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Abstract. Global exponential stability for a class of delay difference
equations is obtained in this paper via constructing a discrete Liapunov
functional. Applications to some discrete-time neural networks with
delays show that our results improve some existing ones.

1 Introduction

In this paper, we shall study the exponential stability of the following system
'f'ij

z;(n +1) = a;(zi(n)) + sz’jgj(xj(n)) + Z bijfj(z kij(p)z;(n —p)), (1.1)
j=1 Jj=1 p=1

where n = 0,1,---, r;; are positive integers, a;(0) = 0, g;(0) = 0, and f;(0) =0
and i = 1,2,--- ,m. When it comes to neural network models, in (1.1), m > 2
denotes the number of neurons in the network; x; describes the activation of the
ith neuron; the m x m connection matrices W = (w;;) and B = (b;;) tell how
the neurons are connected in the network at present states and the past states,
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respectively; the activation functions g;, f;,7 = 1,2,--- ,m show how the neurons
react to one another. It is seen that the discrete kernels k;; in (1.1) show the
neurons states depend on some kind of average over periods of past time.

Clearly, if one assumes B = 0, a;(z) = —a;z, for ¢ = 1,--- ,m, then (1.1)
reduces to

zi(n+1) = —a;z;(n) + Z wi;g;(zj(n)), (1.2)

which represents a discrete-time neural network model whose global asymptotic
stability was investigated in [10] via Liapunov function method. The following
special form of (1.1)

zi(n +1) = (1 — ah)zi(n) + i hwijg;(z;(n)), (1.3)

=1

is the discrete analog of the Hopfield neural network model

m
#i(t) = —az;(t) + Zwijgj(ﬂfj);i =1--,m. (L.4)
Jj=1

In fact, (1.3) can be obtained via Euler method with the uniform step size h. Using
a different way, Mohamad and Gopalsamy [13] obtained another discrete version
for (1.4), which is described by

, 1—e @l O .
zi(n +1) = e %hg;(n) + — Zwijgj(xj(n)),z =1,2,....,m (1.5)
K ]:1

For the continuous time Hopfield neural network (1.4), there have been a large
number of papers addressing its dynamics and applications in literature since it
was proposed by Hopfield in 1984 [7]. For example, stability and instability were
discussed in [6], [13], [23]; applications to solve optimization problems such as
linear and quadratic programming problems, variational inequalities, can be found
in [21] and [22]. There have been lots of evidences showing that time delays should
be taken into consideration when modelling the neural networks (for details, see
the recent book, [19]). With appearance of time delays, much more complicated
dynamic behavior may occur in the delayed neural networks. For impact of delays
on neural dynamics, we refer to [1], [14] and the references therein. For studies
on stability and applications of delayed Hopfield neural networks, we refer to [2],
[5], [12], [15], [16], [17], [18] and [20]. However, for discrete-time neural networks,
the results on stability and its applications are much less than that of continuous
time neural networks (see, [8], [9], [10] and [11]). Especially, for the models with
delays, the results are scarce (for references, see, [13]). The aim of this paper is
to investigate the global exponential stability (GES) of system (1.1) and apply our
results to some discrete-time neural networks. As we shall see, by using Liapunov
function method, we can obtain a GES result which improved the known results in
the literature.

The rest of the paper is organized as follows. In Section 2 we introduce our
basic notations and assumptions. Section 3 is devoted to the globally exponential
stability results and the proofs for (1.1). Applications and numerical simulations
are given in Section 4.
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2 Preliminaries

In this paper, we use the following notations: N(a) = {a,a+1,---,}; ZT =
N(0); N(a,b) = {a,a+1,--- ,b—1,b}; p(W): the spectrum radius of the matrix
W; WT: the transpose of the matrix W and |W/| = (Jw;;|). The initial conditions
associated with (1.1) are of the form

:Ez(S) :¢i(8)a Z:N(lam)a s EN(_kaO) (21)
where k = max{r;;,i,j € N(1,m)}. We are now ready to give some assumptions.
(Hy) For each i € N(1,m), a; is globally Lipschitz continuous with
sup |ai(u) — a;(v)| <
u,VER , u#v |U - U|

(H2) For each i € N(1,m), g;, fi : R = R are globally Lipschitz continuous with
S 0 e R Y B 0 B
u, VER ,u#v |’LL - Ul u, VER , u#v |U - 'U|

(H3) The discrete kernels k;; are nonnegative and bounded with

Tij

Z kij(p) = Kij-
p=1

3 Exponential stability for (1.1)

The following is the main result.

Theorem 3.1 Suppose that (Hy1) — (H3) hold. If there exist positive real num-
bers qi, i € N(1,m) such that

ai+ B Y g5 wiil + 1Y qiq;  bjilkgi < 1, i € N(1,m), (3.1)
j=1 j=1
then the trivial solution of (1.1) is globally exponentially stable in the sense that the
following inequality holds:

Zm(nnsc(%) ieggfcm){ sup )|¢i<s)|} (3.2)

SEN(—k,0
where C' > 0 and v* > 1 will be specified below.
Proof Combining (H;) with (Hz), we have

lzi(n + 1)| < ajlzi(n)] + Z lwij|Bjlzj(n)| + Z <|bij|lj > kij(p)|z;(n —P)|> -
” ” . (3.3)
Let

Tji

m m
pi(y) =1—aiy =B Y a5q; "ywjil =1 Y a5q; bial D k()P (3.4)
j=1 j=1 p—1

for i € N(1,m). By virtue of (3.1), we see that for each i € N(1,m), u;(1) > 0 and
as a function of v, p;(y) is decreasing, hence there is a v; > 1 such that u;(y) > 0
for v € (1,;]- Let

~* =min{v;,i € N(1,m)}. (3.5)
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Then, for i € N(1,m), p;(y*) > 0. Letting

|zs(n)] = ¢;* (v*) "yi(n), (3.6)

and using (3.3), we can obtain

m
yiln+1) < eilyi(n) + ZW*ﬁjqz'qj_1|wz'j|yj(n)

Define V(n)

Vin)

m

-

=1

j=1

+Z<quq, |sz|2 )Pk (p)ys(n — p))

=V(y)(n) by

{Z/i(n) + Z Ibijligiq; [Z P i ( i yi(s ] } (3.7)

p=1 s=n—p

We can estimate AV (n) along the solution of (1.1) as below:

AV (n)

VA

IA

IA

Vin+1)—-V(n)

{Ayz Y+ A yla;! liw*)”“kij(p) ) w(s)”

j=1 p=1 s=n—

{yz(n+1 +Z|bz]|l]qzq3

S () ks () w5 (m) — s — p))}

> [(7 a; — 1)yi(n +Zv Bi@id; " lwijly;(n)

i=1 j=1

+ Zlﬂzq] |bij| Z ki (p) (v )P (")]
- Z (Y )yi(

- min {u(y Zyz

iEN(1,m)

0.
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Therefore, the nonnegative function V' (y)(n) is decreasing in n, then we have

V(y)(n)
< V(y)0)
= Z (yz + Z|b1]|qulq] ikm(p p+1 _Z yj(3)>

INgE

(1+Z|bu|l]l]lq] 12]@” p+1>  max { sup yi(s)}

iEN(1,m) | seN(—k,0)

:= (Cp max sup i(8) ¢ .
i€EN(1,m) {seN(k,O) il )}

It follows from (3.6) that
max su i(s = max sup |gi(7v")’x;i(s
i€N(1,m) {seN(—pk,O)y ( )} i€N(1,m) {seN(—k,O)l ) eil )|}

< max 5 su ilS .
T ieN(1,m) {q seN(—pk,O) |¢ ( )l}

Thus, we have

Zyi(n) < V(n) < Co max {qi sup |¢z~(8)l}-

i€N(1,m) s€N(—k,0)

Put
max{g;,i € N(1,m)}

= . 3.8
C=Co min{g;,i € N(1,m)} (38)
Then, using (3.6), we finally obtain
m 1 n
z;(n)| <C{— max sup  |oi(s)| ¢ -
i;' () (7*> iEN(1,m) {seN(—k,o) i )l}
This completes the proof. O

If we denote A = diag(a1, a2, -+ ,am), W = (wij), A = diag(B1, P2, , Bm)s
B = (bij), B = (bijkij) and L = diag(ly,l3,-- - ,1,n). Then we have

Corollary 3.2 Assume that (H,)— (H3) hold. If one of the following condition
holds, then (1.1) is exponentially stable.

. T
(1) the matriz <I —(A+ WA+ |B|L)) is diagonally dominant;
(2) the matriz <I —(A+ WA+ |B|L)) is diagonally dominant;
3)
p(I-(A+WiA+BIL)) <13 (3.9)
(4)
Re ()\ (1_ (A+|WIA+ |B|L))) > 0; (3.10)
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(5) there exist some real positive numbers p;,i € N(1,m) such that

o; + Zﬁjlwijlpjpi_l + Z |bij|ljpjpz~_1 <1, i€ N(l,m); (3.11)

j=1 j=1

(6) - -
ai+ Y Bilwsil + Y [bjilli <1, i € N(1,m); (3.12)

=1 =1

(7) N -
ai+2ﬁj|wij|+2|bij|lj <1, ¢ EN(l,m). (313)

j=1 j=1

Proof Note that (1) <= (3.1) <= (2) < (5). Moreover, since the matrix
A+ |W|A +|B|L is a positive matrix, from [4], we know that (2) <= (3) < (4).
Therefore, the conclusion is true if each of (1) — (5) holds. Let the positive real
numbers ¢;,p;,4 € N(1,m) be 1 in (3.1) and (3.11), respectively, we immediately
have (3.12) and (3.13). Hence the proof is completed. O

4 Applications to discrete-time neural networks

Incorporating time delays and adding a fixed input J = (Ji,--- ,Jp)? from
outside of the network into (1.2), we have the following discrete-time neural network
model with delays

wz(n + 1) = —ai:ci(n) + i bijgj(a:j (’I’L - Tz'j)) + J;. (4.1)

Here g;(0),7 € N(1,m) are not necessarily be zero. Instead, we assume that
(Hy) for each i € N(1,m), g; is bounded with |g;| < M;.
Now we first establish an existence result for the equilibrium of system (4.1).

Theorem 4.1 Assume that (Hy) and (Hy) hold. If a; # —1,i € N(1,m), then
there exists an equilibrium for system (4.1).

Proof We know that z* is an equilibrium of (4.1) if and only if

z* = (z},--- ,x},)T is a solution of the following system
—a;z; + Zbijgj(mj) + J; ==z;,i € N(1,m). (4.2)
=1

From (H,), we have

1> bijgi(zs) + Jil < [bij| M + | Ti| =: P;.
Jj=1 j=1

Consider

m
:ci:hi(:cl,a:Q,... ’mm):a-—i—l Zbijgj(xj)-i-Ji
1 j:1

for i € N(1,m). We have
P; P;

14+a;,” 1+4a;

|hi(x1,Ta, - ,xpn)| < max{ }=:D;, fori e N(1,m).
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It follows that (hy, ha,--- , hy,)T maps a bounded set D := [~Dy, D] x[—Ds, Do] x
-+ X [=Dp, Dpy] into itself. Then the existence of the equilibrium follows from the
Brouwer’s fixed point theorem (Theorem 3.2, [3]). The proof is thus completed. O

Let z* be an equilibrium of (4.1) and substitute z(n) with u(n) + z* into (4.1)
resulting

ui(n + 1) = —a;ui(n) + i bijg; (uj(n —rij)),i € N(1,m) (4.3)

where g7 (u;(n)) = g;(u;(n) + 3) — g;(27).

Note that (4.3) is a spec1al case of (1 1) with a;(z) = —a;x, W = 0,k;;(p) =
0,p € N(1,r;5 — 1),k;5(ri;) = 1 and thus a; = |a;|, ki = 1 for i,j € N(I,m
Applying Theorem 3.1 to system (4.3), we have

Theorem 4.2 Assume that (Hs) and (Hy) hold. If there exist ¢; > 0,i €
N(1,m) such that

|a;| + Z,@,|bﬂ|q] <1, forie N(1,m), (4.4)
j=1
then, for any input J, the equilibrium x* of (4.1) is globally exponentially stable in
the sense that the following inequality holds:

m 1 n
Z |z;(n) —xf| < C ( *> max sup |di(s) —z7| ¢, (4.5)
Py A iEN(L,m) | se N(—k,0)

where C' > 0 and X* > 1 can be similarly given as in Theorem 3.1.

Proof The proof can be easily completed by applying Theorem 3.1 to (4.3). O

Consequently, applying Corollary 3.2 to (4.3), we have
Corollary 4.3 Assume that (H2) and (Hy4) hold. If one of the following con-
dition is satisfied
(i) the matriz (I — (A + |BJA)T or (I — (A + |B|A)) is an M-matriz;
(ii)

p(A+|B|A) < 1; (4.6)
(iii)
Re (A (I — (A+|BJA))) > 0; (4.7)
(iv) there exist real numbers p;,i € N(1,m) such that
|az|+26]|b“| &, <1, i€ N(1,m); (4.8)
j=1
(v)
lai| + ) |bijlB; < 1, i € N(1,m); (4.9)
j=1
or
lail + > |bjilBi < 1, i € N(1,m), (4.10)
j=1

then every solution of (4.1) exponentially converges to its unique equilibrium.
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Remark 4.4 Note that Jin and Gupta [9] obtained similar results for the
global stability of the corresponding differentiable system without delays. Here we
extend their results to not necessarily differentiable delayed difference system and
indeed we can obtain global exponential stability.

As in [13], we next consider
zi(n+1) = e %" ) +i(h Zbufj zj(n)) +vi(h)Ji; (4.11)

and

zi(n+1) = e %"z;(n) + ¢i(h Zbuf] zj(n —riy)) + vi(h) s, (4.12)
7j=1
with ¢;(h) = =" for i € N(1,m),n € N(0). Let ;(n) = 9;(h)yi(n), then
(4.11) and (4.12) reduce to

yi(n+1) = e “Py;(n) + > bij f5(1h; (h)y; (n) + Ji, (4.13)
j=1
and .
yi(n+1) = e %Py;(n) + Z bij fi (i (h)y;(n —riz)) + Ji. (4.14)

Using a similar way as in the above theorem and employing Corollary 4.3, we have

Corollary 4.5 Assume that a; > 0,h > 0, f; is globally Lipschitz continuous
and bounded satisfying (Hs2) and (Hy) for each i € N(1,m). If one of the follow-
ing conditions is satisfied, then every solution of (4.11) ( or (4.12)) exponentially
converges to its unique equilibrium x*.

(I) there exist real numbers p;,i € N(1,m) such that

a;qi > le|bz'j|61j; i € N(1,m); (4.15)
j=1
or
a;q; > Zli|bji|q1'; = N(l,m); (4.16)
j=1
(II)
P (diag(alaa% T 7am) - |B|L) < 17 (417)
(II1)
a; > Y |biylly, i€ N(1,m); (4.18)
j=1
or
a; > Z |bji|li, i € N(1,m). (4.19)
j=1

Indeed, we have

o~ |zi(n) — 7] ( 1 )" |zi(s) — 27|
L A N max su — % 4.20
Z Yi(h) A* ) ieN(1,m) seN(—pk,O) ih (4.20)

i=1
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Proof The existence of equilibrium z* of (4.11) ((4.12)) is equivalent to that
of (4.13) ((4.14)), which can be similarly proved. Suppose that y* is an equilibrium
of (4.13)((4.14)). The transformation u;(n) = y;(n) — y;,i € N(1,m) leads to

wi(n+1) = e "Puy(n) + Y by £7 (1 (R)u;(n)), (4.21)

j=1
with f*(u;(n)) = filui(n) + yf) — fi(y;),i € N(1,m). The proof can be easily
completed by employing Corollary 4.3. For example, (4.16) implies

m
(1= e ") (aigi — i Y |bjilg;) > 0,
j=1
which gives
m
et (W) Y |bjilgig" < 1.
j=1

Hence the conclusion immediately follows from Corollary 4.3 and thus the proof is
complete. O

Remark 4.6 Note that condition (4.19) was derived in [13] for the global
exponential stability and which is just a special case of (4.16).

Now we are ready to give some examples to demonstrate our results.

Example 4.7 Consider

{ I (n + 1) = a1r (TL) + bllgl (ill'l (n - 7’11)) + blng(.’L‘Q (n - 7'12) + Jl (4 22)
o(n+1) = asxa(n) + bargi(z1(n —re1)) + aznga(xz2(n — rea) + Jo '
n € N(0), where g; and g» are bounded Lipschitz continuous with 8; = §» = 1.
If we let ay = —1/2,&2 = ]./2, and b11 = 1/4,b12 = 1/8,b21 = 1/4,b22 = 1/16
Then it is easy to check that
|a1| + |b11| + |b12| = 7/8 <1, |a2| + |b21| + |b22| = 13/16 < 1.

Therefore, v) in Corollary 4.3 holds and thus for any given fixed input J = (J;, J3)7,
(4.22) has a unique equilibrium which is exponentially stable independent of delays
rij, % J = 1,2. A numeric simulation is given in Fig. 1.

o+

1 O datal
+ data2

Figure 1 Numeric solutions of (4.22).
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If we let a; = ay = a,bll = b22 = 0,b12 = b21 = b,T12 = T921 with a+b < 1,
then Corollary 4.3 shows that the corresponding system has a unique equilibrium
to which every solution converges. In this case if a + b > 1, the system may admit
periodic solutions, for instance, if a = 1/4 and b = 2, g1 (z) = g2(z) = 1/2(|z + 1| —
|z —1|), there always exists a period two solution, say, {(1.6,—1.6)T,(—1.6,1.6)T}.

Example 4.8 Consider
zi(n+1) = e %z;(n)+ (1) 2321 bi;j tanh(z;(n — ri;) (4.23)
+'l:[)z(1)‘]la i=1,2,3, ne€ N(O) ‘
with
a; = 10, b11 = 02, b12 = —0.4, b13 = 14, l1 =1
as = 2.5, b1 = 0.5, by = —0.5, boz = —1.5, s =1 (4.24)
as = 3.0, b3 = —0.3, b3y = 0.6, b3z = 0.1, I3=1
In this example, as we can see,
ap = |b11| + |b21| + |b31| =1, a3 = |b13| + |b23| + |b33| = 3.0,
which shows that (4.19) does not hold, that is, the main condition in [13] can not
be satisfied and the result (Theorem 4.2, [13]) is not applicable. However, if we let
g1 =1,¢2 = 0.5 and g3 = 0.8, then
arqr =1.0> Y°_, [bj1]g; = 0.69
arge =1.25> 37, [bjalg; = 1.13 (4.25)
asqs =24 > Z?:l |bj3|qj =2.23
which shows that (4.16) holds and thus (4.23) admits a unique equilibrium z* for
any fixed input J and every solution of it exponentially converges to * independent

of choice of delays r;;,4,j € N(1,3). The corresponding numeric simulations are
given in Fig. 2.
Example 4.9 Consider a discrete-time neural network model with distributed
delays
zi(n+1) = a;zi(n) + Ele bijtanh (3,2, kij(p)z;(n — p)) (4.26)
i=1,2, ne N(0) ’
where

ao = —]_/4, b21 = 1/4’ b22 — _1/4, l2 -1 (427)

1 = 2, T2 = 4, ro1 = 5, T2 = 6 (428)

a1:1/2, b11:1/4, b12:1/8, l1:1 }

k11(1) = 0.9,  k11(2) = 0.1;

ki12(1) = 0.6, k12(2) =0.3, Fki2(3) =0.2, k12(4) =0.1;

ko1(1) = 0.5,  k21(2) =04, k21(3)=0.1, ko1 (4) =0.05, (4.29)
k21(5) = 0.05; ’
kao(1) = 0.6, kan(2) = 0.3, k2a(3) = 0.2, kna(4) = 0.2,

kao(5) = 0.1,  kaa(6) = 0.1.

It is easy to check that
K11 = ]., K12 = 12, Kol = ].]., Kog = 15,

and
a; + |b11|l€1111 + |b12|l€1212 = 7/8 <1,
a2|b21|l‘.‘,21l1 -+ |b22|l€22l2 = 9/10 < 1.
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Figure 2 Exponential stability of discrete-time neural network (4.23)

Thus, (3.11) is satisfied and Corollary 3.2 shows that all solutions of (4.26) expo-
nentially converge to zero. This conclusion is confirmed in our numerical simulation
Fig. 3.
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