, inft∈Rρ̄(t)]

⋃
[supt∈Rρ(t),K).

Then, (1.1) has a traveling wavefront solution.
In the remainder of this section, we will assume c > 1−min{βidi; i = 1, · · · , n},

which can always be realized by choosing βi sufficiently large, without violating
(QM∗). In order to prove this theorem, we first establish the following lemmas.
Lemma 3.1 Under the assumptions of Theorem 3.1, Γ(ρ, ρ̄) is a closed, bounded
and convex subset of Bµ(R,Rn).
Proof Boundedness is obvious. Let φn ∈ Γ(ρ, ρ̄) with φn → φ in Bµ(R,Rn), i.e.,

lim
n→+∞ supt∈R|φn(t) − φ(t)|e−µ|t| = 0.

Thus, φn(t) converges to φ(t) point wise for every t ∈ R as n → +∞. Obviously,
φ(t) satisfies (i) of Γ(ρ, ρ̄). For any t1, t2 ∈ R with t1 ≥ t2 as s > 0, by condition
(ii) and (iii) for Γ(ρ, ρ̄), it follows that

eβt1 [φn(t1 + s) − φn(t1)] ≥ eβt2 [φn(t2 + s) − φn(t2)],

eβt1 [ρ̄(t1) − φn(t1)] ≥ eβt1 [ρ̄(t1) − φn(t1)],

eβt1 [φn(t1) − ρ(t1)] ≥ eβt1 [φn(t1) − ρ(t1)].

Taking limit as n → ∞, we have

eβt1 [φ(t1 + s) − φ(t1)] ≥ eβt2 [φ(t2 + s) − φ(t2)],

eβt1 [ρ̄(t1) − φ(t1)] ≥ eβt1 [ρ̄(t1) − φ(t1)],

eβt1 [φ(t1) − ρ(t1)] ≥ eβt1 [φ(t1) − ρ(t1)].

This implies that φ(t) satisfies (ii) and (iii) of Γ(ρ, ρ̄). Hence φ ∈ Γ(ρ, ρ̄) and
therefore, Γ(ρ, ρ̄) is closed. The convex property is a direct verification by definition.
This completes the proof.
Lemma 3.2 Under the assumptions of Theorem 3.1, F (Γ(ρ, ρ̄)) ⊂ Γ(ρ, ρ̄) .
Proof. For any φ ∈ Γ(ρ, ρ̄), ρ(t) ≤ φ(t) ≤ ρ̄(t) and by Lemma 2.2 (i), F (φ)(t) is
nondecreasing in t ∈ R. Lemma 2.2 (ii) implies

F (ρ)(t) ≤ F (φ)(t) ≤ F (ρ̄)(t).

Repeating the proof of Wu and Zou ([13], Lemma 3.3-(iii)) gives

F (ρ̄)(t) ≤ ρ̄(t), F (ρ)(t) ≥ ρ(t),

and hence ρ(t) ≤ F (φ)(t) ≤ ρ̄(t).
Note that c > 1 − min{βidi; i = 1, · · · , n} implies βi + λ1i > 0 and βi + λ2i > 0

(see Wu and Zou ([13] Lemma 4.2-(ii)), and thus,

d

dt
eβit[(Fφ)i(t + s) − (Fφ)i(t)]

= (βi + λ1i)eβi+λ1i)t

∫ t

−∞

e−λ1iθ

di(λ2i − λ1i)
[Hi(φ)(θ + s) − Hi(φ)(θ)]dθ

+(βi + λ2i)e(βi+λ2i)t

∫ ∞

t

e−λ2iθ

di(λ2i − λ1i)
[Hi(φ)(θ + s) − Hi(φ)(θ)]dθ

≥ 0, i = 1, 2, . . . , n.
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Let w(t) = ρ̄(t) − (Fφ)(t). Since ρ̄(t) is a upper solution of (2.1), by(2.9), we get

cw′(t) ≥ Dw′′(t) − βw(t) + [H(ρ̄)(t) − H(φ)(t)] ≥ Dw′′(t) − βw(t).

Repeating the proof of Wu and Zou ([13] Lemma 4.3), we can compute

d

dt

{
eβt[ρ̄(t) − F (φ)(t)]

} ≥ 0, t ∈ R.

Similarly, eβt[F (φ)(t) − ρ(t)] is nondecreasing in t ∈ R. Thus, F (φ) ∈ Γ(ρ, ρ̄), and
F (Γ(ρ, ρ̄)) ⊂ Γ(ρ, ρ̄). This completes the proof.

Lemma 3.3 Under the assumptions of Theorem 3.1, F is continuous with re-
spective to the norm | · |µ in Bµ(R,Rn).
Proof We prove Lemma 3.3 by two steps. The first step is to prove that H :
Bµ(R,Rn) → Bµ(R,Rn) is continuous with respect to the norm | · |µ in Bµ(R,Rn).
For any fixed ε > 0, let δ < ε

Leµcτ+||β|| . Then for φ, ψ ∈ Bµ(R,Rn) with

|φ − ψ|µ = supt∈R|φ(t) − ψ(t)|e−µ|t| < δ,

we have

|(Hφ)(t) − (Hψ)(t)|e−µ|t| ≤ |f(φt) − f(ψt)|e−µ|t| + ||β|||φ − ψ|µ
≤ L||φ − ψ||Xc

e−µ|t| + ||β|||φ − ψ|µ
= Lsups∈[−cτ,0]|φ(s + t) − ψ(s + t)|e−µ|t| + ||β|||φ − ψ|µ
≤ Lsup(s+t)∈R|φ(s + t) − ψ(s + t)|e−µ|t| + ||β|||φ − ψ|µ
≤ Lsupθ∈R|φ(θ) − ψ(θ)||e−µ|θ|eµ|s| + ||β|||φ − ψ|µ
≤ Leµcτ |φ − ψ|µ + ||β|||φ − ψ|µ
≤ (Leµcτ + ||β||)|φ − ψ|µ ≤ ε.

Therefore H : Bµ(R,Rn) → Bµ(R,Rn) is continuous.
We next prove the continuity of F . If t ≥ 0, it follows that

|(Fφ)i(t) − (Fψ)i(t)|e−µ|t|

≤ 1
di(λ2i − λ1i)

[ λ2i − λ1i

(µ − λ1i)(λ2i − µ)
+

2µ

λ2
1i − µ2

e(λ1i−µ)t
]
|H(φ) − H(ψ)|µ

≤ 1
di(λ2i − λ1i)

[ λ2i − λ1i

(µ − λ1i)(λ2i − µ)
+

2µ

λ2
1i − µ2

]
|H(φ) − H(ψ)|µ.

If t < 0 ,we have

|(Fφ)i(t) − (Fψ)i(t)|e−µ|t|

≤ 1
di(λ2i − λ1i)

[ λ2i − λ1i

−(µ + λ1i)(λ2i + µ)
+

2µ

λ2
2i − µ2

e(λ2i+µ)t
]
|H(φ) − H(ψ)|µ

≤ 1
di(λ2i − λ1i)

[ λ2i − λ1i

−(µ + λ1i)(λ2i + µ)
+

2µ

λ2
2i − µ2

]|H(φ) − H(ψ)|µ.

Now the continuity of F follows from that of H, and this completes the proof.
Lemma 3.4 Under the assumptions of Theorem 3.1, F : Γ(ρ, ρ̄) → Γ(ρ, ρ̄) is
compact.
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Proof We first established an estimate for F . For any φ ∈ Γ[ρ, ρ̄], direct calcula-
tion shows

0 ≤ (Fφ)′i(t) =
1

di(λ2i − λ1i)

[
λ1ie

λ1it

∫ t

−∞
e−λ1iθ(Hφ)i(θ)dθ + (Hφ)i(t)

]

+
1

di(λ2i − λ1i)

[
λ2ie

λ2it

∫ +∞

t

e−λ2iθ(Hφ)i(θ)dθ + (Hφ)i(t)
]
,

Since (Hφ)i(θ) ≥ 0, λ1i < 0, λ2i > 0, we then have

0 ≤ (Fφ)′i(t) ≤ 1
di(λ2i − λ1i)

[
λ2ie

λ2it

∫ +∞

t

e−λ2iθ(Hφ)i(θ)dθ + 2(Hφ)i(t)
]

≤ 1
di(λ2i − λ1i)

[
λ2ie

λ2it(Hρ̄)i(t))
∫ +∞

t

e−λ2iθdθ + 2(Hφ)i(t)
]

≤ 3
di(λ2i − λ1i)

(Hρ̄)i(t).

(H1)-(H2) and Lemma 3.3 imply that H(ρ̄)(t) is uniformly bounded, hence, it
follows that F (Γ(ρ, ρ̄)) is equicontinuous on Γ(ρ, ρ̄). It is also easily seen that
F (Γ(ρ, ρ̄)) is uniformly bounded.

Define

(Fnφ)(t) =




(Fφ)(t), t ∈ [−n, n];
(Fφ)(n), t ∈ (n,+∞);
(Fφ)(−n), t ∈ (−∞,−n).

Then for each n ≥ 1, Fn(Γ(ρ, ρ̄)) is also equicontinuous and uniformly bounded
on Γ(ρ, ρ̄). Now, as Fn(φ) has a uniformly compact support for every φ ∈ Γ(ρ, ρ̄),
Ascoli-Arzela lemma can be applied to Fn, implying that Fn is compact.

Next we prove that Fn → F in Bµ(R,Rn) as n → ∞. This is obtained by the
following estimate.

supt∈R|(Fnφ)(t) − (Fφ)(t)|e−µ|t| = supt∈(−∞,−n)
⋃

(n,∞)|(Fnφ)(t) − (Fφ)(t)|e−µ|t|

≤ 2Ke−µn → 0, n → ∞.

Now, by Proposition 2.12 in [14], it follows that F : Γ(ρ, ρ̄) → Γ(ρ, ρ̄) is also
compact. The proof is completed.
Proof of the Theorem 3.1. Combining Lemmas 3.1-3.4 with Schauder’s fixed
point theorem, we know that there exits a fixed point φ of F in Γ(ρ, ρ̄). In order to
show this fixed point is traveling wave front solution, we need to verify the boundary
condition (2.4).

First of all, φ ∈ Γ(ρ, ρ̄) implies that φ is monotone. Secondly, since 0 ≤ ρ ≤
φ(t) ≤ ρ̄(t) ≤ K, we have

0 ≤ φ− = lim
t→−∞φ(t) ≤ inft∈Rρ̄(t) ≤ K

and
0 ≤ supt∈Rρ(t) ≤ φ+ = lim

t→∞φ(t) ≤ K.

Applying Proposition 2.1 in [13], we have fc(φ̄−) = fc(φ̄+)) = 0. Now (H4) implies
that φ− = 0 and φ+ = K, that is,

lim
t→−∞φ(t) = 0, lim

t→∞φ(t) = K.

Therefore, the fixed point does give a traveling wave front solution of (2.4).
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Remark 3.1. Although the upper and lower solutions ρ̄(t) and ρ(t) are required
to satisfy (H2), we do not require ρ̄(t) to be monotone and to satisfy limt→−∞ ρ̄(t) =
0. This is a significant improvement of the corresponding result in Wu and Zou [13].
As will be seen in the next section, such an improvement does make the searching
of an upper solution easier.

4. Applications. We consider Belousov-Zhabotinskii system



∂
∂tu(x, t) = ∂2

∂x2 u(x, t) + u(x, t)[1 − u(x, t) − rv(x, t)]

∂
∂tv(x, t) = ∂2

∂x2 v(x, t) − bu(x, t)v(x, t),
(4.1)

where r > 0 and b > 0 are constants, u and v correspond respectively to the
Bromic acid and bromide ion concentrations. This system has been studied by
many authors. (see e.g. Murray [6]) and can be regarded as a model for many
other biochemical and biological processes.

By incorporating two discrete time delay τ1 ≥ 0, τ2 ≥ 0 into (4.1), we obtain a
delayed system




∂
∂tu(x, t) = ∂2

∂x2 u(x, t) + u(x, t)[1 − u(x, t − τ1) − rv(x, t − τ2)],

∂
∂tv(x, t) = ∂2

∂x2 v(x, t) − bu(x, t)v(x, t).
(4.2)

Wu and Zou [13] and Ma [5] consider the case of τ1 = 0. In such a case, f = (f1, f2)
satisfies the quasimontonicity (QM). But if τ1 �= 0, then f = (f1, f2) is not quasi-
montone, and the existence of traveling wavefront solution of (4.2) has not been
considered elsewhere.

Substituting u(x, t) = φ1(s), v(x, t) = φ2(s), s = x + ct into (4.2), and still
denoting traveling wave coordinate s by t, the corresponding wave equation can be
written as 


φ′′

1(t) − cφ′
1(t) + φ1(t)[1 − φ1(t − cτ1) − rφ2(t − cτ2)] = 0

φ′′
2(t) − cφ′

2(t) − bφ1(t)φ2(t) = 0
(4.3)

with asymptotic boundary condition


limt→−∞ φ1(t) = 0, limt→∞ φ1(t) = 1

limt→−∞ φ2(t) = 1, limt→∞ φ2(t) = 0.
(4.4)

Now, by making change of variable φ∗
2 = 1− φ2, s = 1− r, and still denoting it by

φ2 for the convenience of notations, (4.3) and (4.4) become respectively


φ′′
1(t) − cφ′

1(t) + φ1(t)[s − φ1(t − cτ1) + rφ2(t − cτ2)] = 0

φ′′
2(t) − cφ′

2(t) + bφ1(t)[1 − φ2(t)] = 0
(4.5)

with asymptotic boundary condition


limt→−∞(φ1(t), φ2(t)) = (0, 0)

limt→∞(φ1(t), φ2(t)) = (1, 1).
(4.6)
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Denote φ = (φ1(t), φ2(t)) and

f1(φ)(x) = φ1(x)(0)[s − φ1(x)(−τ1) + rφ2(x)(−τ2)]
f2(φ)(x) = bφ1(x)(0)[1 − φ2(x)(0)]

For convenience, we identify φi(x)(s) = φi(s), i = 1, 2, omitting x in the notation.

Lemma 4.1 If τ1 is sufficiently small, then f1(φ) and f2(φ) satisfy the non-
quasimonotonicity condition (QM∗).
Proof Let τ = max{τ1, τ2}. For any φ = (φ1, φ2), ψ = (ψ1, ψ2) ∈ Xτ =
C([−τ, 0];R2) with (i) 0 ≤ ψi(s) ≤ φi(s) ≤ K for s ∈ [−τ, 0]; (ii) eβis[φi(s)−ψi(s)]
non-decreasing in s ∈ [−τ, 0], i = 1, 2. we have

f1(φ) − f1(ψ)
= s[φ1(0) − ψ1(0)] − [φ1(0)φ1(−τ1) − ψ1(0)ψ( − τ1)]

+r[φ1(0)φ2(−τ2) − ψ1(0)ψ2(−τ2)]
= s[φ1(0) − ψ1(0)] − φ1(−τ1)[φ1(0) − ψ1(0)] − ψ1(0)[φ1(−τ1) − ψ1(−τ1)]

+rφ2(−τ2)[φ1(0) − ψ1(0)] + rψ1(0)[φ2(−τ2) − ψ2(−τ2)]

≥ [s − φ1(−τ1) − ψ1(0)eβ1τ1 + rψ2(−τ2)][φ1(0) − ψ1(0)]

≥ −(r + eβ1τ1)[φ1(0) − ψ1(0)].

Similarly, we have f2(φ) − f2(ψ) ≥ −b[φ2(0) − ψ2(0)] Thus

f1(φ) − f1(ψ) + β1[φ1(0) − ψ1(0)] ≥ (β1 − r − eβ1τ1)[φ1(0) − ψ1(0)]
f2(φ) − f2(ψ) + β2[φ2(0) − ψ2(0)] ≥ (β2 − b)[φ2(0) − ψ2(0)]

If we choose
β1 > r + 1, β2 ≥ b. (4.7)

then, for sufficiently small τ1, we have

β1 − r − eβ1τ1 ≥ 0, β2 ≥ b. (4.8)

Hence (QM∗) holds for f = (f1, f2). This completes the proof.

Assume 0 < r < 1, b > 0. For c > 2, we can define

λ1 =
c −√

c2 − 4
2

, λ2 =
c +

√
c2 + 4r

2
. (4.9)

Fix ε > 0 such that

0 < ε < 1 − r. 0 < ε ≤ λ1 + β1

2β1
, 0 < ε ≤ β1

β1 + λ2
. (4.10)

Then, we can choose sufficiently small α > 0 such that

0 < ε <
1

1 + α
, (4.11)

0 < ε <
λ1 + β1

(2 + α)β1
, (4.12)

0 < ε <
λ1 + β1

α(β1 + λ2)
, (4.13)

0 < ε <
β1

(1 + 2α)(β1 + λ2)
. (4.14)
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Define ρ̄(t) = (ρ̄1(t), ρ̄2(t)) and ρ(t) = (ρ
1
(t), ρ

2
(t)) by

ρ̄1(t) = 1
1+αe−λ1t , t ∈ R; ρ̄2(t) = 1. t ∈ R,

ρ
1
(t) =

{
εeλ2t t ≤ 0,
ε, t > 0.

; ρ
2
(t) = 0, t ∈ R.

Then, by (4.11), 0 ≤ ρ(t) ≤ ρ̄(t) ≤ 1. In fact, if t > 0, then ρ̄1(t) ≥ 1
1+α , ρ

1
(t) = ε.

By (4.11), we have ρ̄1(t) ≥ ρ
1
(t). If t ≤ 0, simple calculation shows that

1
1 + αe−λ1t

− εeλ2t =
1 − εeλ3t − αεeλ2−λ1)t

1 + αe−λ1t
≥ 1 − ε(1 + α)

1 + αe−λ1t
> 0.

Lemma 4.2 (i) If τ1 is sufficiently small , then ρ̄(t) is an upper solution of
(4.5); (ii) ρ(t) is a lower solution of (4.5).
Proof For ρ̄1(t), it is easy to know that

ρ̄′′1(t) − cρ̄′1(t) + ρ̄1(t)[s − ρ̄1(t − cτ1) + rρ̄2(t − cτ2)]
≤ ρ̄′′1(t) − cρ̄′1(t) + ρ̄1(t)[s − ρ̄1(t − cτ1) + r]
= ρ̄′′1(t) − cρ̄′1(t) + ρ̄1(t)[1 − ρ̄1(t − cτ1)].

We know from Proposition 5.1.2 in Wu and Zou [13] that ρ̄1(t) satisfies

ρ̄′′1(t) − cρ̄′1(t) + ρ̄1(t)[1 − ρ̄1(t − cτ1)] ≤ 0,

provided that τ1 is sufficiently small.
For ρ̄2(t) = 1, it is easy to verify that

ρ̄′′2(t) − cρ̄′2(t) + bρ̄1(t)[1 − ρ̄2(t)] = 0

Thus, ρ̄(t) = (ρ̄1(t), ρ̄2(t)) = (ρ̄1(t), 1) is an upper solution of (4.5).
For ρ(t) = (ρ

1
, ρ

2
) = (ρ

1
, 0), it is easy to know that

ρ′′
1
(t) − cρ′

1
(t) + ρ

1
(t)[s − ρ

1
(t − cτ1) + rρ

2
(t − cτ2)]

= ρ′′
1
(t) − cρ′

1
(t) + ρ

1
(t)[s − ρ

1
(t − cτ1)]

≥ ρ′′
1
(t) − cρ′

1
(t) + ρ

1
(t)[s − ε].

If t > 0, then ρ
1
(t) = ε. Since ε < 1 − r = s, it follows that

ρ′′
1
(t) − cρ′

1
(t) + ρ

1
(t)[s − ε] = ε[s − ε] > 0.

If t ≤ 0, then ρ
1
(t) = εeλ2t. Direct calculation shows that

ρ′′
1
(t) − cρ′

1
(t) + ρ

1
(t)[s − ε] = εeλ2t[λ2

2 − cλ2 + (s − ε)]

≥ εeλ2t[λ2
2 − cλ2 + s − 1] = 0.

For the second component, we have

ρ′′
2
(t) − cρ′

2
(t) + bρ

1
(t)[1 − ρ

2
(t)] = bρ

1
(t) ≥ 0.

Therefore, ρ(t) = (ρ
1
(t), ρ

2
(t)) is a lower solution of (4.5). This completes the proof.

Lemma 4.3 Let β1 > λ1, and α > 0 and 0 < ε < 1 be such that (4.10)-(4.14)
hold. Then Γ(ρ, ρ̄) is non-empty.
Proof Let φ(t) = (φ1(t), φ2(t)) = (ρ̄1(t), 1

2 ). We claim that φ(t) ∈ Γ(ρ, ρ̄). In
fact, ρ̄1(t) is nondecreasing since

ρ̄′1(t) =
αλ2e

−λ2t

[1 + αe−λ2t]2
> 0.
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Obviously, φ2(t) = 1
2 is also nondecreasing in R, and ρ(t) ≤ φ(t) ≤ ρ̄(t).

We need to prove eβt[φ(t)−ρ(t)] and eβt[ρ̄(t)−φ(t)] are nondecreasing in t ∈ R.
For eβt [φ(t) − ρ(t)]: If t > 0, then ρ

1
(t) = ε. Direct calculation shows that

d

dt

{
eβ1t[φ1(t) − ρ

1
(t)]

}
=

d

dt

{
eβ1t[

1
1 + αe−λ1t

− ε]
}

=
eβ1t

[1 + αe−λ1t]2
[
β1(1 − ε) + (αβ1 + αλ1 − 2αβ1ε)e−λ1t − α2εβ1e

−2λ1t
]

≥ eβ1t

[1 + αe−λ1t]2
[
β1(1 − ε) + (αβ1 + αλ1 − 2αβ1ε − α2εβ1)e−λ1t

]
.

By (4.12), we have β1(1 − ε) > 0, αβ1 + αλ1 − 2αβ1ε − α2εβ1 ≥ 0, which imply
d

dt

{
eβ1t[φ1(t) − ρ

1
(t)]

}
> 0.

If t ≤ 0, then ρ
1
(t) = εeλ2t. Since λ1 < λ2, eλ1t ≥ eλ2t. After some calculation,

we obtain,

d

dt
{eβ1t[φ1(t) − ρ

1
(t)]} =

d

dt

{ eβ1t

1 + αe−λ1t
− εe(β1+λ2)t

}

=
eβ1t

[1 + αe−λ1t]2
[
β1 + αβ1e

−λ1t + αλ1e
−λ1t − ε(β1 + λ2)eλ2t

−2αε(β1 + λ2)e(λ2−λ1)t − α2ε(β1 + λ2)e(λ2−2λ1)t
]

≥ eβ1t

[1 + αe−λ1t]2
[
αβ1 + αλ1 − α2ε(β1 + λ2)]e−λ1t + β1

−2αε(β1 + λ2) − ε(β1 + λ2)
]
.

By (4.13) and (4.14), it follows that{
αβ1 + αλ1 − α2ε(β1 + λ2) > 0,
β1 − 2αε(β1 + λ2) − ε(β1 + λ2) > 0.

which imply
d

dt

{ eβ1t

1 + αe−λ1t
− εe(β1+λ2)t

} ≥ 0.

Therefore, eβ1t[φ1(t)−ρ
1
(t)] is nondecreasing in t ∈ R. Clearly, eβ2t[φ2(t)−ρ

2
(t)] =

1
2eβ2t is also nondecreasing. For eβt[ρ̄(t) − φ(t)], we can compute as follows. First,
eβ1t[ρ̄1(t) − φ1(t)] = eβ1t · 0 = 0 is nondecreasing. Secondly, eβ2t[ρ̄2(t) − φ2(t)] =
eβ2t[1 − 1

2 ] = 1
2eβ2t is also nondecreasing.

Finally, eβt[φ(t + s) − φ(t)] is nondecreasing in t ∈ R for every s > 0. In fact,

d

dt
{eβ1t[φ1(t + s) − φ1(t)]} =

d

dt

{ αe(β1−λ1)t[1 − e−λ1s]
(1 + αe−λ1(s+t))(1 + αe−λ2t)

}

=
α[1 − e−λ1s]e(β1−λ1)t

{
(β1 − λ1) + β1αe−λ1t + β1αe−λ1(s+t)

[(1 + αe−λ1(s+t))(1 + αe−λ1t)]2

+
(β1 + λ1)α2e−λ1(s+2t))

}
[(1 + αe−λ1(s+t))(1 + αe−λ1t)]2

≥ 0.

which implies that eβ1t[φ1(t + s) − φ1(t)] is nondecreasing in t ∈ R for every
s > 0. eβ2t[φ2(t + s) − φ2(t)] = eβ2t[12 − 1

2 ] = 0 is also nondecreasing. Hence,
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φ(t) = (φ1(t), φ2(t)) = (φ1(t), 1
2 ) ∈ Γ(ρ, ρ̄), and this completes the proof.

Since inft∈Rφ1(t) = 0, inft∈Rφ2(t) = 1, supt∈Rψ1(t) = ε and supt∈Rψ2(t) = 0,
we see that f(ũ) �= 0 for u ∈ (0, inft∈RΦ(t)]

⋃
[supt∈RΨ(t),K) = [ε, 1) × [0, 1).

Applying Lemma 4.1-4.3 and Theorem 3.1 , we obtain
Theorem 4.1 Assume that b > 0, 0 < r < 1. Then for every c > 2, (4.5) has a
traveling wave front solution with wave speed c which connecting (0, 0) and (1, 1),
provided that τ1 is sufficiently small.

Remark 4.1: From the proof of Theorem 4.1, we can see that by setting the
second component of the upper and lower solutions to be constants, we can take
advantage of upper-lower solutions of the scalar equations. This shows the novelty
of our main theorem .

Acknowledgement: The authors would like to thank the referees for their valu-
able comments which have led to an improvement of the presentation of the paper.
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