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Abstract

In this paper, we consider the growth dynamics of a single species population with two age
classes and a fixed maturation period living in a bounded spatial domain. A Reaction Diffusion
Equation (RDE) model with time delay and nonlocal effect is derived if the mature death and
diffusion rates are age independent. We consider and analyse numerical solutions of the models
with some birth functions appeared in the well-known Nicholson’s blowflies equation. In partic-
ular, we report our numerical observations about the occurrences of the periodic waves under
certain range of birth rate and death rate parameters.

AMS (MOS) 2001 subject classifications. 92D25, 65M06, 35K57, 41A28

1 Introduction

Recently, there has been considerable interest in modelling and analysis of population dy-
namics with both time delay and diffusion in a spatially varying environment. Of particular
concern is the joint impact of the individual motion and the maturation delay on the formu-
lation of the model and on the population dynamics.

*This research was partially supported by Natural Sciences and Engineering Research Council of Canada.



A typical case is the widely used reaction-diffusion equation with delay and local effect
(see, Brition [1], Levin [3], Memory [5], Murray [7], and Yoshida [18]), given by

ou 0*u u(t —r,x)
—=D— 1-——" 1.1

where u(t, z) is the density of the population of the species at time ¢ > 0 and location z, D is
the diffusion parameter, p > 0 is the birth rate parameter and K > 0 is the carrying capacity
of the environment. r > 0 is the delay parameter, which models the fact that the regular
effect depends on the population at earlier time, ¢ — . The model (1.1) is obtained from
the well-known logic ODE model by simply introducing a diffusion term and incorporating
a discrete delay in the birth term. This approach already results in an equation with many
technical difficulties, see Wu [15]. But in recent years it has been recognised that there are
modelling difficulties with this approach. The difficulty is that diffusion and time-delays,
even though they are associated with space and time respectively, are not independent of
each other, since an individual might not have been at the same location in space at previous
times.

Smith [9], Smith and Thieme [10] developed an approach to derive a scalar delay dif-
ferential equation from the so-called structured model where the population is divided into
immature and mature age classes with the time delay being the maturation period. The
same idea was also used in So, Wu and Zou [12] to derive a system of delay differential
equations for matured population distributed in a patchy environment. So, Wu and Zou in
[13] considered the case of a continuous unbounded spatial domain and derived the following
non-local reaction-diffusion equation with delay
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Here w(t, z) is the total matured population, D, and d,, are diffusion and death rates for
the matured population, respectively, which are age independent. ¢ is the impact parameter
of the death rate for immature and « is a parameter reflecting the effect of the dispersal
rate of the immatured population, and b : [0,00) — [0, 00) is the birth function. Applying
the method developed in Wu and Zou [16], existence of travelling wavefronts for (1.2) was
studied in [13]. In a more recent work, Liang and Wu [4] considered a species living in a
spatially transporting field and derived a model similar to (1.2) but with an advection term
accounting for the spatial transport and a spatial translation in the nonlocal delay effect
term. Travelling wavefronts were studied both theoretically and numerically in [4].

+o0 —(z—y)?
—dpw + 8/ b(w(t —ry))e i dy, t>0, z €R. (1.2)
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In this paper, we consider a single species population with two age classes and a fixed mat-
uration period living in a bounded spatial domain. We derive a reaction diffusion equation
model with time delay and nonlocal spatial effect when the mature death and diffusion rates
are age independent. We also consider and analyse numerical computation of the bounded
domain model in the case where the birth functions are the ones appeared in the well-known
Nicholson’s blowflies equation. In particular, we report our numerical observations about the
occurrences of the periodic waves under certain range of birth rate and death rate parameters.

The paper is organised as follows. In Section 2, we derive the reaction diffusion equation
models with time delay and nonlocal effect in a one-dimensional bounded domain. Then, the



numerical methods are described for solving the nonlocal delay problem in Section 3, and
the numerical computation and analysis of the problems are provided in Section 4. Some
final remarks are then provided in Section 5.

2 The RDE Models

We consider a single species population in one dimensional spatial domain. Let u(¢,a,x)
denote the density of the population of the species at the time ¢ > 0, the age a > 0, and the
spatial location z € 2 = [0, L]. Let D(a) and d(a) denote the diffusion rate and the death
rate, respectively, at age a. Then, the population density function u(t, a, z) satisfies

ou Ou 0%u
E—F%:D(a)@—d(a)u, t>0, a>0, €. (2.1)
We consider the Neumann boundary conditions:
0 0
—u(t,a,0) =0, —u(t,a,L)=0, t>0, a>0. (2.2)
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Other types of boundary conditions will also be discussed later in the section.

Now, we assume that the population has only two age stages as matured and immatured
species, and let » > 0 be the maturation time for the species and a; > 0 denote the life limit
of an individual species. Therefore, u(t,a;,z) = 0 at any time ¢ > 0 and any =z € . We
integrate the population density u(¢, a,z) with respect to age a from r to a; to obtain the
total matured population w(t, z), i.e.,

w(t,z) = /al u(t,a,z)da, ©e€Q, t>0. (2.3)

Since only the mature can reproduce, we have
u(t,0,z) = b(w(t,xz)) t>0, ze€Q, (2.4)
where b : [0,00) — [0, 00) is the birth function.

If the diffusion and death rates for the matured population are age independent, that is,
D(a) = D,, and d(a) = d,, for a € [r, a;], then integrating (2.1) leads to

ow 0w
— = D, — — . 2.5
5 u(t,r,z) + Dy, 972 dpw (2.5)

In (2.5), we need to eliminate u(¢, r, z) to obtain an equation for w(¢, ). This can be achieved
as follows. Let us fix s > 0 and define V*(¢t,z) = u(t,t — s,z) for s <t < s+ r. Then, from
(2.1), it follows, for s <t < s+ r, that

oVi(t,x) 0?Vi(t, x) .
5 = D(t — S)T —d(t—s)V?(t,z), (2.6)
with
Vi(s,z) = b(w(s,x)), x€, (2.7)



and the corresponding boundary conditions:

0 0

—V?(t,0)=0, —V*(¢,L)=0 t>0. 2.8

ax ( I ) ? 8,’E ( I ) ? — ( )
Note that (2.6) is a linear reaction diffusion equation, we can solve (2.6)-(2.8) by the

method of separation variables. Let V*(t,z) = U(¢)®(z), from (2.6), it leads to

V' (t)®(z) = D(t — s)¥(t)®"(z) — d(t — s)¥(¢)D(z). (2.9)
The corresponding eigenvalue problem of (2.6) (2.8) is
2
P
% o= 0, O<z<lL, (2.10)
dzx?
®'(0) =0, @'(L)=0. (2.11)

We have the following solutions:

2
)\n:<nfﬂ-> 5 77,:0,1,2,"',

D, (z) =cosy\/ Az, n=0,1,2,---

Further, we obtain the following series solution for (2.6) (2.8):

e t
Vet,z) =) an (s)effs PnD(E=s)+d(t=01d0 o5\ /N, 2. (2.12)

n=0

With the help of the initial condition (2.7) at ¢ = s, it can be derived that
wols) = 7 [ bwls,) dy
an(s) = Z/o b(w(s,y))cos\/ Ay dy, n=1,2,---.

Let D; and d; denote the diffusion and death rates of the immatured population, respec-
tively, i.e., D(a) = Dy(a) and d(a) = d;(a) for a € [0, 7]. Let

e=c Jo @de =/ Di(a) da. (2.13)
0

Then, we have
u(t,r,x) = Vt_”(t )

= 8Zant_r COS\/E_’E
= L/ w(t—r,y)) {14—2[cos\/E(x—y)+cos\/x(x+y)]e—,\na} dy.

(2.14)
Therefore we obtain a reaction diffusion equation with time delay for the Neumann bound-
ary condition as follows:

ow D 0%w

&= mﬁ_dmw—i_F(w’w(t_T’.))’ 0O<z<L, t>0, (2.15)
Xr



w(t,z) = we(t,z), 0<z<L, te[-r0], (2.16)

0 0
_ — _ — > 2.17
axw(t, 0) =0, axw(t, L)=0, t>0, (2.17)
where
F(z,w(t—r, =7 / w(t —r,y) {1+

) 2.18
Z [cos— (z — y) + cos %(ery)]e*(%’r)%} dy (218)

and wy is an initial function which should be specified.

The homogeneous Neumann boundary condition is also called no flux boundary condi-
tion accounting for an isolating boundary. The species in this case can not go passing the
boundary of the his living habitat. Similarly, we can consider the problems with Dirichlet
boundary conditions representing a hostile environment on the boundary, mixed boundary
conditions and periodic boundary conditions.

The model for the Dirichlet problem is
ow 0w
% DLt + = [ bl -
5 x w4+ — I w(t —r,y))
e — ) — cos X ()%a
Z [cos 7 (x — y) — cos 7 (z +y)]e L dy, (2.19)

n=1

O<zxz<L, t>0,
w(t,0) =0, w(t,L)=0, t>0,
w(t,x) = wo(t, x), 0<z<L, tel[-r0].

The model for the mixed boundary problem is

Ow 0*w e [L
pr =D, " —Ei;nw +1)E/0 b(w(t—r,gg)- .
n—lm n—1)r (Cr=ry,
{ngl [cos o (r —y) — cos YA (z + y)]e } dy, (2.20)

O<zxz<L, t>0,
w(t,0)=0, 2wt L)=0, t>0,
w(t,z) =we(t,x), O0<z<L, te][-r0.

The model for the periodic problem is:

ow 0w

=D,
ot axQL .
9 nmw nw\2
i _ Ay — (%) e

+to7 b(w(t 7,Y)) {1 +2nz::1 [cos T (x y)]e 2 } dy,
—L<z<L, t>0,

w(t,—L)=w(t,L), 2wt —L)= 2wt L), t>0,

w(t,x) =we(t,z), —L<z<L, te[-r0.

— dw

(2.21)

In the models derived above, ¢ reflects the impact of the death rate of immature and «
represents the effect of the dispersal rate of the immature on the growth rate of matured



population. F(x,w(t—r,-)) represents the non-local spatial effect with time delay. Therefore,
we obtain a general model with nonlocal delay effects on bounded domains. When o — 0
and € — 1, that is, as the immature becomes immobile and all immatures live to maturity,
then the equation becomes

ow 0%w
ot = Pmgz

which is local time delay problem on a bounded domain. For this local delay problem with
the Dirichlet boundary condition and the birth function b(w) = pwe™*", the existence of
positive steady solution and numerical computations were studied by So and Yang [14] and
So, Wu and Yang [11]. Also for (2.22) with the same birth function but with the Neumann
boundary condition, a thorough study on the dynamics of the model was carried out in Yang
and So [17]. In the following sections, we will consider numerical simulations to the nonlocal
time delay problems for both the Neumann boundary condition and the Dirichlet boundary
condition. The numerical computations are done for two more general birth functions which
will be given bellow.

— dpw + b(w(t — r,x)), 0<z<L, t>0, (2.22)

3 Numerical Methods

In this section, we will describe the numerical methods for the reaction diffusion problems
with nonlocal delay effects. We consider the model with the Neumann boundary condition.

ow 0w
= = Dnog — F —r, L 3.1
ot ™ 92 dpw + F(z,w(t —1,)), 0<z<L, t>0, (3.1)
where
F(‘/I’"w - " L/ ).
- 2 (3.2)
{l-i—n;l [cos f( —y) + cos f(x+y)] -(%F) a} dy,
and
w(t,z) =we(t,z), 0<z<L, tel[-r0], (33)

2wt,0 =0, 2wt L)=0, t>0.
Take a uniform spatial partition 7 for domain Q = [0, L] with the nodes z;,s = 0,1, -, I+

1, such that
0:$0<$1<"'<.T«L;1<.'L'Z'<"'<$Iz+1:L

with Az = L/( +1) and z; = z¢ + iAx, let I; = [z; 1, ;] be the element. And a uniform
time partition is defined as

0=t0<t1<"'<tn_1<tn<"'<tNt+1:T

with At = T/(N; + 1), t, = nAt. Here, I, and N; are positive integers. Az, At are called
the spatial discretization step and the time step, respectively. We further deﬁne w™ =w(ty),
and let W/ denote the approximate value of w(t,, z;).

Define the discrete difference operators

Wit1 — Wi STwy = —— (3.5)

+ow. =
0y wi Az m Az



So, the differential operators in (3.1) can be approximated by

ow w —wn !
-~ ~ = 3.6
2~ o), 39
0w et om )
G2 (bn T3) R 05 (0 wi) + O((Az)”). (3.7)

Further, for getting the numerical scheme of equation (3.1) on the spatial and time
partition, we need treat the nonlocal delay term F(z,w(t —r,-)) discretely.

Let W ™) be the approximation of w(t, — r,z;): W " is W% if r = kAt for

1 7

the integer k& > 0; Otherwise, if kAt < r < (k + 1)At, then we define W be the

1
—(k+1)

linear interpolation of W/"~* and W' (k+1), High order interpolations can be defined from

multilevel values to be used to approximate Winfk(r) for increasing the accuracy.

Let Ky (z,y) be the approximation function to the infinite series function

Ku(z,y) =1+ ) [cos %(z — y) + cos %(m + y)]e*("f”)%u (3.8)
n=1
with the rate O(e_(%)%‘).
So, we can apply the quadrature techniques to discrete the nonlocal delay term F(z, w(t—
r, )) by

n—Kk(r € L n—k(r
Fyi = Fu(zi, W; )~ Z/o bW ) (y) Ky (ws, y) dy. (3.9)

If the Composite Simpson’s rule is used, then the error is O((Az)*). And some fast compu-
tation techniques can also be applied to the approximations.

As I/Vz-n*k(r) is defined at the nodes of the spatial partition, we may introduce the inter-
polation technique to define high order polynomial ITI,W" () for approximating w(t — r),
then, the nonlocal delay term can be obtained without using the numerical integration:

L
Fro= 2 [ w0 ) Ky (v, ) dy, (3.10)

which is expected to obtain much better numerical results.

4 Numerical Computations

In this section, we will numerically study and analyze the solution of the reaction diffusion
equation model with nonlocal delayed effects derived in Section 2. In our computations, we
will consider two general birth functions, which have been widely used in the well-studied
Nicholson’s blowflies equation for some special parameters (for example, see, [2], [4], [5], [7],
(8], [11], and [13]).

These functions are given by

by (w) = pwe™™", (4.1)
with constants p > 0, ¢ > 0 and a > 0; and
w?
by = 70 (1= ) 0w <K (4.2)
0, w > K.,
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Figure 1: The total matured population at £ = 7 under nonlocal delayed effects with the birth
function b (w) = pwe=®*. The data are D,, = 1,d,, =1, a=1,e=1,a=1,¢g=1and r = 1.
We illustrate the effects of the birth rate parameter p from p = 0.5 to p = 10.0.

with constants p > 0, K. > 0 and ¢ > 0.

We solve the reaction diffusion equation with nonlocal delayed effects by using the finite
difference method coupled with iterative technique, which is described in Section 3. The
numerical results that we report in this section show that biological realistic solutions occur
for the reaction diffusion equation models with nonlocal temporally delay effects for a wide
range of parameters. Our numerical experiments show that the positive solutions exist under
the large range of the biological parameters. Moreover, when the ratio of the birth param-
eter over the death parameter passes a certain value, our simulations show that a positive
periodic solution (periodic wave) occurs.

4.1 Neumann Problems with b,(w) = pwe ™. First, we consider the Neumann
problem with nonlocal delayed effects and with the birth function b, (w) = pwe™®". This
birth function with ¢ = 1 has been widely used in the well-studied Nicholson’s blowflies equa-
tion. It increases monotonically before reaching the peak, then decays almost exponentially
to zero.

Let the domain Q = [0,27]. The species satisfies the homogeneous Neumann boundary
condition, that is the total matured population w(¢, z) has

0 0

—w(t,0)=0, —w(t,2r)=0 t>0. 4.3
aajuj( 7 ) 7 E%EQU( ) 7T) ) - ( )
The initial value w(t, ) = wo(t,z) on Q x [—r,0] is given as a constant wy(¢,z) = 1. We
take the uniform spatial and time partition with the step sizes Az and At.

Example 1. Let the diffusion coefficient D,, = 1 and the death rate d,, = 1 for the
mature population, « = 1 and € = 1 for the immature population, and the maturation age
(the time delay) r = 1. Let ¢ = 1 and ¢ = 1 in the birth function b; (w). We then numerically
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Figure 2: The total matured population at £ = 7 under nonlocal delayed effects with the birth
function by (w) = pwe®". The data are D,,, = 1,d,, =1, a =1, e =1,a =1, g = 1. We show
the effects of large birth rate parameter p = 15, p = 25 and p = 35 with the time delay r = 1.

observe the solutions by varying the birth rate p from p = 0.5 to p = 35.

The numerical solutions at the middle point © = 7 of the domain are shown in Figure 1 -
3. The x-axis is the t-direction as well the vertical direction represents the value of the total
matured population. For the cases with the data in the example 1 the positive solutions
exist. In Figure 1, it is clear to see that when p is less than a number (p = 0.5, 1.5, 2.5, 3.5)
the solution is monotonic as the time increases. When p = 0.5,1.5 the solution converges
to a steady value less than the initial value, specially, it is going to zero as the birth rate
p is very small (p < 0.5). In a certain range of p = 2.5,3.5 the population increases and
converges to a steady solution. However, when the birth rate parameter goes over a certain
value (p = 5,7.5,10.0) the solutions will still converge to a steady solution but it will be
oscillation at the beginning of the time.

In Figure 2, we further increase the birth rate p from p = 15 to p = 35. We can see
clearly that the total matured population for large birth rate p = 35 is a periodic wave. In
this test the time delay is » = 1. Increase time delay to » = 2 and use all same other data,
the periodic waves appear clearly in Figure 3 for p = 15, p = 25 and p = 35. Comparing the
solutions in Figure 2 and 3, it can be seen that the large delay leads to the occurrence of
the periodic waves (p = 15, p = 25) and also increase the period length of the periodic waves
(p = 35). The peak value of the periodic waves are also affected by the birth rate parameter
in Figure 3. The peak is getting large as the time delay r becomes large. And the three
dimensional surface of the periodic wave is shown in Figure 4.

q

4.2 Neumann Problems with b,(w) = pw(1 — %) Now, we consider the numerical
C
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Figure 3: The total matured population at £ = 7 under nonlocal delayed effects with the birth
function b (w) = pwe™*". The data are D,, = 1,dp, =1, a =1,e =1, a =1, and ¢ = 1. The
change under the effects of the large time delay r = 2 with the birth rate parameter p = 15, p = 25
and p = 35.

Figure 4: The three dimensional surface of the periodic wave with birth function b; (w) = pwe™***,

while the birth rate parameter p = 35 and other parameters D, =1, d, =1, a=1,g=1,¢ =1,
a=1r=1.
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Figure 5: The shape of the solution of the total matured population at x = 7 with birth function
w?

bo(w) = pw(l — %7), while the birth rate parameter p = 0.5,1,2,3 is varied. Other data are
Dp=1dn,=1a=1¢e=1,¢g=2, K. =2, andr = 1.

solution with birth function:

wq

1—— 0<w< K,

by(w) = pw( Kg)’ =%= (4.4)
0, w > K,

with constants p > 0, K. > 0 and ¢ > 0.

In this part, we show the effects of the varying parameter ¢ and the carrying capacity
parameter K. of the birth function on the solution of the matured population. Meanwhile,
we also consider the effect of varying the birth rate parameter p.

Example 2. Let o = 1, = 1 for the immature population. Fix the diffusion constant
D,, =1 and the death rate constant d,, = 1. We will observe numerically the effects of the
birth rate parameter p, and the carrying capacity parameter K., the parameter ¢ and the
time delay r to the total matured population w(t,z). (a) ¢ =2, K. = 2 and r = 1 and vary
the birth rate parameter p from p = 0.5 to p = 3; (b) Take p =5, ¢ = 2 and r = 1, choose
the carrying capacity parameter K, = 2 and K. = 4; (c¢) Let K, = 2, p=5and r = 1,
change the parameter ¢ from ¢ = 0.5 to ¢ = 2; (d) ¢ =2, K. = 2 and p = 5. Vary the time
delay r =1 and r = 2.

The numerical solutions of the matured population at the middle point x = 7 are shown
in Figure 5 - 8. In Figure 5, we can see that the solution of the total matured popula-
tion is monotonic as the time increases and converges to a steady value when p is small
(p = 0.5,1.0,2.0). But, when the birth rate parameter goes over a certain value (p = 0.3),
the total matured population appears a periodic wave. The effect of the carrying capacity
K, of the environment to the matured population are shown in Figure 6. Increasing the

11
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Figure 6: The effect of the carrying parameter K, to the matured population with the birth function

bo(w) = pw(l — }‘é—i), while data are D,, =1, dp, =1, a=1,e=1,qg=2,r =1 and p = 5. Take
K. =2.0 and K, = 4.0.
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Figure 7: The shape of total matured population at z = 7= with the birth function by(w) =
pw(l — I"é—(é), while the parameter ¢ = 0.5,1.0,1.5,2.0 is varied. Other data are D,, = 1, d,, = 1,
a=1¢e6=1K.=2,r=1and p=5.

12
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Figure 8: The effect of the time delay on the total matured population with birth function by(w) =
pw(l — I“é—f,) The data are D, = 1, dy, =1, a =1, e =1, K. = 2,g = 2, and p = 5. The time
delay is chosen as r = 1.0 and r = 2.0.

carrying capacity parameter K, will lead to the increasing peak height of the periodic waves
as well as the small change of the period of the periodic waves (K. = 2.0,4.0). Similar results
are obtained for considering the effect of the parameter ¢ in Figure 7. As varying the value
q = 0.5,1.0,1.5,2.0, the period and the peak height of the periodic wave change. Figure 8
shows the computation of the cases with two different time delay » = 1 and r = 2. The
values of the time delay affect the periodic wave solutions, it can be seen that the period
and the shape of the periodic wave have changed.

4.3 Dirichlet Problems with Nonlocal Delayed Effects. In this part, we will con-
sider the numerical computation for the Dirichlet problems with nonlocal delayed effects for
q
both the birth function b, (w) = pwe ** and by(w) = pw (1 — ]uéq)' We show the effects of
the diffusion rate D,, of the matured population and the carryingc capacity parameter K. as
well as the time delay on the matured population.

aw?

Example 3. We consider the Dirichlet problem with the birth function b (w) = pwe™
and show the effect of the diffusion D,, on the solution of the matured population. Take the
birth rate p = 80, the death rate d,, =1, a =1, =1,a =1, and ¢ = 1. Let the time delay
r = 1. We numerically compute the solution with different diffusion values D,, = 0.1, 1.0, 10.

For this Dirichlet problem, the total matured population also has the periodic wave so-
lution when the birth rate parameter are in a certain range. The numerical computation
results for the problem with the birth function b; (w) = pwe *“* are shown in Figure 9 - 10.
The plot at x = 7 shows the effect of the diffusion parameter D,, on the matured population
in Figure 9. The three dimensional surface for p = 60 is shown in Figure 10.

13
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Figure 9: The total matured population at £ = 7 under nonlocal delayed effects with the birth
function by (w) = pwe™®*. The data are d, =1, a =1,e=1,a=1,¢g=1, p = 80, and the time
delay » = 1. We show the effects of the diffusion parameter D,,, = 0.1,1.0, 10.

Figure 10: The three dimensional surface of the periodic wave with birth function b; (w) = pwe=*"*,

while the birth rate parameter p = 60, and other parameters D,, =1, d,, =1, a=1,e =1,a =1,
g=1and r=1.
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Figure 11: The effect of the time delay on the total matured population with birth function by (w) =
pw(l — %) The data are D,, = 1,d,, =1, a=1,e =1, K. = 2,g = 2, and p = 4. The time
delay is chosen as r = 1.0 and r = 2.0.

Example 4. Consider the Dirichlet problem with the birth function by(w) = pw (1 - %)
we will focus on the effect of the time delay r and the diffusion D,, on the total matured
population. The data in this computation are the death rate d,, = 1i, ¢ = 1, the carrying
capacity parameter K, = 2, = 1 and ¢ = 1. (a) Choose D,, = 1 and p = 4, change
the time delay » = 1 and r = 2; (b) Let = 1 and p = 60, vary the diffusion parameter
D,, = 0.1,1.0, 10.

For this Dirichlet’s case with by(w) = pw (1 - I“é—zq), the numerical solutions of the total
matured population at x = 7 are given in Figure 11 - 12. It is very clear to see that for this
case the values of the time delay will affect the periodic wave solutions (see Figure 11). It not
only increases the period of the wave, but also change the the shape of the periodic wave for
this birth function bo(w). The plot at x = m shows the effect of the diffusion parameter D,,
on the population in Figure 11. For this birth function, the effect of the diffusion parameter
on the shape of the periodic wave is much sensitive in Figure 12.

5 Conclusion

In this paper, we develop a reaction diffusion equation (RDE) model for the growth dynamics
of a single species population living in a bounded spatial domain. The model is derived from
an age structured population model and contains a time delay and nonlocal effect term, in
which the fixed maturation period is considered as the time delay. The model can be used
to study the behaviour of the mature population.
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Figure 12: The effect of the diffusion parameter on the total matured population with the birth
function by(w) = pw(l — I“é—(fz), while the parameter D,, = 0.1,1.0,10 is varied. Other data are
dn=1,a=1,e=1, K. =2,9g=2,r=1 and p = 60.

Our numerical analyses for the solutions of the model with two widely used birth func-
tions are reported in Section 4. When the ratio of the birth rate parameter p over the death
rate parameter d,, is in a certain range, the solution of the mature population is positive and
converges to a steady solution in t-direction. Outside of this range, numerical simulations
suggest possible occurrence of the positive periodic wave solution in t-direction. Further-
more, numerical results show that the value of the time delay will affect the period and the
peak height of the wave, even affect the shape of the periodic wave. The further theoretical
investigation of these positive periodic waves of the problems will be the next step work.
However, the theoretical analysis for finding the relation between the period value of wave
and the value of the time delay would be a challenging task.
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