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1. Introduction

Research on the oscillation theory of functional differential equations of
higher order has been intensive and extensive. Among the existing results,
criteria for oscillation of the solutions of a given equation have been obtained
usually by two ways: one is by the equation itself, and the other is by
comparing with some other equations. In order to find suitable equations to
be compared with, it is necessary to establish some comparison theorems.
Kartsatos and Kosmala have done much on this aspect (see, e.g. [1]-[5]). But,
to the best of the author’s knowledge, the existing comparison results have
been for the higher order equations with at most two middle terms (see
[1]-[5]). As for the equations with more than two middle terms, the methods
developed in [1]-[5] fail because the signs of the derivatives of a non-oscilla-
tory solution in such cases are not necessarily definite (in fact, they cannot
be determined for general case). The purpose of this paper is to develop a
new technique which is more normal and universal to extend the related
comparison theorems in [1]-[5] to more general equations of higher order,
ie. equations with all the middle terms. Even for the special cases of this
paper, our results improve the related ones in [1]-[5] to a large extent (see
the remarks at the end of this paper).

2. Preliminaries

Consider the equations

(1) X000 + Y p0x ) + H( x(g(0) = 0
® X0(0) + 3 pi0x () + H( x(90) = 00)

and
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3) X0(0) + 3. pi0x" ") + Hy(t, x(9, ) = )
@ X0(0) + 3 pi0x" 700 + Hylt, x(g:(0)) = 00

where n > 4 is even and
(Ay) peCR,Ri=12 ...,n
(A2) ¢, gi€ C(R, R), lim g(t) = o0, lim gi(t) = 00 i=1, 2.

t-w t—m
(A;) for i=1, 2, H, He C(R,,R, R); uH(t,u) >0, uH,(t,u) >0 for u #0;
H(t,u) and H,(t, u) are nondecreasing in u.

By a solution of (1) ((2) or (3) or (4)) we mean any function x € C"(t,, ),
which satisfies (1) ((2) or (3) or (4)) for all te[t,, ). Here t, depends on
the solution x(t). As is customary, a solution of (1) ((2) or (3) or (4)) is said
to be oscillatory if it has an unbounded set of zeros in its interval of definition
[t., o0). If every solution of (1) ((2) or (3) or (4)) is oscillatory, then Eq. (1)
((2), (3) or (4)) is said to be oscillatory.

Let L be the differential operator defined as below

%) Lx(t) = x"(1) + Zn: pH)x" (1)

In what follows we are going to find another representation for L under the

following condition:

(C) The ordinary differential equation Lx(t) =0 has fundamental solutions
x,(t), x,(), ..., x,(t) satisfying

(6) w,(t) >0 fort=ty, r=12,...,n
where
x4(t) x(0) 1  x(0)
O wo| RO %O oxo |
R e OIS0

Lemma 1. Suppose (C) holds, then L can be represented as

_ow) df wi( df df wil) d[x@)
) L"‘”“w,._l(rw(w,.(t)wn_z(r@( Ei(wz(t)wo(rm(wl(r))) ))

where w,(t) is defined by (7) for r=1, 2, ..., n and wy(t) = 1.

This is the Lemma 1 in [6]. For the sake of completeness we give the
proof below.
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Proof. Set ugy(x(t)) = x(t) and

xi(®) x0 1 x@  x(@)
O ueey=| O 20 L xO X0y,

Since w,(t) # 0 for t € [ty, 0), we conclude that
(10) U, (x(2))/w,(£) = 0

is a linear homogeneous ordinary differential equation of order n. Clearly
x1(0), x,(t), ..., x,(t) are also fundamental solutions of Eq. (10), and the
coefficients of x™(¢) both in Eq. (10) and equation Lx(t) = 0 are 1. According
to the theory of ordinary differential equations we know that

(11) Lx(t) = uy(x(2))/w,(t)

Following the same line as in getting (11), we can easily obtain

(12) ur(x(t))wr—l(t) = url‘—l(x(t))wr(t) - ur—l(x(t))w:‘(t) r= ls 25 s, B
and therefore

u(x() _ -y (x()IW,(£) — up—y (x(0)) W, (2)

w() w(B)w, - ()

i i<u'_1(x(t))> r=1,2 n
T w0\ w0 =12 .., n

(13)

From (11) and (13), we obtain

wa(t) d (u,.—l(X(t)))

Wn—1 (t) a Wn(t)

— Wn(t) i(wn—l(t) Wn-l(t)i(un-—Z(x(t))))

Wn—l(t) dt Wn(t) Wn—Z(t) dt Wn—l(t)

(14) Lx(t) =

_ w,() d< wa i (t) d < d( wi(t) d (“o(x(t))>)__.>>
 Wast O dE\w,Ow, (O de\ dE\wa(Owo(d) de \ wy(0)
Note that uy(x(t)) = x(t), we finally get (8). The proof is then complete.

In the sequel, we always assume the condition (C) holds. For the conve-
nience of notations we set
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(15) ao(t) = 1/x,(¢)
a;(t) = w2(t)/w; 1 (Ow;_,(t) fori=1,2 ..., n—1

an(t) = Wn(t)/wn—l(t)

and denote
(16) Lox(t) = ao(t)x(?)
L;x(t) = a,-(t)%(Li_lx(t)) fori=1,2, ..., n.

Then, from Lemma 1 we conclude that L =L, and thus, Eq. (1)-(4) are
equivalent respectively to

(1y L,x(t) + H(t, x(9(1))) = 0

2y L,x(t) + H(t, x(9(1))) = Q(2)
©) L,x(0) + Hy(t, x(9:(1))) = Q()
4y L,x(t) + H,(t, x(9,(1))) = Q()

It is obvious that a,(t) is continuous and a,(t) > 0 for te[ty, ), i=0, 1, ...,
n. By virtue of [7], we can, through out this paper, always assume that

(17) flmmm=w i=1,2 ..,n—1.

Lemma 2 ([8], Lemma 2). Assume that x € D(L,), and x(t)L,x(t) <O
eventually. Then, there exist t, >0 and odd number k, 1 <k <n—1, such
that for t > t,

xOLx@®)>0 i=0, 1, .., k
(—1Yx(t)Lix(ty <0  j=k+ 1L k+2, ..., n.

3. Main results

In this section we establish four comparison theorems concerning
Eq. (1)-(4).

Theorem 1. Suppose s: [T, ©) R, — R is continuous and x € C"[T, ), R).
(i) If x(t) >0, x(t) + s(t) > 0 and

(18) L,x(t) + H(t, x(9(2)) + s(¢())) < 0

then, the equation
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(19) L,y(®) + H(t, y(g(1) + s(g(1))) = 0

has an eventually positive solution w(t).
(i) If x(t) <0, x(t)—s(t) <0 and

(20) L,x(t) + H(t, x(g9(t) — s(g(t))) = 0
then, the equation

(21) L,y(0) + H(t, y(9(t) — s(g(1))) = 0
has an eventually negative solution v(t).

Proof. Since (ii) can be obtained from (i) simply by letting u(t) = —x(z),
we need only to prove (i).

By (A;) and Lemma 2 and the conditions of this theorem, we know that
there exist t; > T and odd integer k, 1 <k <n—1 such that for t > ¢,

(22) Lx(®d>0 i=0,1,.., k
(—YLix() <0 j=k+1,...,n

As n— 1 is odd, we know from (22) that L, ,x(¢)> 0 for t > t,. Integrating
(18) from t to u (¢, <t < u) yields

u

1
(23) L,y x(u) — L, x(1) + J a—(r)H(r, x(g(r)) + s(g(r))dr <0
t n
Noting that L,_;x(u) > 0, we then have
1

a,(r)

(24) L,_ix(t) 2 J H(r, x(g(r)) + s(g(r))dr

Letting u —» oo in the above inequality, we have -

o0

(25) L,y x(t) > f H(r, x(g(r)) + s(g(r)))dr

1
ay(r)

Similarly, integrating the inequality (25) n —k — 1 times and using (22), we
obtain

© 1 © 1 ES) 1 o0
26 L > Y -
26 e(t) > sz A1 (Fp—k—1) J;"kl Ar2(Fyi—3) le ay-1(rq) J‘rl a,(r)
“H(r, x(g(r)) + s(g(r))drdry...dr,

2 G(t, x)

Now we integrate the inequality (26) k times from ¢; to ¢ >t¢, and use (22)
to obtain
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t 1 Sk $2 1
27 Lyx(t) < Lox(t,) + ——G(sy, x)ds;...ds
27) oX(t) S Lox(ty) Lal(sk)ﬁl L Gl (s1, x)ds, k

2 Lox(t,) + G(t, x)
Set
(28) wolt) =x(t) t=>1t,
W11 () = a—ol(t—)[LOx(tl) + G(t, w,,)] tzt,and m=0, 1, 2, ...
By induction we know that the sequence {w,,(t)} has the following properties:
(29) 0 < w,(®) < x(t) 12t
X(t1) < Wy 41 () < w,,(8) tz2tyand m=0, 1, 2, ...

Consequently, we can apply Lebesgue’s Monotone Convergence Theorem to
{wn(t)} to conclude that there exists a function w(t) > x(t,) >0 such that
lim w,(t) = w(t).

m—0

Letting m — oo in (28) we get

(30 w(t) = a—oG[Lox(tl) + G(t, w)] t=21

Noting the definition of G and differentiating (30) k times, we have

1
t

(31) Lw(t) = G(t, w) t>ty
By the definition of G, and again, differentiating (31) n — k times, we get
(32 Lw(t) = (=17 H(t, w(g(®) + s(g(1))  t>1,
Since n — k is odd, (32) leads to
Lw(t) + H(t, w(g(®) + s(g(®)) =0 t>1,

which means that Eq. (19) has eventually positive solution w(t). The proof
of theorem 1 is then complete.

Remark 1. From the proof of (i) part of theorem 1, we can easily see
that the eventually positive solution w(t) of Eq. (19) satisfies L;w(t) >0, i =0,
I,..., kand (— l)ijw(t) <0,j=k+1,...,n The eventually negative solution
of Eq. (21) in (ii) part of this theorem has also a similar property.

Theorem 2. Assume that s: R, — R satisfies L,s(t) = Q(t) on R, and is
such that Lys(ty—0 as t - 0. If Eq. (2) is oscillatory, then, so is Eq. (1).
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Proof. For the sake of contradiction, we assume that Eq. (1) has a
non-oscillatory solution x(t). Without loss of generality, we can assume that
x(t) is eventually positive, i.e. there exists t; > 0 such that x(t) > 0 and x(g(t)) >
0 for all t>1t,. By (1) and (A;), we thus have

L,x(t) = —H(t, x(g(t)) <0 for t = ¢, (33)

In the light of Lemma 2, we know that

(34) Lyox(t)>0 and [L0 x(tY] = (t) L, x(t)>0 for t 2 ¢,
. 1

Because Los(t) >0 as t— oo, there exists ¢, > ¢; for given positive number

£ < ELOX(tl) such that

(35) |Los(t)] < ¢ fort>1t,

In terms of (34), we have

(36) Lox(t) = Lox(t,) = Lox(t,) > 2¢ fort=1t,

We note from (A,) that exists t; = ¢, such that g(r)>t, for t = ¢;. So, if

we set u(t) = x(t) + s(z), then

1
(37) u(g() — s(g(0)) = ———=[Low(g(t)) — Los(9(1))]

ao(g(t))
oy Lota) =]
ao( ([))[ ox(g(t)) —2e] >0  for t>14
Adding L,s(t) = Q(t) to (1), we get
(38) Lyu(t) + H(t, u(g(t)) — s(g(1)) = Q@)
Now we combine (37) and (A;) with (38) to obtain
39) Lu(t) + H<t, u(g(r)) — m) < Q) for t =t

On the other hand, we clearly have L, (ai(t)> =0. We now set v(t) = u(t) —
0

&
s(t)y — m, then

(40) L,v(0) + H(t, v(g(0) + s(9())) <0 for > 1,



52 Xingfu Zou

where
(1) vm=u@—un-£5
= x(t) a_o%
= aol(t)[Lox(t) —e]>0 fort>t,
and
42) o) + 50 =) = s
=£6uwm—ﬂ
> aol(t)[Lox(t) —2]>0 for t>1t,

By theorem ! and remark 1, we know that there exist eventually positive
function w(t) and odd integer k, 1 <k < n — 1, such that

(43) L,w(t) + H(t, w(g(t)) + s(g(1))) =0
and
44) Lw()>0 i=01, ..., k.

Adding L,s(t) = Q(t) to (43), we get

(45) L,[w() + s(t)] + H(z, w(g(®) + s(g(1))) = Q(t)
In vertue of (44) and lim Lys(t) = 0, we can easily conclude that w(t) + s(t) is

eventually positive. So, Eq. (2) has an eventually positive solution w(t) + s(t).
This is a contradiction to the assumption that Eq. (2) is oscillatory. The
proof is then complete.

The next theorem is a reverse of theorem 2.

Theorem 3. Assume that the conditions in theorem 2 hold. If s(t) in the
conditions is oscillatory, then, the oscillation of Eq. (1) implies the oscillation

of Eq. (2).

Proof. For the sake of contradiction, we assume that Eq. (2) is not
oscillatory. Without loss of generality, we assume that Eq. (2) has an eventu-
ally positive solution x(¢). By (A,), we see that there exists ¢, > 0 such that



Higher Order Functional Differential Equations 53

x(t) > 0 and x(g(2)) > 0 for ¢t > t,. Set u(t) = x(t) — s(t) and subtract L,s(t) =
Q(t) from Eq. (2), then we get

(46) L,u(t) = —H(t, u(9(1)) + s(9(2)))
= —H(t, x(g(t))) <0 fort>t

Using (17) and reviewing the proof of Lemma 2, we can similarly conclude'
that there exist t, > t, and odd integer k, 1 < k < n — 1, such that for t >

(47) Lu(®)>0 i=12 .., k
(—1YLu@®) <0 j=k+1, ..., n

Therefore,

(48) %[Lou(t)] ut)>0 for t>t,

a(t) !
which implies that lim Lyu(t) = u, exists.
t—= o0

We consider the following two cases:

Case 1. uy,<0. From (48), we would have Lyu(t) <0, and thus, 0 <
Lox(t) = Lou(t) + Los(t) < Los(t) which is a contradiction to the assumption
that s(t) is oscillatory.

Case 2. uy>0. There would be, in this case, t; > t, such that u, >
Lou(t) > Lou(ty) >0 for t >t;. Let ¢ be a positive number such that ¢ <
Lou(t;). Since lim Lys(f) = 0 and lim g(¢) = oo, there would exist ¢, > t3 such

t— 0 t—oo

that g(¢) = t; and |Lys(g(t))| <e for t > ¢t,. Consequently

@) u(g) + s(gv) = ( oy LLou(a(0) + Los(a()]
0
> [Lou(g) — ]
PROT)
&
= w0 = 2 o)

[Lou(ts) —e] >0  for t>1t,

>_ 1
ao(g(?))
Combining (49) and (A;) with (46), we obtain

<0 for t =1,

(50) L,u@) + H <t, u(g(®)) — @) <
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¢ L LA 0, it follows from (50) that

Set v@) =u®) =y AS L5

(51) L,v(t) + H(t,v(g®))) <0 for t =1,
where o(t) = u(t) — @ = ol(t)[Lou(t) —&] > aol(t)[Lou(t3) —¢&]>0for t=1,.

It turns out from theorem 1 that Eq. (1) would have an eventually positive
solution which contradicts the assumption that Eq. (1) is oscillatory.
The proof is completed.

Corollary. Let the hypotheses of theorem 3 hold. Then, Eq. (1) oscillates
if and only if Eq. (2) oscillates.
The following is a comparison theorem concerning Eq. (3) and Eq. (4).

Theorem 4. Let the hypotheses of theorem 3 hold. Furthermore, in addi-
tion to (A,) and (A3), we assume g; and H; (i = 1, 2) satisfy
(Ag) 9:() < ga() 120
(As) u(Hy(t,u)— H(t,u))=0 for u#0
and ay(t) is nonincreasing. Then, if Eq. (3) is oscillatory, then so is Eq. (4).

Proof. Assume, for the sake of contradiction, that Eq. (4) has a non-
oscillatory solution x(t). Without loss of generality, we assume x(t) is eventu-
ally positive, i.e. there exists ¢; > 0 such that x(t) > 0 and x(g(t)) > 0 for t > t;.
Set u(t) = x(t) — s(¢), then

(52) L,u(t) + H,(t, u(g,(1)) + s(g,())) = 0
Since u(g,(t)) + s(g,(t)) = x(g,(t)) > 0 for t = t;, by (52) and (A5) we get

(53) L,u(t) + Hy(t, u(g2(1) + s(9,(1))) <0 for t>1,
Therefore
(54) Lou(t) £ —H,(t, u(g,(1)) + s(g,(0)) <0 for t =1,

From the above inequality, we claim that (as in getting (48) in the proof of
theorem 3) there exists t, >, such that

d 1
(55) 7 LLou(®] = leu(t) >0 fort>t,

and thus lim Lyu(t) = u, exists. The case uy, <0 is clearly a contradiction

t— o0
(by the same argument as in the proof of theorem 3), we need only to consider
the case uy, > 0.

From u, > 0 and (55) we know that there exist t; >t, such that u, >
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Lou(t) = Lou(t;) > 0 for t > t;. Let ¢ be a positive number such that ¢ <
Lou(t;). Since lim Lys(t) = 0 and lim g, (t) = oo, there would exist ¢, > t, such

t—o0 t—= 0

that g,(t) > t; and |Lys(g,(t))| <¢ for t > t,. Therefore

1
(56) u(g,(t)) + s(g,(®) = m[Lou(gz(t)) + Los(g,(0)]
1
iy Loas(®) = ]
S
1
m[Lou(ta) —¢e]>0 for t =1,

In the light of (56), (A;) and (53) we obtain

<0 fort=t,

5 Lnu(t)+H1<t, u(gz(t»—m)

Observe that

(58)  ulg,(1) — [Lou(g2(1) — €]

€
ao(gz(t)) ao(gz(t))

Z (gl(t))[ ot(g2()) — €]
(gl(t))[ ot(g:()) — €] >0 for t =1,
Let o(t) = u(t) — aTg(B’ then it follows that
(59 Lyo() + Hy(t,v(g,()) <0 for t =1,

By theorem 1 for the case s(t) =0, we conclude that there exists a positive
function w(t) on [t,, o) such that

(60) L,w(t) + H,(t, w(g,(1))) =0

It turns out (by theorem 2) that Eq. (3) would be non-oscillatory. This is a
contradiction. The proof is then completed.

Remark 2. In the above theorems, we do not require that g(t) <t which
has been assumed in [1]-[5]. This means that our results are applicable to
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the equations of not only retarded type, but also advanced and even mixed
type.

Remark 3. For the special case pi(t}=0 for i=1, 2, ..., n and g,(¢) =
g,(t), theorem 4 leads to ([1], theorem 2.1) and ([2], theorem for n even),
and theorem 3 leads to ([1], theorem 3.4).

Remark 4. For the case p;(t)=0 for i=2, 3, ..., n and p,(¢t) #0, our
theorem 3 and theorem 2 lead to ([3], theorem 4.1 and corollary 4.2) and
([4], theorem 3.2 and theorem 3.6) respectively. We note that in [3] and
[4], it has been required that p, € C[tq, o0) and

t u
(61) lim j exp |:—'[ pl(s)ds]du = 00
120 Jrg to

But here in this paper, in order that the condition (C) be satisfied we need
only to assume p; € C[ty, o) (see [6]). So the assumption (61) in [3] and
[4] is indeed unnecessary. Besides, our theorem 1 implies that the condition
lim s(t) =0 in ([4], theorem 3.2) can also be removed.

t— o0

Remark 5. For the case p(t)=0 for i=3, 4, ..., n, Eq. ()-Eq. (4)
reduces to the equations studied in [5] and our results (theorem 1, corollary
and theorem 4) lead to ([5], theorem 4.1, theorem 4.2 and theorem 4.4) respec-
tively. Note that in [5], p,(t) and p,(t) have been assumed to satisfy the
following conditions:

(1) p,(®<0, p,(t) =0, p,(t) is differentiable and p,(t) — p1(t) <O

(ii) For any given ¢, >0, k>0 and MeR

(62) lim JI exp [—fpl(u)du][r H(u + k)du — Mst = 4w

(i) the equation
(63) u +p,u + p,(u=0

is disconjugate on R, (for the definition of ‘disconjugate’, see [5]).

It is not difficult to verify that in order that the condition (C) in this paper
be satisfied, we need only to assume that Eq. (63) is disconjugate. This shows
that the conditions (i) and (ii) in ([5], theorem 4.1, theorem 4.2 and theorem
4.4) can be removed.

From the above remarks we see that this paper not only extends the
related comparison theorems in [1]-[5] to more general equations, but also
improves even for the special cases of this paper, the results in [1]-[5] to a
large extent. In addition, the method in this paper is more normal, more
general and more universal than that used in [1]-[5].
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