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Abstract  The uniform stability of the zero solution and the asymptotic behaviour of all solutions of
the neutral delay differential equation

[z(t) = P(O)z(t — 7)) + QW)x(t —0) =0, t > to,

are investigated, where 7,0 € (0,00), P € C([tp,0),R), and @ € C([tg,>0),[0,00)). The obtained
sufficient conditions improve the existing results in the literature.
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1. Introduction
Consider the neutral delay differential equation
[2(t) — P()a(t — 7)) + Q)a(t — o) =0, > to, (1.1)

where 7,0 € (0,00), P € C([tg,0),R) and Q € C([tg, 0), [0, 0)).
When P(t) = 0, equation (1.1) reduces to

)+ Qt)x(t—0) =0, t=>to, (1.2)

whose stability of the zero solution has been extensively investigated in the literature
(see, for example, [1,2,4-15]). The best result known to us is the following so-called
3_asymptotic behaviour condition [10] that if

/00 Q(s)ds = o0 (1.3)
to
and .

lim sup (s)ds < 2, (1.4)

t—00 t—o

then every solution of equation (1.2) tends to zero as t — co.
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It was pointed out in [12] that the upper bound 2 in (1.4) is the best possible one for
equation (1.2). As an application of the above result, it is easy to conclude that if

¢
limsup/ Q(s)ds < 3(1 —p), (1.5)
t—o00 t—0o
then every solution of equation (1.1) with P(¢) = p € (0,1) and 7 = 0 tends to zero as
t — oo.

When P(t) # 0, it was shown in [8] that if (1.3) holds and

t
|[P(t))=p and 2p+ limsup/ Q(s)ds < 1, (1.6)
t—o

t—o0

then every solution of equation (1.1) tends to zero as t — oco.
For the special case (1.2), (1.6) reduces to

t
limsup/ Q(s)ds < 1, (1.7)
t—o

t—o0

which is stronger than (1.4). Therefore, the upper bound 1 in (1.6) is not the best
possible one for (1.1). In [11,15], by making use of the double iterative method, the
authors developed a condition similar to (1.4) for equation (1.1), which reads

[P(t)]<p and 2p(2—p —i—hmbup/ Q(s)ds < 2 (1.8)

Since the second inequality in (1.8) is equivalent to

t
2p + lim sup Q(s)ds < 2 —2p(1—p),
t—o00 t—o
and 2 —2p(1 —p) >3 — 1 =1, we see that (1.8) improves (1.6). However, condition
(1.5) suggests that (1.8) is far from ‘the best possible’ and there is room for improvement.
Therefore, it is desirable to establish some better results, and this constitutes the purpose
of this paper. In this paper, we first improve (1.8) to

t
p< i and 2p+ limsup/ Q(s)ds < %, (1.9)
t—o00 o
or .
1<p<3 and 1iiri>i1ip/ Q(s)ds < /2(1 — 2p). (1.10)

The fact that (1.9) improves (1.8) is obvious. To see that (1.10) is an improvement of
(1.8), we need to show that 3 — 4p + 2p? < \/2(1 — 2p) for 1 < p < 1. But 1 < p implies
2(1 — 2p) < 1 and, hence, \/2(1 — 2p) > 2(1 — 2p). Therefore, we only need to show
% —4p + 2p? < 2(1 — 2p), which is just equivalent to p < %
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Note that p < § is required in both (1.9) and (1.10). We then establish two more new
conditions in which p > 3 is also allowed:

¢
2p(1—1p) + limsup/ Q(s)ds < 2, (1.11)
t—o0 t—(3o+(N—-1)7)

where N is a positive integer such that p 4+ 3p’¥ /2 < 1, and
t N
3—4p
limsup/ Q(s)ds < ——<(1—p), (1.12)
t—oo  Jt—(o+(N-1)7) 2(1 =pN)

where N is a positive integer such that 4p” < 1. The basic ideas of the proofs of (1.11)
and (1.12) are decreasing the first term 2p(2 — p) by means of increasing the integral
interval of f;a Q(s)ds in (1.8).

It is worth noting that when 7 = 0, (1.12) reduces to (1.5) by letting N — oc.

2. P(t) is not constant

Theorem 2.1. Assume that |P(t)| < p and that

t+o
p<i and 2p+ Q(s)ds < 3, t>t, (2.1)
t
or ",
1<p<3 and Q(s)ds < /2(1 —2p), t=to. (2.2)

¢
Then the zero solution of equation (1.1) is uniformly stable.

Proof. If p = 0, Theorem 2.1 has been proved in [12]. Below, we assume that
0<p< % Let p = max{7,0}, § = min{r,0}. Now choose a positive integer m such
that md > 3o. For any € > 0, define n = (1 — p)e/(1 + p)(2p + 3)™. We will prove that
for any t > to, ¢ € C([t — p, 1], (—n,n)) implies

2t e) <6 t>1, (2.3)

where z(t;t, ) denotes the solution of equation (1.1) satisfying the initial condition
x(s;t, ) = ¢(s) for s € [t — p,t]. For convenience, we denote z(t) = z(t;t, ¢) below and
always set

z(t) = x(t) — P(t)z(t — 7). (2.4)

Similar to the proof of [15, Theorem 1], we can show that
lz(t)] < (2p+3)™n, tE [t,t+ md]. (2.5)

Next we prove (2.3). By way of contradiction, we assume that (2.3) is not true, then by
(2.5) there must be some T > ¢ + md such that |z(T)| = € and |z(f)| < efort <t <T.
Without loss of generality, we may suppose that 2(T") = e. Thus, we have

2(T) =x(T) — P(T)x(T —7) > (1 —p)e > 0. (2.6)
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Again since
2(t+md) =zt +md) — PE+md)z(t+md —7) < (1 —pe < 2(T),

it follows from (2.6) that there exists Ty € (t + md, T] such that z(Tp) = max{z(t) :
t+mdé <t<T}and z(t) < 2(Tp) for t +md < t < Tp. Set

y(t) = 2(t) —pe, t>1. (2.7)

Then

It follows from (1.1) and (2.7) that
y'(t) =2'(t) = -Qt)a(t — o) < —Qt)y(t — o), t+o<t<Th. (2.8)

Note that 0 < p < 3, it is easy to see that y(Ty) > z(T) — pe > (1 — 2p)e > 0. Next

we prove y(Tp — o) < 0. Otherwise, y(Tp — o) > 0. Thus, there is a left neighbour of
Ty — o which is denoted by (Tp — o — h, Ty — o) for some h > 0, such that y(¢) > 0 for
(To — 0 — h,To — 0), and so y(t — o) > 0 for (Ty — h,Tp), and therefore by (2.8), we see
that z(t) is not increasing on (Ty — h, Tp). This contradicts the definition of T and so
y(To — o) < 0. Hence, there exists £ € [To — 0,Tp) such that y(§) = 0. From (2.8), we
have

y'(t) <Qt)e, t+o<t<T. (2.9)

Integrating (2.9), we obtain

3
fy(t—o)ge/ Q(s)ds, &<t< T
t—o

Substituting this into (2.8), we have

3
y(t) <eQt) [ Qls)ds, £<t<Th. (2.10)

t—o

The proof will be complete if we conclude that
(1) y(To) < (1 - 2p)e, (2.11)

which is due to the contradiction of the fact that y(7p) > y(T') > (1 — 2p)e. There are
three possible cases as follows.
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Case 1 (0 < p < % and fE Q(s)ds < 1). In this case, we have, by integrating
(2.10) from & to T,

T0<e/ / Q(s) ds dt
=e/£ Q) [/t_ocxs)ds—/;cz(s)ds} a
<e/:°cz<t>[§—2p—/;cz<s>ds}dt

=z [ awan—5( [ )]

< (1 -2p)e.

Case 2 (0 < p < % and fSTO Q(s)ds > 1). Choose T1 € (&,Tp) such that
;10 Q(s)ds = 1. Then integrating first (2.9) from £ to 77 and then (2.10) from T to

Ty, we have

To

T 3
y(To) < e Q(t) dt—l—e/ Q(t) Q(s)dsdt

3 Th t—

To
e{ . Q(t)dt i Q der/ / Qs dsdt}

To T
:e/ o) [ Qs)dsat

T t—o

< e{(g —2p) : Qls)ds - ;( :) Q(s) dsﬂ
=(1-2p)e.

Case 3 (4 p<s; ! and f Q(s)ds < v/2(1 — 2p)). Integrating (2.10) from £ to

To, we obtain
W(To) <e/ / Q(s) dsdt
=e/§ Q(t)[ttoQ ds—/ Qs ds}
<e /g K Q(t)[m - /{ Qs) ds] dat
[m s :°Q<s>dsﬂ

2
< (1=2p)e.

Cases 1-3 show that (2.11) is true. And therefore the proof is complete. O
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Theorem 2.2. Assume that |P(t)| < p and (1.3) holds. If (1.9) or (1.10) holds, then
every solution of equation (1.1) tends to zero as t — oo.

Proof. Let x(t) be any solution of equation (1.1). We shall prove that

lim z(t) =0 (2.12)

n—oQ

in two cases where x(t) is non-oscillatory or oscillatory. In the former case, by the proof
of [15, Theorem 2], we see that (2.12) holds. In the latter case, by Theorem 2.1, x(t) is
bounded. Set p = limsup,_, . |#(¢)]. Then 0 < 1 < oo and

M =limsup |z(t)] = (1 — p)u. (2.13)

t—o0

The proof will be finished when we prove p = 0. Suppose that g > 0. Then for any
€ € (0,(1 —2p)u), there exist A € (1,2), B € (0,/2(1 —2p)) and T > o such that

s <p+e t>T—p,

and
¢ A—2p, ifp< i
/ Q(s)ds<{ b 111) 4 1} t>T. (2.14)
t—o B7 if 1 < p< 2
Set
y(t) = z(t) —plp+e), t=2T—o. (2.15)
Then

—z(t—o0)=—-2(t—0)—Pt—o)x(t—0o—71)
<—z(t—0o)+p(p+e)
=—ylt—0), t=T.

It follows from (1.1) and (2.15) that
Y(t) = 2'(H) = —-Qt)alt — o) < —Qy(t—0), t>T. (2.16)

Note that z'(t) is oscillatory, there is an increasing sequence {7} such that T,, > T +
T+ 20, T, — 00, |2(T,)] > M as n — oo, |2(T,,)| > (1 —p)(u — €), and T, is the left
local maximum of |z(¢)|. We may assume that z(T},) > 0. The case when z(T;,) < 0 is
similar, and the proof will be omitted. Thus

Y(Tn) 2 2(T,) —p(p+€) > (1 —2p)(p+€) —e> 0.

It is also easy to see that y(T;, — o) < 0 in view of the definition of T,,. Hence, there
exists &, € [T}, — 0,T},) such that y(&,) = 0. From (2.16), we have

Yyt <QM)(ute), t=T. (2.17)
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Integrating (2.17), we obtain

én

—y(t—o) < (n+e€) Q(s)ds, & <t<T,.
t—o

Substituting this into (2.16), we have

én
V)< (W) | Qs)ds, & <t<Th. (2.18)

t—o
Set
_ {maX{A—Zp—é,é}, if p< i,
B?/2, if ;1 <p<3.
Then A < 1 — 2p. We will prove
y(Tn) < A(p+e). (2.19)

To this end, we consider the following three possible cases.

Case 1 (0 < p < i and ng" Q(s)ds < 1). In this case, we have by integrating
(2.18) from &, to T,

&n

Ty
W(To) < (1 +©) / Q) [ asasar

n

=(ute) /:Q(t)</t;@(s)ds— 5: Q(s)ds) dt

< (u+e)/TnQ(t)(A—2p—/£: Qls)as) at

! Ty 1 T, 2
=+ |- [T amas—5( [ awas)|
(1 + €)[max{A — 2p,1} — %]

A(p + €).

N

Case 2 (0 < p < i and fé‘:" Q(s)ds > 1). Choose n, € (&,,T,) such that
f;‘rn" Q(s)ds = 1. Then integrating first (2.17) from &, to n, and then (2.18) from 7,

to T,,, we have

&n
Q(s)dsdt

Mn

Tn
V) <) [T mars (ero [ oo [

T, Nn Ty En
o[ ama [T ewast [ o [T e asa

Mn én n -0

~+o [ Qw " Qs dsdt

n t—o
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T,

RCCIEE ( / T Q(s) d)}

=(p+e)(A-2p—3)
< A(p+e).

< (pte) {(A — 2p)

Case 3 (i <p < % and fg: Q(s)ds < B). Integrating (2.18) from &, to T,,, we
obtain

Tn En
vty <o [0 [ s
= (u+eo) /g T Q(t)[ () ds - £ Q(s) ds} t
<Guta [ T a5 - f Q) ) dt
~+als :” Q) ds— 5 ;" Q) d)]
< 5B+ n n

= A+ e).
Cases 1-3 show that (2.19) is true. From (2.19), we have
2(T,) < (A+p)(u+e).
Let n — oo and € — 0 in the above. We see that

M =limsup z(T,,) < (A+p)u < (1 —p)u,

n—oo
which contradicts (2.13). Therefore, © = 0, and so the proof is complete. |

If P(t) is not negative, then we have the following two theorems.

Theorem 2.3. Assume that 0 < P(t) < p and that there exists a positive integer N
such that p+ 3p"¥ /2 < 1 and

t+30c+(N—-1)1
2p(1 — %p) +/ Q(s)ds <
t

[\l

. >t (2.20)

Then the zero solution of equation (1.1) is uniformly stable.

Proof. If p = 0, Theorem 2.3 has been proved in [12]. Below, we assume that 0 <
p < 1. Let p = max{r,0}, 6 = min{7,0}. Now choose a positive integer m such that
md > 2(30+NT). For any € > 0, define n = (1—p)e/(1+p)(2p+3)™. We will prove that for
any ¢ > to, ¢ € C([t—p, 1], (—n,n)) implies that z(t) satisfies (2.3), where z(t) = z(¢; ¢, @)
denotes the solution of equation (1.1) satisfying the initial condition z(s;, ¢) = ¢(s) for
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s € [t — p,t]. First, similar to the proof of Theorem 2.1, we can prove that (2.5) holds.
Obviously, (2.5) implies that (2.3) holds for # < t < t + md. Next, we prove that (2.3)
holds for ¢t > t + md. By way of contradiction, we assume that there is some T > t + md
such that |z(T)| = € and |z(t)] < € for ¢ <t < T. Without loss of generality, we may
suppose that z(T) = e. Thus, (2.6) is true and there exists Ty € (f + md,T] such that
z(To) = max{z(t) : t + md <t < T} and 2(t) < 2(Tp) for t + md < ¢t < Tp. There are now
two possibilities:
Z(t) >0, te [To—(30'+(N—1)T)7T()],

or there exists £ € [To — (30 + (N — 1)7), Tp] such that
2(5)207 Z(t) >Ov te (gvTO]

In the former case, we have

—z(t) < p'e, te[Ty— (Bo+(N—i)r),Ty], i=1,2,...,N, (2.21)

and

Z(t)=Q)|—2(t—0)— P(t—o)x(t—o —7)]
<—-Q)[2(t — o) —pVe|, te [Ty —20,Tp)

Set

yt) = z(t) —pNe, t>1. (2.22)
Then

y'(t) =2 (t) = —Q(t)x(t — o) < —Q(t)y(t — o), t € [T — 20,Tp]. (2.23)

Similar to the proof of Theorem 2.1, it is easy to conclude from (2.23) that y(Tp — o) <
0. Note that y(Tp) = 2(T) — pNe > (1 —p — p™)e > 0. It follows that there exists
¢ € [Ty — 0,Tp) such that y(¢) = 0. From (2.22) and (2.23), we have

Y (t) <Qt)pNe, te[Ty—20,Tp). (2.24)

Integrating (2.24) from ¢ to Ty, we obtain

¢
—y(t—o) <pVe | Q(s)ds, te[Ty—o,Tyl.

t—o

Substituting this into (2.23), we have

() <pVeQ) [ Qs)ds, te[Ty—oTy. (2.25)

There are two possible subcases.
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Subcase 1 (fCTO Q(s)ds < 1 — p). In this case, we have, by integrating (2.25) from
¢ to T,

y(To) <pNe/CTOQ(t) /fUQ(s) ds dt
e [Cen][ awas- [awala
<o [an[BEEEE - o a a
U [ g ([ aas)
<(1=p)PpNe<(1—p—pVe

Subcase 2 (ch° Q(s)ds > 1 — p). Choose T} € (¢, Tp) such that f;lOQ(s) ds = 1—p.
Then, integrating first (2.24) from ¢ to 77 and then (2.25) from T3 to Ty, we have

Ty To ¢
uty <o [ Qudrepe [ T [ ardsa
¢ T t—o
r 1o T T To ¢
=pNe Q(t)dt Q(s)ds+p Q(s)ds + / Q(t) Q(s)ds dt}
LS T ¢ ¢ T t—o
r To T1 TO To
=pNe / Q(t) (s)ds dt—l—p( Q(s)ds — Q(s) ds)}
L/ t—o ¢ 2
r 0 0 2
< ple 1-p)B~-p) " (s)ds—1< TQ(S)dS>
L 2 T 2 T
To
+p<(1—p)(3—p)_ Q(s)ds)}
2 o
=1-p)*pNe< @ -p-pV)e
Subcases 1 and 2 show that
y(To) < (1—p—pM)e, (2.26)

which contradicts the fact that y(Tp) = y(T) > (1 —p — pV)e.
In the latter case, we have

2(t) < Qt)e, t<t< Ty, (2.27)

and

3
2'(t) < eQ(t) [p+/t_(3 . )Q(s) ds|, £<t<T. (2.28)

There are two possible subcases as follows.
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Subcase 1 (fETO Q(s)ds <1 — p). In this case, we have by integrating (2.28) from
f to TO

To r 3
2(Ty) <€ Q(t) er/ Q(s) ds] dt
£ L t—3c—(N—-1)1

— [ ow :p+ / t NCOLE /5 Q) ds} dt

£ —30—(N—

O _p+(1—p)2(3—p)_/€ Q(s)ds] dt

<e | Qt
13 L

- (o]

< (1 =pe

~—

Subcase 2 (fETO Q(s)ds > 1 — p). Choose T» € (&, Tp) such that f;;OQ(s) ds =1—p.
Then integrating first (2.27) from £ to T and then (2.28) from T5 to Tp, we have

Ts

ATy <e | Q) dt+e/

13 T2

" o [p+ /t E Q(s) ds} at

—30c—(N-1)1

T T To
= e[ Q(t)dt Q(s)ds+p Q(s)ds
3

T> 13
To 19
AT LT

—e [ /| T Q) | _T;_(N_l)T O(s) ds dt + p :‘) Qs) ds}
= (1 - pe.

Subcases 1 and 2 show that
2(To) < (1 —pe, (2.29)

which contradicts the fact that z(Tp) > 2(T") > (1 — p)e. The proof is complete. O

Similar to Theorem 2.2 and Theorem 2.3 and applying Lemma 6.4.1 from [3], we can
show the following asymptotic behaviour theorem.

Theorem 2.4. Assume that 0 < P(t) < p and there exists a positive integer N such
that p+ 3p™V /2 < 1. If (1.3) and (1.11) hold, then every solution of equation (1.1) tends
to zero as t — oo.
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3. P(t) is constant

Theorem 3.1. Assume that |P(t)| = p and that there exists a positive integer N such
that 4pN <1 and

t+0‘+(N71)T 3 o 4pN
<=——L _(1-p), t=t. 1
/ Qs)ds < gt (1-p). 1210 (3.1)

Then the zero solution of equation (1.1) is uniformly stable.

Proof. If p = 0, Theorem 3.1 has been proved in [12]. Below, we assume that 0 <
4pN < 1. Let p = max{r,0}, 6 = min{7,0}. Now choose a positive integer m such
that mé > 2(c + N7). For any € > 0, define n = (1 — p)e/(1 4+ p)(2p + 3)™. We will
prove that for any ¢ > to, ¢ € C([t — p,t], (—n,n)) implies that () satisfies (2.3), where
z(t) = x(t;t,¢) denotes the solution of equation (1.1) satisfying the initial condition
z(s;t,9) = ¢(s) for s € [t — p, t]. Similar to the proof of Theorem 2.1, we can prove that
(2.5) holds. Next, we prove (2.3). By way of contradiction, we assume that (2.3) is not
true, then by (2.5) there must be some 7' > t +md such that |z(T)| = € and |z(t)| < €
for t <t < T. Without loss of generality, we may suppose that x(T) = €. Thus, (2.6) is
true and there exists Ty € (f + md, T] such that z(Tp) = max{z(t) : t + md < ¢t < T} and
2(t) < 2(Tp) for t +md < t < Tp. Set

1-p N _
y(t) = 2(t) — 1 _pr €, t=>t. (3.2)
Then
N-1
—z(t—0)=— p2(t—o—ir) —pNa(t —o — N7)
=0
N—1

2t — o —it) +pNe

VAN
|
i
=3

=— N piytt—o—ir), To—o—(N-1)r<t<Th.

y'(t)=2'(t) =-Qt)z(t—0), t>t (3.3)
and
N-1 )
Y(t)<-Q) Y plyt—o—ir), To—o—(N-1)r<t<Th (3.4)
=0

It is easy to see that y(Tp) = 2(T) — (1 —p)pVe/(1—pN) > (1 —p)[1—pV /(1 —pV)]e = 0.
Next we prove that there exists j € {0,1,..., N — 1} such that y(Tp — o — j7) < 0.
Otherwise, y(Tp — o —i7) > 0, ¢ = 0,1,..., N — 1. Thus, there is a left neighbour of
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Ty — 0 — i7 which is denoted by (Ty — o — it — h, Ty — o — i7) for some h > 0, such that
y(t) > 0 for (Ty — o — it — h,Ty — o —i7), and so y(t — o —i7) > 0 for (Ty — h,Tp)
and i« = 0,1,..., N — 1, and therefore by (3.4), we see that y(t) is not increasing on
(To — h,Tp). This contradicts the definition of Ty and so y(Ty — o — j7) < 0 for some
j€{0,1,...,N —1}. Hence, there exists £ € [Ty — o — (N — 1)7,T}) such that y(§) =0
and y(t) > 0,t € (&, Tp]. From (3.3), we have
() < Qe T<t<Th (3.5)

Ift—o—ir<&forte[Ty—o— (N—1)r,Tpl, then integrating (3.5) we obtain
13
—y(t—a—iT)ge/ Q(s)ds, t—o—ir <&
(N=-1)T
fé<t—o—ir<Tpforte[Ty—o— (N—1)r,Tpl, then
3
—y(t—a—i7)<0<e/ Q(s)ds, &<t—o—ir <Tp.
t—o—(N-1)7

Substituting these into (3.4), we have

N 3
en [ W g<i<n (36)

There are two possible cases as follows.

Case 1 (((1 — p™)/(1 — p)) f§ Q(s) ds < 1). In this case, we have by integrating
(3.6) from £ to Tj

17pN To 13
< dsd
vty < e [Caw [ qedsar

1-p
- 11‘_1’56 /E " o [ / to " m@(s) ds - / Q) ds} dt
ol [
e e{;g;fzi)u p) /5 Qs 5 :0 Q(s) d)]
Rl AT

1-—pV

Case 2 (((1 — pV)/(1 — p)) f Q(s)ds > 1). Choose T} € (§,Tp) such that

To
le/ Q(s)ds =1.

1-p Jp
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Then integrating first (3.5) from £ to 77 and then (3.6) from T; to Ty, we have

T _ N To €
ym) <e [ owar+? _p e/ Q(t)/ Q(s)dsdt
T t—o— (N

3

l—pN T1 §
o€ Q() A Q(s )ds—|— / )/t o 1)TQ(S)dsdt

/ / Q(s)dsdt
1_ t—o—(N-1)7

< 11_—pN6[2321_—4§N)<1 ) [ Qe ;< nTO o dsﬂ

p T:
1—2pN
= 1—pN (17}7)6

Combining Cases 1 and 2, we have concluded that

1—2pN

y(To) < W(l —p)e, (3.7)
which contradicts the fact that y(Tp) > y(T) > (1—2p™)(1—p)e/(1—p"). And therefore,

the proof is complete. ([l

In a similar way to Theorems 2.2 and 3.1 and applying Lemma 6.4.2 in [3], we can
show the following asymptotic behaviour theorem.

Theorem 3.2. Assume that |P(t)| = p and there is a positive integer N such that
4pN < 1. If (1.3) and (1.12) hold, then every solution of equation (1.1) tends to zero as
t — oo.

Acknowledgements. This work was supported by the National Natural Science
Foundation of China and the Natural Sciences and Engineering Research Council of
Canada.

References

1. G. GAO, On the 3/2 asymptotic stability of one-dimensional functional differential equa-
tions with unbounded delay, Kezue Tongbao 33 (1993), 683-686 (in Chinese).

2. K. GoprALsAMY, Stability and oscillations in delay differential equations of population
dynamics (Kluwer Academic, Boston, 1992).

3. 1. GYORI AND G. LADAS, Oscillation theory of delay differential equations with applica-
tions (Clarendon, Oxford, 1991).

4. V. B. KoLMANOVSKII, L. TORELLI AND R. VERMIGLIO, Stability of some test equations
with delay, STAM J. Math. Analysis 25 (1994), 948-961.

5. T. KRISZTIN, On the stability properties for one-dimensional functional differential equa-
tions, Funkcial. Ekvac. 34 (1991), 241-256.

6. Y. KUANG, Delay differential equations with applications in population dynamics (Aca-
demic, Boston, 1993).



10.

11.

12.

13.

14.

15.

Asymptotic stability of a neutral differential equation 347

M. R. S. KuLENOVIC, G. LADAS AND A. MEIMARIDOU, Stability of solutions of linear
delay differential equations, Proc. Am. Math. Soc. 100 (1987), 433-441.

G. LADAS AND Y. G. SFICAS, Asymptotic behavior of oscillatory solutions, Hiroshima
Math. J. 18 (1988), 351-359.

G. LAaDpAS, Y. G. SFICAS AND I. P. STAVROULAKIS, Asymptotic behavior of solutions of
retarded differential equations, Proc. Am. Math. Soc. 88 (1983), 247-253.

J. W. H. So, J. S. YU AND M. P. CHEN, Asymptotic stability for scalar delay differential
equations, Funkcial. Ekvac. 39 (1996), 1-17.

J. Wu AND J. S. YU, Convergence in nonautonomous scalar neutral equations, Dyn. Syst.
Applic. 4 (1995), 279-290

T. YONEYAMA, On the 3/2 stability theorem for one-dimensional delay-differential equa-
tions, J. Math. Analysis Applic. 125 (1987), 161-173.

T. YONEYAMA, On the 3/2 stability theorem for one-dimensional delay-differential equa-
tions with unbounded delay, J. Math. Analysis Applic. 165 (1992), 133-143.

J. A. YORKE, Asymptotic stability for one dimensional differential-delay equations, J.
Diff. Eqns 7 (1970), 189-202.

J. S. Yu, Asymptotic stability for nonautonomous scalar neutral differential equations,
J. Math. Analysis Applic. 203 (1996), 850-860.






