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PERIODIC SOLUTIONS OF NEUTRAL FUNCTIONAL
DIFFERENTIAL EQUATIONS

LIANGLONG WANG, ZHICHENG WANG and XINGFU ZOU

Abstract

Periodic neutral functional differential equations are considered. Sufficient conditions for existence,
uniqueness and global attractivity of periodic solutions are established by combining the theory of
monotone semiflows generated by neutral functional differential equations and Krasnosel’skii’s fixed-
point theorem. These results are applied to a concrete neutral functional differential equation that can
model single-species growth, the spread of epidemics, and the dynamics of capital stocks in a periodic
environment.

1. Introduction

Existence, uniqueness and global attractivity of periodic solutions of functional
differential equations are of great interest in mathematics and its applications to
the modeling of various practical problems. There is an extensive literature related
to this topic for autonomous models (see [1, 2] and references cited therein). Since
physical environments vary, there are sufficient reasons to consider nonautonomous
functional differential equations, and in particular, periodic cases (for example
seasonal effects of weather, food supplies, and mating habits). To our knowledge,
most existing results on the existence of periodic solutions of functional differential
equations are for the retarded type, and these existence results are usually obtained
by the technique of bifurcation [6, 7], by fixed point theorems [3, 27, 28, 30], or by
degree theory [18, 19]. In general, it is more difficult to study the uniqueness or global
attractivity of the periodic solutions. The Liapunov direct method is attractive for
the general case, but it often needs more mathematical restrictions, such as diagonal
dominance [17, 29].

It should be pointed out that the monotone semiflow theory developed in recent
years plays an important role in investigation of the behavior of solutions of
dynamic systems [10, 15, 16, 20–26, 31–33]. After the fundamental work of Hirsch
[12, 13] on general monotone dynamical systems, Smith et al. [20–26] applied the
theory of general monotone semiflows to retarded functional differential equations
and partial functional differential equations. For neutral functional differential equa-
tions, Wu and his collaborators [15, 16, 31, 32] successfully constructed a partially
ordered space (Cr,6D) in which the monotone property of semiflows generated
by neutral functional differential equations could also be established, and thus the
general theory of monotone dynamical systems was also made applicable to neutral
functional differential equations.

In addition to generic convergence results, the monotone semiflow theory also
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provides a useful tool in the investigation of periodic and asymptotically periodic
solutions of dynamic systems. Tang and Kuang [27] developed a method of finding
periodic solutions of a general Lotka–Volterra type n-dimensional periodic retarded
functional differential equation

ẋi(t) = xi(t)Fi(t, x1(t), . . . , xn(t), x1(t− τ1(t)), . . . , xn(t− τn(t))), i = 1, 2, . . . , n, (1.1)

by combining the theory of monotone semiflows generated by retarded functional
differential equations with Horn’s fixed point theorem [27]. In [30], Wang, Chen
adn Lu considered periodic solutions of the general periodic retarded functional
differential equations

ẋ(t) = F(t, xt), (1.2)

and obtained results on existence, uniqueness and global attractivity of a periodic
solution of (1.2) by combining the basic theory of monotone semiflows for retarded
functional differential equations established in [24] with the Krasnosel’skii’s fixed
point theorem.

Motivated by the work of [27] and [30], we are concerned in this paper with the
general periodic neutral functional differential equations

d

dt
D(xt) = F(t, xt). (1.3)

Assuming that the generalized difference operator D :Cr −→ Rn is quasimonotone
(see below), and making use of the theory of monotone semiflow for neutral func-
tional differential equations established in [15, 16, 31, 32], we develop a technique
of a monotone and concave operator that is similar to the Poincaré mapping of
neutral functional differential equations (1.3). Then, by virtue of such an operator,
we show that under some conditions on F , system (1.3) admits a unique positive
periodic solution that attracts all solutions in C+

r,D .
This paper is organized as follows. In the next section, we present some notation

and preliminaries adopted from [32]. The main results for periodic solutions of (1.3)
are given in Section 3. The final section provides an application of our main results
to a concrete neutral functional differential equation that can model the growth of
a single species in population dynamics, the spread of epidemics, and the dynamics
of capital stocks in a periodic environment [4, 5, 16].

2. Notation and preliminaries

Let Rn+ be the subset of non-negative vectors in Rn. The partially ordered space
(Rn,6) is induced by Rn+. Given r = (r1, . . . , rn) ∈ Rn+, we define |r| = max{ri :
1 6 i 6 n}, Cr = Πn

i=1C([−ri, 0], R), C+
r = Πn

i=1C([−ri, 0], R+). Equip Cr with the
uniform convergence topology defined by the norm

‖ϕ‖Cr = max
16i6n

sup
−ri6θ60

|ϕi(θ)|, ϕ ∈ Cr.
It is obvious that Cr is a Banach space with this topology.

Suppose that D :Cr −→ Rn is a given bounded and linear operatory that is
represented as follows:

Di(ϕ) =

n∑
j=1

∫ 0

−rj
dµij(θ)ϕj(θ), ϕ ∈ Cr, 1 6 i 6 n, (2.1)
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where function µij : [−rj , 0] −→ R, 1 6 i, j 6 n, is of bounded variation on [−rj , 0].
Let

µ̄ij(θ) =

{
µij(θ) θ ∈ [−rj , 0)

µij(0
−) θ = 0,

(2.2)

Li(ϕ) =

n∑
j=1

∫ 0

−rj
dµ̄ij(θ)ϕj(θ), φ ∈ Cr, 1 6 i 6 n. (2.3)

Then D(ϕ) = Aϕ(0) +L(ϕ), where A = (µij(0)− µij(0−)). Recall (see [11, 32]) that D
is said to be atomic at zero if A is nonsingular and there exists a nonnegative scalar
continuous function β on [0,minj∈J rj] with β(0) = 0 and∣∣∣∣∣∣

∑
j∈J

∫ 0

−s
dµ̄ij(θ)ϕj(θ)

∣∣∣∣∣∣ 6 β(s)‖ϕ‖Cr ,

where J = {i ∈ N; ri 6= 0} and N = {1, . . . , n}.

Definition 2.1 ([32]). A bounded and linear operator D :Cr −→ Rn defined by
(2.1) is said to be quasimonotone if the following hold:

(i) It is atomic at zero.

(ii) bii > 0 and bij > 0 for i, j ∈ N = {1, 2, . . . , n}, where (bij) = A−1.

(iii) µij : [−rj , 0) −→ R, i, j ∈ N is nonincreasing and continuous from the left.

Note that the D-operator associated with usual equations has the form

Dϕ = ϕ(0) + L(ϕ),

and therefore it is quasimonotone if (iii) is satisfied, where L(ϕ) is defined by (2.2)
and (2.3). Throughout the paper, we assume that the operator D is quasimonotone.

Now we define an ordering, denoted by 6D , as follows:

ϕ 6D ψ iff

{
ϕi(θ) 6 ψi(θ) θ ∈ [−ri, 0], 1 6 i 6 n

D(ϕ) 6 D(ψ) ϕ, ψ ∈ Cr.
We also write ψ >D ϕ if ϕ 6D ψ. Let C+

r,D = {ϕ ∈ Cr :ϕ >D 0}. Then IntC+
r,D is not

empty, provided that D is quasimonotone. We write ϕ <D ψ if ϕ 6D ψ and ϕ 6= ψ,
and ϕ �D ψ if ψ − ϕ ∈ IntC+

r,D . Let ∧ denote the inclusion Rn −→ Cr by x −→ x̂,
x̂i(θ) ≡ xi, θ ∈ [−ri, 0] and i ∈ N. Thus (Cr,6D) is a strongly ordered space, meaning
that for every open set U ⊂ Cr and for any ϕ ∈ U, there exist ϕ1, ϕ2 ∈ U such that
ϕ1 �D ϕ �D ϕ2. We refer to Wu and Freedman [32] for detailed discussion of Cr
and its ordering induced by C+

r,D .
Consider the following neutral functional differential equations:

d

dt
D(xt) = F(t, xt), (2.4)

where D :Cr −→ Rn is quasimonotone, and F : Ω −→ Rn, where Ω is an open subset
in R+ × Cr , is assumed to satisfy the following basic conditions:

(C1) F is continuous and Lipschitz in the second variable on any compact subset
of Ω.

(C2) F(t, 0̂) = 0 for all t ∈ R+.
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Under these conditions, we know that (see [11, 32]), for any (σ, ϕ) ∈ Ω, there exists
a unique solution of (3.1) through (σ, ϕ). As usual, the unique solution through (σ, ϕ)
is denoted by xt(σ, ϕ) or x(t, σ, ϕ), and xt = (x1

t , . . . , x
n
t ) is an element of Cr with

xit(θ) = xi(t + θ), −ri 6 θ 6 0, i ∈ N. Throughout this paper, we always assume
that, for any ϕ ∈ Cr , the solution x(t, σ, ϕ) can be extended to [σ,∞). Note that (C2)
implies that x(t, σ, 0̂) = 0 for all t > 0.

Now we can start with the following monotonicity principle.

Lemma 2.2 [32, Lemma 3.1, Remark 3.2]. Assume the following:

If (t, ϕ), (t, ψ) ∈ Ω with ϕ 6D ψ and Di(ϕ) = Di(ψ) for some i ∈ N,
then Fi(t, ϕ) 6 Fi(t, ψ). (M)

Then the following hold:

(i) For any (σ, ϕ), (σ, ψ) ∈ Ω with ϕ 6D ψ, we have xt(σ, ϕ) 6D xt(σ, ψ) for all
t > σ.

(ii) C+
r,D is positively invariant for (2.4), that is, for any (σ, ϕ) ∈ R+×C+

r,D , we have
xt(σ, ϕ) >D 0 for all t > σ.

To proceed further, we need to assume further that F is continuously differentiable.
By [11], we know that x(t, σ, ϕ) or xt(σ, ϕ) is continuously Fréchet differentiable. Let
DϕF(t, ϕ) be the Fréchet derivative of F(t, ϕ) with respect to ϕ in Cr . For any given
ϕ ∈ Cr , by the Riesz representation theorem, there exists ηij(ϕ, t, ·) : [−rj , 0] −→ R,
i, j ∈ N, of bounded variation on [−rj , 0], such that

[DϕF(t, ϕ)ψ]i =

n∑
j=1

∫ 0

−rj
dθηij(ϕ, t, θ)ψj(θ), i ∈ N, ψ ∈ Cr. (2.5)

Let

B(ϕ, t) = (ηij(ϕ, t, 0)− ηij(ϕ, t, 0−)) (2.6)

and define K(ϕ, t) :Cr −→ Rn by

(K(ϕ, t)ψ)i =

n∑
j=1

∫ 0

−rj
dθη̄ij(ϕ, t, θ)ψj(θ), i ∈ N, ψ ∈ Cr, (2.7)

where

η̄ij(ϕ, t, θ) =

{
ηij(ϕ, t, θ) θ ∈ [−rj , 0),

ηij(ϕ, t, 0
−) θ = 0,

(2.8)

then DϕF(t, ϕ)ψ = B(ϕ, t)ψ(0) +K(ϕ, t)ψ.

Definition 2.3. The neutral functional differential equation (2.4) is said to be
cooperative if, for any ϕ ∈ Cr , all off-diagonal elements of B(ϕ, t)A−1 are non-
negative and (K(ϕ, t)− B(ϕ, t)A−1L)C+

r,D ⊂ Rn+ for all t ∈ R.

We need the following assumptions (see [32]):
(I) If (t, ϕ), (t, ψ) ∈ Ω with ϕ 6D ψ and ϕi(−ri) < ψi(−ri) for some i ∈ N, then

there exists j ∈ N such that either (i) Dj(ϕ) < Dj(ψ) or (ii) Dj(ϕ) = Dj(ψ) and
Fj(t, ϕ) < Fj(t, ψ).

(T) For any proper subset K ⊂ N and any ϕ, ψ ∈ Cr with ϕ 6D ψ, ϕj(θ) < ψj(θ)
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and Dj(ϕ) < Dj(ψ) for j ∈ K and θ ∈ [−rj , 0], there exists i ∈ N\K such that either
(i) Di(ϕ) < Di(ψ) or (ii) Di(ϕ) = Di(ψ) and Fi(t, ϕ) < Fi(t, ψ).

(P) There exists a continuous functional li :R × Cr × Cr −→ R such that, for any
(t, ϕ), (t, ψ) ∈ Ω with ϕ 6D ψ, we have

Fi(t, ψ)− Fi(t, ϕ) > li(t, ϕ, ψ)(Di(ψ)− Di(ϕ)), i ∈ N.
Note that (P) implies (M), but sometimes (P) is easier to verify. Note also that if

(2.4) is cooperative, then (P) holds for (2.4) (see [32, proof of Corollary 3.2]). From
Lemma 2.2, we know that under (M), one only knows that the solution semiflow is
monotone. The additional assumptions (I) and (P) give stronger but more convenient
conditions than the so-called irreducibility, which together with (M) or (P) would
guarantee that the solution semiflow was eventually strongly monotone.

Lemma 2.4 [32, Theorem 3.1]. Let (I), (P) and (T) hold. If ψ, ϕ ∈ Cr with ϕ <D ψ,
then x(t, σ, ϕ)� x(t, σ, ψ) and D(xt(σ, ϕ))� D(xt(σ, ψ)) for all t > σ + n|r|.

Lemma 2.5. For any ϕ ∈ C+
r,D , β ∈ IntC+

r,D , let y(t, β) = Dϕx(t, 0, ϕ)β. Then

(i) y(t, β) satisfies the linear variational equation
d

dt
D(yt) = DxtF(t, xt(0, ϕ))yt t > 0

y0 = β;
(2.9)

(ii) if neutral functional differential equation (2.4) is cooperative, then yt(β) ∈
IntC+

r,D , t > 0.

Proof. By [11], y(t, β) satisfies the linear variational equation
d

dt
Dxt (D(xt(0, ϕ)))yt = DxtF(t, xt(0, ϕ))yt, t > 0

y0 = β.

Since the operator D is bounded and linear, Dxt (D(xt(0, ϕ)))yt = D(yt). Thus the first
assertion of Lemma 2.5 is true. To prove (ii), let C(ϕ, t) = B(ϕ, t)A−1 = (Cij(ϕ, t)).
For any h ∈ Cr , D(h) = Ah(0) + L(h) such that

h(0) = A−1[D(h)− L(h)],

DxtF(t, xt(ϕ))h = B(ϕ, t)h(0) +K(ϕ, t)h

= C(ϕ, t)Dh+ (K(ϕ, t)− C(ϕ, t)L)h.

For any h, k ∈ Cr with h 6D k, we have

[DxtF(t, xt(ϕ))k]i − [DxtF(t, xt(ϕ))h]i

=

n∑
j=1

Cij(ϕ, t)(Dj(k)− Dj(h)) + [(K(ϕ, t)− C(ϕ, t)L)(k − h)]i
> Cii(ϕ, t)(Di(k)− Di(h)),

where the inequality follows from cooperativity hypothesis, and the subscript i
denotes the ith component. Therefore condition (P) holds for equation (2.9). Then,
by [32, Lemma 3.3], we have yt(β) ∈ IntC+

r,D , since β ∈ IntC+
r,D , and equation (2.9)

is linear. The proof of this lemma is complete. q
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Definition 2.6. Let (E,6) be a partially ordered Banach space induced by its
positive cone P , which has nonempty interior IntP in E. The nonlinear operator
U :P −→ P is said to be

(i) monotone if for any ϕ, ψ ∈ P with ϕ 6 ψ one has U(ϕ) 6 U(ψ);
(ii) strongly positive if for any ϕ ∈ P with ϕ 6= 0 one has U(ϕ) ∈ IntP ;
(iii) strongly concave if for any ϕ ∈ IntP and τ ∈ (0, 1), there exists a number

δ > 0 such that U(τϕ) > (1 + δ)τU(ϕ).

Lemma 2.7 (Krasnosel’skii [14]). A monotone, strongly positive and strongly
concave operator U defined on a positive cone P can have no more than one nonzero
fixed point in P .

3. Periodic solutions of periodic neutral functional differential equations

In this section, we establish some results for periodic solutions of the following
periodic neutral functional differential equation:

d

dt
D(xt) = F(t, xt). (3.1)

Here, in addition to those basic assumptions on D and F in Section 2, F is further
assumed to be periodic in the first variable, that is, F(t + ω,ϕ) = F(t, ϕ) for all
(t, ϕ) ∈ R+ × Cr , where ω > 0 is a given constant.

We first have the following lemma.

Lemma 3.1. Let (M) hold. If there exists h ∈ Rn such that f(t, ĥ) > 0 (f(t, ĥ) 6 0)
for any t ∈ R, then {xmω(0, ĥ)}∞m=0 is nondecreasing (nonincreasing) in (Cr,6D) with
respect to m.

Proof. Suppose that f(t, ĥ) > 0. Then the proof in the case of f(t, ĥ) 6 0 is similar.
If ϕ >D ĥ, Di(ϕ) = Di(ĥ) for some i ∈ N, then, by (M), we have Fi(t, ϕ) > Fi(t, ĥ) > 0.
Therefore, by a standard comparison method (see, for example, [32, Lemma 3.1,
Remark 3.2], we know that the set [ĥ,∞) = {ϕ ∈ Cr :ϕ >D ĥ} is positively invariant
for (3.1). In particular, xω(0, ĥ) >D ĥ. Now Lemma 2.2(i) implies that

xω(0, xω(0, ĥ)) >D xω(0, ĥ) >D ĥ.

By the uniqueness of solutions of (3.1) and the periodicity of f, one has

xω(0, xω(0, ĥ)) = x2ω(0, ĥ),

and hence

x2ω(0, ĥ) >D xω(0, ĥ) >D ĥ.

Continuing in this manner, we see that {xmω(0, ĥ)}∞m=0 is nondecreasing in (Cr,6D)
with respect to m, and the proof is complete. q

Recall that a bounded and linear operator D :Cr −→ Rn is stable if the zero
solution of the generalized difference equation{

D(yt) = 0

y0 = ϕ

is uniformly asymptotically stable. From [11], D is stable if and only if there are
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constants a > 0 and b > 0 such that, for any ϕ ∈ Cr and h ∈ C([0,∞), Rn), the
solution y(t) of the nonhomogeneous equation{

D(yt) = h(t) t > t0

yt0 = ϕ

satisfies ‖yt‖ 6 be−a(t−t0)‖yt0‖+ b supt06s6t |h(s)|, t > t0.
The next theorem gives sufficient conditions for the existence of positive ω-periodic

solutions to (3.1).

Theorem 3.2. Let (M) hold. Assume that the following hold:

(H1) There exist 0 < a < b such that

F(t, Â) > 0 and F(t, B̂) 6 0, t ∈ R+,

where A = (a, a, . . . , a) ∈ Rn, B = (b, b, . . . , b) ∈ Rn.
(H2) The operator D is stable and F maps bounded sets of R×Cr into bounded sets

of Rn.

Then, each of x(t, 0, Â) and x(t, 0, B̂) converges to a positive ω-periodic solution of
(3.1) as t→ +∞.

Proof. Let y(t) ≡ B, t ∈ R+. Then

d

dt
D(yt) = 0 > F(t, B̂) = F(t, yt).

Thus, by Lemma 2.2,

0 6 x(t, 0, B̂) 6 y(t) = B, t > 0.

Similarly, 0 6 A 6 x(t, 0, Â), t > 0. Since A � B, again by Lemma 2.2, we have
A 6 x(t, 0, Â) 6 x(t, 0, B̂) 6 B, t > 0, that is, {xt(0, Â) : t > 0} and {xt(0, B̂) : t > 0}
are bounded sets of Cr since C+

r,D is a normal cone of Cr .

Next we show that {xt(0, Â) : t > 0} and {xt(0, B̂) : t > 0} are precompact in Cr .
Let γ+(Â) = {xt(0, Â) : t > 0}. For any s > 0, there is a nonnegative integer m such
that s = mω + s0, where s0 ∈ [0, ω). Then F(s, ϕ) = F(s0, ϕ) for any ϕ ∈ Cr . Hence
there exists a constant number M > 0 such that |F(s, γ+(Â))| 6 M for any s > 0
since γ+(Â) is bounded. Now we have

D(xt+τ(0, Â)− xt(0, Â)) =

∫ t+τ
t

F(s, xs(0, Â)) ds for any τ > 0, t > 0.

From (H2), we know that

‖xt+τ(0, Â)− xt(0, Â)‖ 6 b‖xτ(0, Â)− Â‖+ bMτ.

Since xτ(0, Â) is continuous at τ = 0, x(t, 0, Â) is uniformly continuous in [−r,+∞].
Hence γ+(Â) is precompact in Cr since x(t, 0, Â) is bounded in [−r,+∞). A similar
argument can prove that {xt(0, B̂) : t > 0} is also precompact in Cr .

Now we define operator P :C+
r.D −→ C+

r.D by

P (ϕ) = xω(0, ϕ), (3.2)

and denote by Pm(ϕ) the mth iterate of ϕ under P. Then, by Lemma 3.1, the sequence
{Pm(Â)}∞m=0 ({Pm(B̂)}∞m=0) is nondecreasing and bounded above by B̂ (nonincreasing
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and bounded below by Â). Therefore, each sequence converges as m→ ∞ from the
precompactness of each sequence.

Let ϕ∗ = limm→∞ Pm(Â) and ψ∗ = limm→∞ Pm(B̂). Then, since P is continuous by
[11], we know that P (ϕ∗) = ϕ∗ and P (ψ∗) = ψ∗, that is, x(t, 0, ϕ∗) and x(t, 0, ψ∗) are
positive ω-periodic solutions of (3.1). It is easy to see that x(t, 0, Â) (x(t, 0, B̂)) tends
to x(t, 0, ϕ∗) (x(t, 0, ψ∗)) as t→ +∞. This completes the proof of Theorem 3.2. q

Remark 3.3. In Theorem 3.2, if (H1) is replaced by the following (H1)′, which
is stronger than (H1):

there exist 0 < a < b such that F(t, Âs) > 0, for t ∈ R+, 0 6 s 6 1,

and F(t, B̂ξ) 6 0 for t ∈ R+, 1 6 ξ, (H′)

and if (3.1) admits a unique positive ω-periodic solution, then Lemma 2.4 and
Theorem 3.2 imply that this periodic solution attracts each solution x(t, 0, ϕ) of (3.1)
with ϕ ∈ C+

r,D and ϕ 6= 0.

Note that Lemma 2.4 implies that there exists a positive integer k0 such that
xt(0, ϕ)�D 0 for t > k0ω − |r| > 0, ϕ ∈ C+

r,D and ϕ 6= 0. For this fixed k0, we define

an operator U :C+
r,D −→ C+

r,D by

Uϕ = xk0ω(0, ϕ). (3.3)

Then we have the following conclusions.

Proposition 3.4. Assume that (I), (P) and (T) hold. Then the operator U defined
by (3.3) is strongly monotone and strongly positive.

Proof. This is an immediate consequence of Lemma 2.2 and Lemma 2.4. q

To derive sufficient conditions under which the operator U is strongly concave,
we define an auxiliary operator W by

Wϕ = Uϕ− DϕU(ϕ)ϕ, ϕ ∈ C+
r,D, (3.4)

where DϕU(ϕ) is the Fréchet derivative of U with respect to ϕ.

Proposition 3.5. Under the assumptions of Proposition 3.4, if W (IntC+
r,D) ⊂

IntC+
r,D , then U(τϕ) >D τU(ϕ) for all ϕ ∈ C+

r,D and τ ∈ [0, 1].

Proof. Since the operator U is continuous by [11], it is sufficient to prove that

U(τϕ) >D τU(ϕ), ϕ ∈ IntC+
r,D, τ ∈ (0, 1). (3.5)

Suppose that (3.5) is not true. Then there exist ϕ0 ∈ IntC+
r,D and τ0 ∈ (0, 1) such

that ψ0 = U(τ0ϕ0) − τ0U(ϕ0) is not a point in the cone C+
r,D of Cr . Then a well

known result from convex analysis (see, for example, [34, Corollary 2.4.16]) implies
that there exists a continuous linear functional g :Cr −→ R and a real number b
such that

g(ϕ) < b < g(ψ0) for all ϕ ∈ C+
r,D. (3.6)
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Let us define an auxiliary function

α(τ) = g

(
1

τ
U(τϕ0)−Uϕ0

)
− 1

τ
b, 0 < τ 6 1.

Then α(τ) is obviously differentiable and

α′(τ) =
1

τ2
{b− g(W (τϕ0))}.

Since W (IntC+
r,D) ⊂ IntC+

r,D , (3.6) implies that α′(τ) > 0, 0 < τ 6 1. It follows that
α(τ0) < α(1) = g(0)− b < 0. However, again by (3.6), α(τ0) = (1/τ0)(g(ψ0)− b) > 0.
This contradiction implies that (3.5) is true, and the proof of Proposition 3.5 is
complete. q

Proposition 3.6. Under the assumptions of Proposition 3.5, the operator U defined
by (3.3) is strongly concave on C+

r,D .

Proof. For the sake of contradiction, assume that U is not strongly concave on
C+
r,D . Then there exist ϕ0 ∈ IntC+

r,D and τ0 ∈ (0, 1) such that, for any δ > 0,

U(τ0ϕ0)− (1 + δ)τ0Uϕ0 /∈ C+
r,D. (3.7)

Since U(τ0ϕ0)−τ0Uϕ0 ∈ C+
r,D by Proposition 3.5, it follows that ψ = U(τ0ϕ0)−τ0Uϕ0

is a boundary point of the cone C+
r,D . (Otherwise, ψ ∈ IntC+

r,D . Since τ0Uϕ0 ∈ C+
r,D ,

there exists a sufficiently small δ > 0 such that ψ−δ0τ0Uϕ0 ∈ C+
r,D , that is, U(τ0ϕ0)−

(1 + δ0)τ0Uϕ0 ∈ C+
r,D . This contradicts (3.7).) Define ψτ = (1/τ)U(τϕ0) − Uϕ0, and

let ψτi be the ith component of ψτ. Then we have two cases to consider: either
ψi(θ0) = 0 for some i ∈ N and some θ0 ∈ [−ri, 0], or Di(ψ) = 0 for some i ∈ N.

Case 1: There exists an i ∈ N such that ψi(θ0) = 0 for some θ0 ∈ [−ri, 0].

Set α(τ, θ) = ψτi (θ) = (1/τ)Ui(τϕ0)(θ)−Ui(ϕ0)(θ), 0 < τ 6 1, θ ∈ [−ri, 0].

It is easy to check that α′τ(τ, θ) = −(1/τ2)Wi(τϕ0)(θ), 0 < τ 6 1, θ ∈ [−ri, 0].
By W (IntC+

r,D) ⊂ IntC+
r,D , we know that α′τ(τ, θ) < 0, 0 < τ 6 1,θ ∈ [−ri, 0]. Thus

α(τ0, θ0) > α(1, θ0) = 0, contradicting α(τ0, θ0) = (1/τ0)ψi(θ0) = 0.

Case 2: There exists an i ∈ N such that Di(ψ) = 0.

Let β(τ) = Di(ψ
τ), 0 < τ 6 1. It is easy to check that

β′(τ) = −Di(W (τϕ0))/τ2.

Again by W (IntC+
r,D) ⊂ IntC+

r,D , we know that β′(τ) < 0, 0 < τ 6 1. Thus β(τ0) >

β(1) = Di(0̂) = 0, a contradiction to β(τ0) = Di(ψ) = 0.

Summarizing case l and cass 2 completes the proof of the proposition. q

In what follows, we write x(t, ϕ) (xt(ϕ)) for x(t, 0, ϕ) in Rn(xt(0, ϕ) in Cr), where
x(t, 0, ϕ) is the solution of (3.1) through (0, ϕ). We are now in a position to establish
sufficient conditions under which the operator W defined by (3.4) maps interior
points of the cone C+

r,D into its interior points. To this end, we need the following.

Lemma 3.7. For any ϕ ∈ Cr , let q(t, ϕ) = x(t, ϕ) − Dϕx(t, ϕ)ϕ (that is, qt(ϕ) =
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xt(ϕ)− Dϕx(t, ϕ)ϕ). Then qt(ϕ) satisfies the following equation:
d

dt
D(qt(ϕ)) = DxtF(t, xt(ϕ))qt(ϕ) + f(t, xt(ϕ))

q0(ϕ) = 0,

(3.8)

where

f(t, xt(ϕ)) = F(t, xt(ϕ))− DxtF(t, xt(ϕ))xt(ϕ). (3.9)

Proof. By (3.1), we have

D(xt(ϕ)) = D(ϕ) +

∫ t
0

F(s, xs(ϕ)) ds.

Differentiating both sides of the above equation with respect to ϕ and using the
linearity of D, we have

D(Dϕxt(ϕ)ψ) = D(ψ) +

∫ t
0

DxsF(s, xs(ϕ))Dϕxs(ϕ)ψ ds.

In particular, let ϕ = ψ. We have

D(Dϕxt(ϕ)ϕ) = D(ϕ) +

∫ t
0

DxsF(s, xs(ϕ))Dϕxs(ϕ)ϕds.

By hypothesis, Dϕxt(ϕ)ϕ = xt(ϕ) − qt(ϕ), so we have the following formulating
procedure:

D(qt(ϕ)) = D(xt(ϕ))− D(Dϕxt(ϕ)ϕ)

=

∫ t
0

F(s, xs(ϕ)) ds−
∫ t

0

DxsF(s, xs(ϕ))Dϕxs(ϕ)ϕds

=

∫ t
0

F(s, xs(ϕ) ds−
∫ t

0

DxsF(s, xs(ϕ))[xs(ϕ)− qs(ϕ)] ds

=

∫ t
0

DxsF(s, xs(ϕ))qs(ϕ) ds+

∫ t
0

f(s, xs(ϕ)) ds,

where f(s, xs(ϕ)) is defined by (3.9). Note that q0(ϕ) = x0(ϕ)− Dϕ(x0(ϕ))ϕ = 0, and
thus (3.8) is true. q

Proposition 3.8. Let neutral functional differential equation (3.1) be cooperative,
and (I), (T) hold. If f(t, ϕ) � 0 for all ϕ ∈ IntC+

r,D and t ∈ R, then qt(ϕ) ∈ IntC+
r,D

for ϕ ∈ IntC+
r,D and t > k0ω.

Proof. Let ϕ ∈ IntC+
r,D be arbitrarily fixed. Then we have

x(t, ϕ) =

∫ 1

0

Dϕx(t, sϕ)ϕds (3.10)

since x(t, 0̂) = 0. If ξ ∈ C+
r,D and β ∈ IntC+

r,D , let y(t, β) = Dϕx(t, ξ)β. Then, by
Lemma 2.5, we have 

d

dt
D(yt) = DxtF(t, xt(ξ))yt

y0 = β,

and yt(β) ∈ IntC+
r,D , t > 0. Therefore, by (3.10) and the definition of y(t, β), we know
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that xt(ϕ) �D 0̂. Hence, by the hypotheses of the proposition, f(t, xt(ϕ))� 0, t > 0.
Since neutral functional differential equation (3.1) is cooperative, we know that

d

dt
D(qt(ϕ))|t=0 � 0

from (3.8). As a consequence, there exists ε > 0 such that D(qt(ϕ)) � 0, 0 6 t < ε.
By [32, Lemma 2.3], q(t, ϕ) �D 0, 0 6 t < ε. Now we claim that qt(ϕ) �D 0 for all
t > 0. If not, there is a t1 > 0 such that qt(ϕ) �D 0, 0 6 t < t1, and Di(qt1 (ϕ)) = 0
for some i ∈ N. It is evident that

d

dt
Di(qt(ϕ))|t=t1 6 0.

However, by continuity and the cooperative property of (3.1), F satisfies (M) and
DϕF(t, ϕ) satisfies (P) (see the proof of Lemma 2.5). Therefore, we know that

d

dt
Di(qt(ϕ))

∣∣∣∣
t=t1

= [Dxt1F(t1, xt1 (ϕ))qt1 (ϕ)]i + fi(t1, xt1 (ϕ))

> [Dxt1F(t1, xt1 (ϕ))qt1 (ϕ)]i

= [Dxt1F(t1, xt1 (ϕ))qt1 (ϕ)]i

− t[Dxt1F(t1, xt1 (ϕ))0̂]i

> li(t1, qt1 (ϕ), 0̂)[Di(qt1 (ϕ))− Di(0̂)]

= li(t1, qt1 (ϕ), 0̂)(0− 0) = 0.

This contradiction implies that such a t1 cannot exist, and it thus establishes the
above assertion. The proof is complete. q

Now, we are able to give the main result of the paper.

Theorem 3.9. Suppose that the conditions of Proposition 3.8 are satisfied. Further,
assume that (H1)′ and (H2) are also satisfied and that (3.1) has no positive constant
solution. Then (3.1) has a unique nonconstant positive ω-periodic solution that which
attracts each solution x(t, 0, ϕ) of (3.1) with ϕ ∈ C+

r,D and ϕ 6= 0.

Proof. Note that Proposition 3.8 implies that W (IntC+
r,D) ⊂ IntC+

r,D . It follows
from Proposition 3.4, Proposition 3.6 and Lemma 2.7 that U has no more than
one nonzero fixed point on C+

r,D . Thus (3.1) has no more than one positive periodic
solution with period k0ω. Combining this with Theorem 3.2, we know that (3.1) has
a unique positive ω-periodic solution. Now, the assumption that (3.1) has no positive
constant solution guarantees that this unique periodic solution is nonconstant. Finally,
by Remark 3.3, this nonconstant ω-periodic solution attracts each solution x(t, 0, ϕ)
of (3.1) with ϕ ∈ C+

r,D and ϕ 6= 0. The proof of Theorem 3.9 is complete. q

4. An example

In this section, we give an example to demonstrate the results obtained in Section 3.
Consider the following scalar periodic neutral functional differential equation:

d

dt
[x(t)− gx(t− r)] = a(t)x(t) + b(t)x(t− r)− c(t)[x(t)− gx(t− r)]α, (4.1)

where 0 < g < 1, r > 0, α > 1, and functions a(t), b(t) and c(t) are continuous,
positive and ω-periodic.
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Note that when α = 2, (4.1) reduces to following equation:

d

dt
[x(t)− gx(t− r)] = x(t)

{
a(t)− c(t)

[
x(t)− 2g

c(t)
x(t− r)

]}
+ x(t− r)[b(t)− g2c(t)x(t− r)]. (4.2)

In the case where g = 0, equation (4.2) models one-species growth in a ω-periodic
environment with delayed recruitment, the spread of epidemics, and the dynamics of
capital stocks [4, 5, 16]. In (4.2) with 0 < g < 1, the additional term gx(t− r) on the
left-hand side can be viewed as a certain feedback control mechanism that adjusts
the change in the system according to its past growth rate, or it can be regarded
as the relapse of the infectious disease considered in the Cooke–Kaplan model of
epidemics. The second term x(t − r)[b(t) − g2c(t)x(t − r)] on the right-hand side of
(4.2) can be justified as nonlinear delayed recruitment or nonlinear delayed feedback
control [16].

Let Cr = C([−r, 0], R). For any ϕ ∈ Cr , operator D :Cr −→ R is defined by

Dϕ = ϕ(0)− gϕ(−r). (4.3)

Then D :Cr −→ R is quasimonotone and stable since g ∈ (0, 1). F(t, ·) :Cr −→ Cr is
defined by

F(t, ϕ) = a(t)ϕ(0) + b(t)ϕ(−r)− c(t)(Dϕ)α for any ϕ ∈ Cr, t ∈ R+. (4.4)

Then F maps bounded sets of R+ × Cr into bounded sets of R, and hence (H2)
holds. Obviously (T) is naturally satisfied since equation (4.1) is scalar.

In the remainder of this section, by verifying those conditions in Theorem 3.9,
we show that (4.1) admits a unique nonconstant positive ω-periodic solution that
attracts each solution x(t, 0, ϕ) of (4.1) with ϕ ∈ IntC+

r,D and ϕ 6= 0, that is, this

periodic solution is globally attractive in C+
r,D\{0}.

Lemma 4.1. Conditions (I) and (H1)′ hold for equation (4.1).

Proof. Let ϕ 6D ψ and ϕ(−r) < ψ(−r) for any ϕ, ψ ∈ Cr . Then either Dϕ < Dψ

or Dϕ = Dψ holds. If Dϕ = Dψ, then ψ(0) − ψ(0) = g[ψ(−r) − ϕ(−r)]. Hence we
have

F(t, ψ)− F(t, ϕ) = a(t)[ψ(0)− ϕ(0)] + b(t)[ψ(−r)− ϕ(−r)]− c(t)[(Dψ)α − (Dϕ)α]

= [b(t) + ga(t)][ψ(−r)− ϕ(−r)] > 0 for all t ∈ R+,

that is, (I) holds.
For any ξ ∈ R, we have

F(t, ξ̂) = [b(t) + a(t)]ξ − c(t)(1− g)αξα for all t ∈ R+. (4.5)

We know from (4.5) that F(t, ξ̂) > 0 for sufficiently small ξ > 0 and F(t, ξ̂) 6 0 for
sufficiently large ξ > 0, that is, (H1)′ holds. q

Lemma 4.2. Equation (4.1) is cooperative.

Proof. For any ϕ, h ∈ Cr , t ∈ R+, we have

DϕF(t, ϕ)h = a(t)h(0) + b(t)h(−r)− αc(t)(Dϕ)α−1Dϕ(Dϕ)h

= a(t)h(0) + b(t)h(−r)− αc(t)(Dϕ)α−1Dh

= [a(t)− αc(t)(Dϕ)α−1]h(0) + [b(t) + αgc(t)(Dϕ)α−1]h(−r).
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Thus we have

B(ϕ, t) = a(t)− αc(t)(Dϕ)α−1

K(ϕ, t) = b(t) + αgc(t)(Dϕ)α−1.

Then, for any h ∈ C+
r , we have

(K(ϕ, t)− B(ϕ, t)A−1L)h

= [b(t) + αgc(t)(Dϕ)α−1]h(−r)− [−a(t) + αc(t)(Dϕ)α−1]gh(−r)
= [b(t) + ga(t)]h(−r) > 0, t ∈ R,

that is, [K(ϕ, t)− B(ϕ, t)A−1L]C+
r ⊂ R+. q

Lemma 4.3. f(t, ϕ) = F(t, ϕ)− DϕF(t, ϕ)ϕ > 0 for any ϕ ∈ IntC+
r,D and t ∈ R+.

Proof. For any ϕ ∈ IntC+
r,D and t ∈ R+, we have

f(t, ϕ) = F(t, ϕ)− DϕF(t, ϕ)ϕ

= a(t)ϕ(0) + b(t)ϕ(−r)− c(t)(Dϕ)α

−[a(t)ϕ(0) + b(t)ϕ(−r)− αc(t)(Dϕ)α−1Dϕ]

= (α− 1)c(t)(Dϕ)α > 0,

where the inequality follows from Dϕ > 0 since ϕ ∈ IntC+
r,D . q

Now, by Lemmas 4.1–4.3 and Theorem 3.9, we obtain the following.

Proposition 4.4. Equation (4.1) admits a unique positive ω-periodic solution that
is globally attractive in C+

r,D\{0}. This periodic solution is a positive constant solution
if a(t)+b(t) is proportional to c(t), and it is nonconstant if a(t)+b(t) is not proportional
to c(t).
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