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Abstract We consider a delay predator–prey system without instantaneous negative feedback and
establish some conditions for global attractivity of the positive equilibrium of the system which generalize
and improve some of the existing ones. When the system is decoupled, one of the main results reduces
to the well-known Wright 3/2 stability condition for the delayed logistic equation.
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1. Introduction

We consider the global attractivity of the positive equilibrium of a predator–prey system
with delays modelled by

Ṅ1(t) = N1(t)[a1 − b1N1(t − τ1) − c1N2(t − σ1)],

Ṅ2(t) = N2(t)[−a2 + c2N1(t − σ2) − b2N2(t − τ2)],

}
(1.1)

with initial conditions

Ni(t) = φi(t) � 0, t ∈ [−∆, 0], φi(0) > 0, i = 1, 2, (1.2)

where ai, bi > 0, ci � 0, τi, σi � 0 for i = 1, 2 and ∆ = max{τ1, τ2, σ1, σ2}.
When the predator species is absent, the prey species is governed by the well-known

delay logistic equation

Ṅ1(t) = N1(t)[a1 − b1N1(t − τ1)],

N(s) � 0 for s ∈ [−τ1, 0], N(0) > 0.

}
(1.3)

For (1.3), a well-known result (usually referred as Wright’s 3/2 criterion) is that if a1τ1 �
3
2 , then the positive equilibrium a1/b1 is globally attractive.

495



496 X. H. Tang and X. Zou

On the other hand, if all delays are zero in (1.1), then system (1.1) simplifies to the
following autonomous system of ordinary differential equations:

Ṅ1(t) = N1(t)[a1 − b1N1(t) − c1N2(t)],

Ṅ2(t) = N2(t)[−a2 + c2N1(t) − b2N2(t)].

}
(1.4)

It is well known that all positive solutions N(t) = (N1(t), N2(t)) of (1.4) satisfy N(t) →
N∗ = (N∗

1 , N∗
2 ) as t → ∞ if and only if

a1c2 − a2b1 > 0, (A1)

where

N∗
1 =

a1b2 + a2c1

b1b2 + c1c2
, N∗

2 =
a1c2 − a2b1

b1b2 + c1c2
. (1.5)

From this fundamental result, one naturally expects that under (A1) N∗ remains
globally attractive for (1.1), (1.2) if the delays are sufficiently small. This expectation
was confirmed recently by He [7]. Indeed, by constructing a Lyapunov functional, He
established the following theorem.

Theorem 1.1. Suppose that (A1) holds. Then the positive equilibrium N∗ for (1.1)
is globally attractive, provided that

(1 + M2
1 )τ1 +

c1

b2

{
τ1 +

[
1 +

c2

b1
(1 + M2

2 )
]
σ1 + M2

1 σ2 + M2
2 τ2

}
< 2, (1.6)

and

(1 + M2
2 )τ2 +

c2

b1

{
τ2 +

[
1 +

c1

b2
(1 + M2

1 )
]
σ2 + M2

1 τ1 + M2
2 σ1

}
< 2, (1.7)

where

M1 =
a1

b1
ea1τ1 and M2 =

−a2 + c2M1

b2
e(−a2+c2M1)τ2 . (1.8)

Hofbauer and So [9] studied a general Lotka–Volterra system allowing distributed
delays but with instantaneous negative feedback, which, in the case of n = 2 and in the
context of predator–prey, includes the following system:

Ṅ1(t) = N1(t)[a1 − b1N1(t) − c1N2(t − σ1)],

Ṅ2(t) = N2(t)[−a2 + c2N1(t − σ2) − b2N2(t)],

}
(1.9)

The main theorem of [9] can be stated, as below, in terms of (1.9).

Theorem 1.2. Suppose that (A1) holds. Then the positive equilibrium N∗ for (1.9)
with (1.2) is globally attractive for all σ1 and σ2 if and only if b1b2 − c1c2 = 0 or

b1b2 − c1c2 > 0. (DD)
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Theorem 1.2 is proved by constructing a Lyapunov functional, taking advantage of the
fact that there is no delay in the negative feedback terms b1N1(t) and b2N2(t) (i.e. the
system has instantaneous negative feedbacks).

From Theorem 1.2, we see that under the diagonal dominating condition (DD), the
off-diagonal delays do not affect the global attractivity of N∗ (assuming (A1)). This
suggests that one only needs to worry about the diagonal delays in this context. He [6]
made an attempt to partly address this problem by considering one diagonal delay. In
fact, He considered the system

Ṅ1(t) = N1(t)[a1 − b1N1(t − τ) − c1N2(t − σ1)],

Ṅ2(t) = N2(t)[−a2 + c2N1(t − σ2) − b2N2(t)]

}
(1.10)

and established the following result.

Theorem 1.3. Assume that (A1) holds, and that

c1c2

b1b2
<

1 − a1τea1τ

1 + a1τea1τ
. (1.11)

Then the equilibrium N∗ is globally attractive for (1.10) with σ1 = σ2.

Obviously, (1.11) implies (DD). Note that (1.11) is equivalent to

a1τea1τ <
b1b2 − c1c2

b1b2 + c1c2
, (1.12)

which coincides with (DD) when τ = 0. Therefore, under (DD), (1.12) gives an estimate
for the smallness of τ with which N∗ remains globally attractive for (1.10) with σ1 = σ2.

Observe that if the capture rate c1 = 0, the prey species again is governed by (1.3).
As mentioned before, when a1τ1 � 3

2 , every positive solution N1(t) of (1.3) tends to
N∗

1 = a1/b1, and thus the equation for N2 in (1.1) can be considered as an asymptotically
autonomous equation with the limiting equation

Ṅ2(t) = N2(t)[a − b2N2(t − τ2)], (1.13)

where a = −a2 +(c2a1)/b1 > 0 under (A1). By the theory of asymptotically autonomous
systems (see, for example, [2]) and Wright’s criterion, one knows that the N2 component
of the solution of (1.1) converges to N∗

2 as t → ∞, provided that aτ2 � 3
2 , which holds

when τ2 = 0.
With the above observation in mind, we feel that Theorems 1.1–1.3 are not satisfactory

at least in the following sense. The restrictions (1.6) and (1.7) in Theorem 1.1 and (1.11)
in Theorem 1.3 for smallness of delays do not reduce to Wright’s 3/2 criterion when the
system (1.1) is decoupled by letting c1 = 0. Moreover, Theorem 1.3 was only for a special
case of (1.1) (i.e. τ2 = 0 and σ1 = σ2), and even in such a special case, as observed above,
(1.12) can be improved.

Motivated by the above dissatisfaction, and encouraged by the authors’ recent work
[27, 29], where 3/2-type criteria were obtained for the delayed competitive system of
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Lotka–Volterra type without instantaneous negative feedback, we will establish some
criteria of 3/2 type for the global attractivity of the positive equilibrium N∗. Note that,
owing to the lack of instantaneous negative feedback, the global attractivity of systems
‘without instantaneous negative feedback’ (or ‘of pure-delay type’) becomes much more
difficult and has been studied by Gopalsamy [3], Gopalsamy and He [5], He [6–8], Kuang
[12,13], Kuang and Smith [14,15], Smith [19], So et al . [23] and Tang and Zou [28].
Also note that 3/2-type stability criteria for various scalar delay-differential equations
are available in [1,10–12,16–18,20–22,24–26,31–34].

The rest of the paper is organized as follows. In § 2, we give the main results. In § 3,
we establish some preliminary lemmas, which address the persistence and dissipativity
of system (1.8) and therefore, are of some interest and importance themselves. In § 4, by
combing these lemmas with the ‘sandwiching’ technique and using some subtle techniques
of integration and inequality, we give the proofs of the main theorems.

2. Main results

Theorem 2.1. Assume that (A1) and (DD) hold, and that

b1(a1b2 + a2c1)τ � 3
2 (b1b2 − c1c2) +

c1c2(b1b2 − c1c2)
2(b1b2 + c1c2)

. (2.1)

Then the positive equilibrium N∗ = (N∗
1 , N∗

2 ) of (1.10) is a global attractor.

It is easily seen that, by letting c1 = 0, Theorem 2.1 reproduces Wright’s 3/2 result for
the autonomous delayed logistic equation (1.3). Note that the above 3/2-type condition
(2.1) is established for (1.10), where only one diagonal delay is present. In the case when
both diagonal delays are present, i.e. system (1.1), we are unable to obtain a similar
result by our method. The main difficulty is that in the case τ2 �= 0 we cannot determine
the two important inequalities (4.6) and (4.7) from (4.4), but these play a key role in
the proof of Theorem 2.1. However, the following theorem allows small τ2 > 0, which is
along the lines of Theorem 1.2.

Theorem 2.2. Let

M1 =
a1

b1
exp(a1τ1 + e−a1τ1 − 1), (2.2)

M2 =
−a2 + c2M1

b2
exp[(−a2 + c2M1)τ2 + e−(−a2+c2M1)τ2 − 1], (2.3)

and

Bi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[2 − (Mibiτi)2]
[2 + (Mibiτi)2]

if Mibiτi � 1,

[3 − 2(Mibiτi)]
[1 + 2(Mibiτi)]

if Mibiτi > 1
(2.4)

for i = 1, 2. Assume that (A1) and (DD) hold, and that
c1c2

b1b2
< B1B2. (2.5)

Then the positive equilibrium N∗ for (1.1) is a global attractor.
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When τ2 = 0, B2 = 1, and we thereby have the following result for (1.10).

Corollary 2.3. Assume that (A1) and (DD) hold and that

c1c2

b1b2
<

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[2 − (τM1b1)2]
[2 + (τM1b1)2]

if τM1b1 � 1,

[3 − 2(τM1b1)]
[1 + 2(τM1b1)]

if τM1b1 > 1,

(2.6)

where M1 is defined by (2.2). Then the positive equilibrium N∗ for (1.10) is a global
attractor.

Remark 2.4. In view of the proof of [7, Theorem 1.1], if the M1 and M2 in (1.6)
and (1.7) are replaced by (2.2) and (2.3), respectively, the conclusion in Theorem 1.1 still
holds.

Remark 2.5. Theorems 2.2 and 1.1 are complementary. In Theorem 1.1, the condition
(DD) on the coefficients of (1.1) is not needed, but the restrictions on the off-diagonal
delays are added, whereas Theorem 2.2 is contrary to Theorem 1.1.

Remark 2.6. When τ1 = τ2 = 0, B1 = B2 = 0 and (2.5) reduces to (DD). Thus, in
such a special case of n = 2 and in the predator–prey context, Theorem 1.2 is slightly
less restrictive than Theorem 2.2, with the difference being between the use of ‘non-
negative’ and ‘positive’ for the term b1b2 − c1c2. However, as stated in the title and
in § 1, dealing with positive diagonal delays τ1 and τ2 is the primary goal of this work,
which Theorem 1.2 fails to acheive.

Remark 2.7. In condition (2.6),

τM1b1 = a1τ exp(a1τ + e−a1τ − 1) < a1τe(a1τ)2/2.

Hence, condition (2.6) improves on (1.11) greatly.

3. Preliminary lemmas

In this section, we give some lemmas which will be used in § 4 in the proofs of the main
theorems. The first one is from [29].

Lemma 3.1. Let a > 0 and 0 < µ < 1. Then the system of inequalities

y � (a + µx) exp
[
1 − µ

a
x − (1 − µ)2(1 + 2µ)

6a2(1 + µ)
x2

]
− a,

x � a − (a − µy) exp
[

− 1 − µ

a
y − (1 − µ)2(1 + 2µ)

6a2(1 + µ)
y2

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.1)

has a unique solution: (x, y) = (0, 0) in the region D = {(x, y) : 0 � x < a, 0 � y < a/µ}.
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Lemma 3.2. Assume that (A1) holds and let (N1(t), N2(t)) be the solution of (1.1)
and (1.2). Then eventually

0 < Ni(t) � Mi, i = 1, 2, (3.2)

where M1 and M2 are defined by (2.2) and (2.3), respectively.

Proof. From (1.1) and (1.2), it is easy to see that Ni(t) > 0 for t � 0 and i = 1, 2.
Hence,

Ṅ1(t) � N1(t)[a1 − b1N1(t − τ1)] � a1N1(t), t � 0. (3.3)

If N1(t) � a1/b1 eventually, then the first inequality in (3.2) holds naturally for large t and
i = 1. If N1(t) � a1/b1 eventually, then it follows from (3.3) that limt→∞ N1(t) = a1/b1,
and so (3.2) holds for large t and i = 1. In what follows, we consider only the case
when N1(t) oscillates on a1/b1. Let t∗ be an arbitrary local left maximum point of N1(t)
such that N1(t∗) > a1/b1. Then Ṅ1(t∗) � 0, and it follows from (3.3) that there exists
ξ ∈ [t∗ − τ1, t

∗] such that N1(ξ) = a1/b1. For t ∈ [ξ, t∗], integrating (3.3) from t− τ1 to ξ,
we get

− ln
N1(t − τ1)

N1(ξ)
� a1(ξ + τ1 − t), ξ � t � t∗.

Thus,

N1(t − τ1) � a1

b1
exp[−a1(ξ + τ1 − t)], ξ � t � t∗.

Substituting this into the first inequality in (3.3), we obtain

Ṅ1(t)
N1(t)

� a1{1 − exp[−a1(ξ + τ1 − t)]}, ξ � t � t∗. (3.4)

Integrating (3.4) from ξ to t∗, we have

ln
b1N1(t∗)

a1
� a1

∫ t∗

ξ

{1 − exp[−a1(ξ + τ1 − t)]} dt

= a1(t∗ − ξ) + e−a1τ1 − exp[−a1(ξ + τ1 − t∗)]

= a1(t∗ − ξ) − exp[−a1(ξ + τ1 − t∗)] + e−a1τ1

� a1τ1 − 1 + e−a1τ1 .

Here we have used the fact that the function f(x) = x − ex−aτ1 is increasing in the
interval [0, aτ1] and hence f(x) � f(aτ1) = aτ1 − 1 for x ∈ [0, aτ1]. The above inequality
implies that

N1(t∗) � a1

b1
exp(a1τ1 + e−a1τ1 − 1).

It follows that, for large t,

N1(t) � a1

b1
exp(a1τ1 + e−a1τ1 − 1) = M1.
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Choose T > 0 such that N1(t) � M1 for t � T . Then from (1.1), we have

Ṅ2(t) � N2(t)[−a2 + c2M1 − b2N2(t − τ2)], t � T + ∆. (3.5)

Note that

c2M1 − a2 = c2
a1

b1
exp(a1τ1 + e−a1τ1 − 1) − a2 >

a1c2 − a2b1

b1
> 0.

Hence, similarly, from (3.5) we eventually have

N2(t) � −a2 + c2M1

b2
exp[(−a2 + c2M1)τ2 + exp(−(−a2 + c2M1)τ2) − 1] = M2.

The proof is complete. �

The following lemma is a corollary of [30, Theorem 2.1].

Lemma 3.3. Assume that (A1) holds and let (N1(t), N2(t)) be the solution of (1.1)
and (1.2). Then

0 < lim inf
t→∞

Ni(t) � lim sup
t→∞

Ni(t) < ∞, i = 1, 2. (3.6)

4. Proofs of the main results

Proof of Theorem 2.1. By the transformation

xi(t) = Ni(t) − N∗
i , i = 1, 2,

system (1.10) becomes

ẋ1(t) = (N∗
1 + x1(t))[−b1x1(t − τ) − c1x2(t − σ1)],

ẋ2(t) = (N∗
2 + x2(t))[c2x1(t − σ2) − b2x2(t)].

}
(4.1)

Clearly, the global attractivity of N∗ of system (1.10) is equivalent to that of (0, 0)
for (4.1), meaning that

lim
t→∞

xi(t) = 0, i = 1, 2, (4.2)

for all solutions x(t) = (x1(t), x2(t)) with x1(t) > −N∗
1 and x2(t) > −N∗

2 for t � 0. We
have two cases to consider in order to prove (4.2).

Case 1. b1x1(t − τ) + c1x2(t − σ1) or c2x1(t − σ2) − b2x2(t) is non-oscillatory. It is
harmless to assume that b1x1(t− τ)+ c1x2(t−σ1) is non-oscillatory. Then, ẋ1(t) is sign-
definite eventually, which implies that x1(t) is monotonous eventually. By Lemma 3.3, we
have x1(t) → α1 as t → ∞ and N∗

1 +α1 > 0. On the other hand, using the boundedness of
x1(t) and x2(t), we can conclude from (4.1) that both ẋ1(t) and ẋ2(t) are also bounded on
[0,∞), which implies that x1(t) and x2(t) are uniformly continuous on [0,∞). It follows
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immediately that ẋ1(t) and ẋ2(t) are also uniformly continuous on [0,∞). Therefore,
by [4, Lemma 1.2.3], ẋ1(t) → 0 as t → ∞. Hence, from (4.1), we obtain

b1α1 + c1x2(t − σ1) → 0 as t → ∞,

which implies that the limit α2 = limt→∞ x2(t) exists. Analogously to the above proof,
we have ẋ2(t) → 0 as t → ∞. Hence, from (4.1) and Lemma 3.3, we have

b1α1 + c1α2 = 0, c2α1 − b2α2 = 0,

which imply that α1 = α2 = 0, i.e. (4.2) holds.

Case 2. Both b1x1(t − τ) + c1x2(t − σ1) and c2x1(t − σ2) − b2x2(t) are oscillatory.
Then there exist two infinity sequences {sn} and {tn} such that

b1x1(sn − τ) + c1x2(sn − σ1) = 0, c2x1(tn − σ2) − b2x2(tn) = 0, n = 1, 2, . . . , (4.3)

x2(t2n−1) � x2(t) � x2(t2n) for t2n−1 � t � t2n, n = 1, 2, . . . , (4.4)

and
lim inf
n→∞

x2(t2n−1) = lim inf
t→∞

x2(t) � lim sup
t→∞

x2(t) = lim sup
n→∞

x2(t2n). (4.5)

Set
−v = lim inf

t→∞
x1(t) and u = lim sup

t→∞
x1(t).

Then from (4.3)–(4.5), we have

lim sup
t→∞

x2(t) = lim sup
n→∞

x(t2n) =
c2

b2
lim sup

n→∞
x1(t2n − σ2) � c2

b2
u (4.6)

and

lim inf
t→∞

x2(t) = lim inf
n→∞

x(t2n−1) =
c2

b2
lim inf
n→∞

x1(t2n−1 − σ2) � −c2

b2
v. (4.7)

Hence,

0 = lim
n→∞

[b1x1(sn − τ) + c1x2(sn − σ1)] � b1u + c1 lim sup
t→∞

x2(t) �
(

b1 +
c1c2

b2

)
u

and

0 = lim
n→∞

[b1x1(sn − τ) + c1x2(sn − σ1)] � −b1v + c1 lim inf
t→∞

x2(t) � −
(

b1 +
c1c2

b2

)
v.

Thus, in view of Lemma 3.3 and the above results, we have

−N∗
1 < −v � 0 � u < ∞. (4.8)

Set µ = c1c2/b1b2. Then 0 < µ < 1. In what follows, we show that v and u satisfy the
inequalities

N∗
1 + u � (N∗

1 + µv) exp
[
1 − µ

N∗
1

v − (1 − µ)2(1 + 2µ)
6N∗

1
2(1 + µ)

v2
]

(4.9)
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and

N∗
1 − v � (N∗

1 − µu) exp
[

− 1 − µ

N∗
1

u − (1 − µ)2(1 + 2µ)
6N∗

1
2(1 + µ)

u2
]
. (4.10)

For the sake of simplicity, we set

A =
3(1 − µ)

2N∗
1 (1 + µ)

+
µ(1 − µ)

N∗
1 (1 + µ)2

=
(1 − µ)(3 + 5µ)
2N∗

1 (1 + µ)2
.

Then (2.1) implies b1τ � A. Let ε > 0 be sufficiently small such that v1 ≡ v + ε < N∗
1 .

Choose T > 0 such that

−v1 < x1(t) < u + ε ≡ u1 and − c2

b2
v1 < x2(t) <

c2

b2
u1, t � T − ∆. (4.11)

Set v2 = (1 + µ)v1 and u2 = (1 + µ)u1. Then, from (4.1), we have

ẋ1(t)
N∗

1 + x1(t)
� b1[−x1(t − τ) + µv1] � b1v2, t � T (4.12)

and

− ẋ1(t)
N∗

1 + x1(t)
� b1[x1(t − τ) + µu1] � b1u2, t � T. (4.13)

First, we prove that (4.9) holds. If u � µv, then (4.9) obviously holds. Therefore, we will
prove (4.9) only in the case when u > µv. For simplicity, it is harmless to assume that
u > µv1. Thus, we cannot have x1(t) � µv1 eventually. On the other hand, if x1(t) � µv1

eventually, then it follows from the first inequality in (4.12) that x1(t) is non-increasing
and that u = limt→∞ x1(t) = µv1. This is also impossible. Therefore, it follows that x1(t)
oscillates about µv1.

Let {pn} be an increasing sequence such that pn � T + ∆, ẋ1(pn) = 0, x1(pn) � µv1,
limn→∞ pn = ∞ and limn→∞ x1(pn) = u. By (4.12), there exists ξn ∈ [pn − τ, pn] such
that x1(ξn) = µv1. For t ∈ [ξn, pn], integrating (4.12) from t − τ to ξn we get

− ln
N∗

1 + x1(t − τ)
N∗

1 + x1(ξn)
� b1v2(ξn + τ − t), ξn � t � pn.

Thus,

x1(t − τ) � −N∗
1 + (N∗

1 + µv1) exp[−b1v2(ξn + τ − t)], ξn � t � pn.

Substituting this into the first inequality in (4.12), we obtain

ẋ1(t)
N∗

1 + x1(t)
� (N∗

1 + µv1)b1[1 − exp(−b1v2(ξn + τ − t))], ξn � t � pn.

Combining this with (4.12), we have

ẋ1(t)
N∗

1 + x1(t)
� min{b1v2, (N∗

1 +µv1)b1[1−exp(−b1v2(ξn+τ−t))]}, ξn � t � pn. (4.14)

Analogously to the proof in [29], we can prove (4.9) by (4.14) and the fact that b1τ � A.
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Next, we will prove that (4.10) holds as well. If v = 0, then (4.10) holds naturally. In
what follows, we assume that v > 0. Then, from (4.9), we have

u < N∗
1 (1 + µ)e1−µ − N∗

1 < 2N∗
1 ,

µu < µ

[
(N∗

1 + µv) exp
(

(1 − µ)v
N∗

1

)
− N∗

1

]
< v < N∗

1 .

⎫⎪⎬
⎪⎭ (4.15)

Thus we may assume, without loss of generality, that v > µu1. In view of this and (4.13),
we can show that neither x1(t) � −µu1 eventually nor x1(t) � −µu1 eventually. There-
fore, x1(t) oscillates about −µu1.

Let {qn} be an increasing sequence such that qn � T +∆, ẋ1(qn) = 0, x1(qn) � −µu1,
limn→∞ qn = ∞ and limn→∞ x1(qn) = −v. By (4.13), there exists ηn ∈ [qn − τ, qn] such
that x1(ηn) = −µu1. For t ∈ [ηn, qn], by (4.13), we have

x1(t − τ) � (N∗
1 − µu1) exp[b1u2(ηn + τ − t)] − N∗

1 , ηn � t � qn.

Substituting this into the first inequality in (4.13), we obtain

− ẋ1(t)
N∗

1 + x1(t)
� (N∗

1 − µu1)b1[exp(b1u2(ηn + τ − t)) − 1], ηn � t � qn.

Combining this with (4.13), we have

− ẋ1(t)
N∗

1 + x1(t)
� min{b1u2, (N∗

1 −µu1)b1[exp(b1u2(ηn+τ−t))−1]}, ηn � t � qn. (4.16)

Analogously to the proof in [29], we can prove (4.10) by (4.16) and the fact that b1τ � A.
In view of Lemma 3.1, it follows from (4.9) and (4.10) that u = v = 0. Thus, (4.2) holds.
The proof is complete. �

Proof of Theorem 2.2. By the transformation

xi(t) = Ni(t) − N∗
i , i = 1, 2,

system (1.1) becomes

ẋ1(t) = (N∗
1 + x1(t))[−b1x1(t − τ1) − c1x2(t − σ1)],

ẋ2(t) = (N∗
2 + x2(t))[c2x1(t − σ2) − b2x2(t − τ2)].

}
(4.17)

Let (x1(t), x2(t)) be any solution of (4.17) with N∗
i + xi(t) > 0 for t � 0 and i = 1, 2. By

Lemma 3.2, there exists T > 0 such that

N∗
i + xi(t) � Mi, t � T, i = 1, 2. (4.18)

We have two cases to consider in order to prove (4.2).

Case 1. b1x1(t − τ1) + c1x2(t − σ1) or c2x1(t − σ2) − b2x2(t − τ2) is non-oscillatory.
In this case, by a similar proof to that of case 1 in Theorem 2.1, we can show that (4.2)
holds.
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Case 2. Both b1x1(t− τ1)+ c1x2(t−σ1) and c2x1(t−σ2)− b2x2(t− τ2) are oscillatory.
Set

Ui = lim sup
t→∞

|xi(t)|, i = 1, 2.

By Lemma 3.2, 0 � Ui < ∞, i = 1, 2, . . . , n. It suffices to prove that U1 = U2 = 0. To
this end, assume that U1 > 0 and U2 > 0. Hence, by (4.17), for any given sufficiently
small ε > 0, there exist two sequences {tin}, i = 1, 2 with tin − ∆ > T such that

tin → ∞, |xi(tin)| → Ui as n → ∞, |xi(tin)| > Ui − ε,

|ẋi(tin)| = 0, |xi(t)| < Ui + ε for t � t1,

}
i = 1, 2. (4.19)

where t1 = min{ti1 : i = 1, 2}. We can assume that |xi(tin)| = xi(tin) (if necessary, we
use −xi(t) instead of xi(t) and −bi, −ci instead of bi, ci for i = 1, 2). Then, by (4.17),
we have 0 = b1x1(t1n − τ1) + c1x2(t1n − σ1), which yields

x1(t1n − τ1) � c1

b1
(U2 + ε) ≡ β1.

Set

b12 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[2 + (M1b1τ1)2]c1

[2 − (M1b1τ1)2]b1
if M1b1τ1 � 1,

[1 + 2(M1b1τ1)]c1

[3 − 2(M1b1τ1)]b1
if M1b1τ1 > 1,

and

b21 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[2 + (M2b2τ2)2]c2

[2 − (M2b2τ2)2]b2
if M2b2τ2 � 1,

[1 + 2(M2b2τ2)]c2

[3 − 2(M2b2τ2)]b2
if M2b2τ2 > 1.

Then, by (2.5), b12b21 < 1. In what follows, we show that

x1(t1n) � b12(U2 + ε) +

⎧⎪⎪⎨
⎪⎪⎩

2ε(M1b1τ1)2

[2 − (M1b1τ1)2]
if M1b1τ1 � 1,

2ε(2M1b1τ1 − 1)
3 − 2M1b1τ1

if M1b1τ1 > 1.

(4.20)

If x1(t1n) � β1, then (4.20) obviously holds. If x1(t1n) > β1, then there exists ξ1n ∈
[t1n − τ1, t1n] such that x1(ξ1n) = β1. From (4.17) we have

ẋ1(t) � (N∗
1 + x1(t))b1[−x1(t − τ1) + β1]

� M1b1[(U1 + ε) + β1], t � T2 = t1 + ∆. (4.21)

By (4.21), we have

β1 − x1(t − τ1) � M1b1[(U1 + ε) + β1](ξ1n + τ1 − t), ξ1n � t � t1n.
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Substituting this into the first inequality in (4.21), we obtain

ẋ1(t) � (M1b1)2[(U1 + ε) + β1](ξ1n + τ1 − t), ξ1n � t � t1n.

Combining this and (4.21), we have

ẋ1(t) � M1b1[(U1 + ε) + β1] min{1, M1b1(ξ1n + τ1 − t), }, ξ1n � t � t1n. (4.22)

We consider the following three subcases.

Case 2.1. M1b1τ1 � 1. In this case, by (4.23) we have

x1(t1n) − x1(ξ1n) � [(U1 + ε) + β1](M1b1)2
∫ t1n

ξ1n

(ξ1n + τ1 − t) dt

= [(U1 + ε) + β1](M1b1)2[τ1(t1n − ξ1n) − 1
2 (t1n − ξ1n)2]

� 1
2 (M1b1τ1)2[(U1 + ε) + β1]

� 1
2 (M1b1τ1)2[x1(t1n) + β1 + 2ε].

Case 2.2. M1b1τ1 > 1 and M1b1(t1n − ξ1n) � 1. In this case, by (4.23) we have

x1(t1n) − x1(ξ1n) � [(U1 + ε) + β1](M1b1)2
∫ t1n

ξ1n

(ξ1n + τ1 − t) dt

= [(U1 + ε) + β1](M1b1)2[τ1(t1n − ξ1n) − 1
2 (t1n − ξ1n)2]

� 1
2 (2M1b1τ1 − 1)[(U1 + ε) + β1]

� 1
2 (2M1b1τ1 − 1)[x1(t1n) + β1 + 2ε].

Case 2.3. M1b1τ1 > 1 and M1b1(t1n − ξ1n) > 1. In this case, let η1n ∈ [ξ1n, t1n] be
such that M1b1(t1n − η1n) = 1. Then by (4.23) we have

x1(t1n) − x1(ξ1n) � [(U1 + ε) + β1]M1b1

[
η1n − ξ1n + M1b1

∫ t1n

η1n

(ξ1n + τ1 − t) dt

]
= [(U1 + ε) + β1][(M1b1)2τ1(t1n − η1n) − 1

2 (M1b1)2(t1n − η1n)2]

= 1
2 (2M1b1τ1 − 1)[(U1 + ε) + β1]

� 1
2 (2M1b1τ1 − 1)[x1(t1n) + β1 + 2ε].

Combining Cases 2.1–2.3, we have

x1(t1n) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[2 + (M1b1τ1)2]c1

[2 − (M1b1τ1)2]b1
(U2 + ε) +

2ε(M1b1τ1)2

2 − (M1b1τ1)2
if M1b1τ1 � 1,

[1 + 2(M1b1τ1)]c1

[3 − 2(M1b1τ1)]b1
(U2 + ε) +

2ε(2M1b1τ1 − 1)
3 − 2(M1b1τ1)

if M1b1τ1 > 1.

This shows that (4.21) is true. Letting n → ∞ and ε → 0 in (4.21), we obtain

U1 � b12U2. (4.23)
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Similarly, we have
U2 � b21U1. (4.24)

By (4.23) and (4.24), we have

U1 � b12b21U1 < U1 and U2 � b12b21U2 < U2.

This is a contradiction. The proof is complete. �
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