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Vaccination is considered one of the most effective control measures for influenza. However, when a
virus mutates and multi-strains appear in a population, implementing a vaccine for one strain may affect
the spread of the other strains. In this paper, we propose a two-strain model and investigate the effects
of a single-strain vaccine on the dynamics of this two-strain model. The global dynamics of the model
are completely determined through suitable Lyapunov functions. We show that if the basic reproduction
number is less than one, then both strains die out; but when the number is larger than one, one or both of the
strains become endemic depending on the parameter values. The theoretical results provide some useful
information on the impact of the vaccination rate of this single-vaccine for one strain on the dynamics of
the two strains.

Keywords: influenza; epidemics; vaccination; equilibrium; basic reproduction number; global asymptotic
stability; Lyapunov function

AMS Subject Classification: 34K18; 34K20; 92D30

1. Introduction

Influenza, commonly known as flu, is one of the long-lasting major health issues throughout the
world. This single disease alone causes hundreds of thousands of deaths annually. A pandemic
flu is even more severe, in terms of spatial spread, infection and casualty, than a seasonal flu.
During the last century, three major flu pandemics took place. Among them, the Spanish flu in
1918 is known as the most devastating pandemic. It is estimated [14] that the Spanish flu claimed
around 40–50 million deaths (as much as 3% of the total population), and it also infected 20–40%
of the whole population. Forty years later, in 1957–1958, human beings experienced another
flu pandemic known as the Asian flu or bird flu, which caused more than two million deaths
[14]. Unlike the Spanish flu, this time the infection-causing virus was detected earlier due to the
advancement of science and technology. A vaccine was made available but with limited supply.
After a decade (in 1968), a flu pandemic that originated again from Hong Kong hit mankind. That
flu pandemic also claimed one million lives [14]. Beside these three major ones, there are some
other flu pandemics spreading among nations on smaller scales. For instance, the 2009 H1N1
swine flu is one of the more publicized pandemics that attracted the attention of all scientists and
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health professionals in the world and made them very much concerned. The pandemic, however,
did not result in great casualties like before. As of July 2010, only about 18,000 related deaths
had been reported [15].

Due to the severeness of the flu endemic, extensive and intensive research has been done,
focusing on understanding the transmission mechanism and control strategies (see, e.g. [2,12] and
references therein). Among various control strategies, vaccination is considered to be the most
effective one. A vaccine typically contains an agent that resembles a disease-causing microor-
ganism which stimulates the body’s immune system to recognize the agent as a foreigner. Thus,
whenever such a microorganism is encountered within a host, the immune system will destroy
it. This kind of phenomenon is known as immunity. The immunity can also be produced through
infection. Once an individual has recovered from an infection, his/her immune system can rec-
ognize the microorganism that caused the infection as a harmful foreigner. The immune system
may even identify a microorganism that is similar to one encountered before. This is known as
‘cross immunity’.

Unlike measles (which are generated by a single virus [3]), flu viruses are able to mutate,
which give them the opportunity to elude the immune system of an individual. There are three
major types of flu viruses: type A, B and C. Each type has several sub-types and strains. A sub-
type of a virus is the resultant of a drastic antigenic change known as ‘antigenic shift’ that occurs
occasionally. However, there are small but continual changes taking place in a virus antigen known
as ‘antigenic drift’ that produce a newer strain. Once a newer virus strain appears, the antibodies
against the older strain no longer recognize the newer one, and infection with a new strain can
occur. This is one of the main reasons why people can get flu infections more than once. A very
good example is the 2009 H1N1 A virus. It was reported that ‘Antigenic characterization of 2009
influenza A (H1N1) viruses indicates that these viruses are only distantly related antigenically and
genetically to seasonal influenza A (H1N1) viruses, suggesting that little to no protection would
be expected from vaccination for the seasonal influenza vaccine’ (see, e.g. [5]). Since making a
vaccine for a newly merged strain takes quite long, a very natural yet practical question would be:
in a situation where there are two strains of flu but only one vaccine for the older strain is available,
how would the implementation of this vaccination affect the spread of the newer strain. As CBC
News broadcast, ‘preliminary research suggests the seasonal flu shot may put people at greater
risk for getting swine’ [4]. In this research, we will investigate such an effect of the vaccination
of the current strain towards the newer strain, by proposing and analysing a mathematical model
for such a scenario. This problem is strongly motivated by the 2009 swine influenza pandemic,
when the seasonal flu was also spreading in many places.

The rest of this paper is organized as below. In Section 2, following the line of [3], we formulate
a two-strain influenza model in which a vaccination compartment with strain 1 is introduced for
our purpose. In Section 3, we investigate the dynamics of this model system. By solving for
all possible equilibria, computing the basic reproduction number, analysing the characteristic
equation and employing Lyapunov functions, we are able to completely determine the global
dynamics. In Section 4, we explore biological implications of some of the theoretical results
obtained in Section 3; in particular, we discuss the impact of the vaccination with strain 1 on the
spread of strain 2.

2. The model

The structure of the model we use in this paper follows that in Castillo-Chavez et al. [3]. We are
interested in the effect of a vaccination for one strain of influenza on the spread of another strain.
We assume that a type of influenza virus, called strain 1, which is moderate in virulence, prevails
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378 S.M. Ashrafur Rahman and X. Zou

Table 1. Description of variables and parameters of model (2).

Parameter Description

� Recruitment of individuals
1/μ Average time of life expectancy
r Rate of vaccination with strain 1
k Transmission coefficient of vaccinated individuals to strain 2
β1 Transmission coefficient of susceptible individuals to strain 1
β2 Transmission coefficient of susceptible individuals to strain 2
1/γ1 Average infection period of strain 1
1/γ2 Average infection period of strain 2
ν1 Infection-induced death rate of strain 1
ν2 Infection-induced death rate of strain 2

2I S2β

1I S1
β

2I V1

μ

(μ+ν2 )

μ

S R

I1

I2

Λ

γ2

γ1

+ν1μ( )

r

κ

μ

V1

Figure 1. Transfer diagram of the model (2).

in the population and a vaccine is available for the current strain. A new strain, called strain 2
which is antigenically far related to the existing subtype and which has severe virulence effect,
suddenly appears in the same host population. Substantial time is required to produce a safe and
effective vaccine for the newer strain, and there is no pre-existing immunity in the population. To
model the disease dynamics in such a scenario, we follow the tradition of dividing the population
N into five compartments: susceptible, immunized with the vaccination for strain 1, infected with
strain 1, infected with strain 2, and finally, recovered. The subpopulations in these compartments
are denoted by S, V1, I1, I2 and R, respectively.

For simplicity, we assume that there is a constant recruitment into susceptible class through birth
and/or immigration, and we assume that there is no double infection. Susceptible individuals are
vaccinated with constant rate r for strain 1, and are infected by strains 1 and 2 with transmission
coefficients β1 and β2, respectively. The vaccinated individuals (V1) can also be infected by strain 2
at the rate of κ . Once recovered from either strain 1 or 2, an individual remains in recovery class
for good. The variables and parameters are summarized in Table 1 and the transfer diagram is
shown in Figure 1.

With the above assumptions, the disease dynamics is then described by the following system
of ordinary differential equations:

Ṡ = � − (β1I1 + β2I2 + λ)S

V̇1 = rS − (μ + κI2)V1

İ1 = β1I1S − α1I1 (1)

İ2 = β2I2S + κI2V1 − α2I2

Ṙ = γ1I1 + γ2I2 − μR
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Journal of Biological Dynamics 379

with S + V1 + I1 + I2 + R = N , where λ = r + μ, α1 = γ1 + ν1 + μ and α2 = γ2 + ν2 + μ. In
the next section, we will analyse model to obtain some information on the impact of vaccination
for strain 1 on the global disease dynamics.

3. Disease dynamics described by the model

By the standard theory of ODE, it is easy to show that for a set of non-negative values
(S0, V10, I10, I20, R0), the system (1) has a unique solution (S(t), V1(t), I1(t), I2(t), R0) in [0, tm)

for some tm > 0, which also remains non-negative.Adding all equations in (1), the total population
N satisfies

Ṅ ≤ � − μN.

The comparison theorem then implies that limt→∞ sup N(t) ≤ �/λ. Hence N(t) is bounded on
[0, tm), and so are all components S(t), V1(t), I1(t), I2(t) and R(t). This in turn shows that the
solution exists globally, i.e. for all t ≥ 0.

Since the equation for Ṙ is actually decoupled from the rest in Equation (1), we only need to
consider dynamics of the following four-dimensional sub-system:

Ṡ = � − (β1I1 + β2I2 + λ)S,

V̇1 = rS − (μ + κI2)V1,

İ1 = β1I1S − α1I1,

İ2 = β2I2S + κI2V1 − α2I2.

(2)

Moreover, form the İ1 and İ2 Equations in (2), one can see that for i = 1, 2, Ii0 > 0 (= 0 resp.)
indeed implies Ii(t) > 0 (= 0 resp.) for all t > 0.

3.1. Equilibria

The system (2) has the disease-free equilibrium E0 = (�/λ, (rμ)/(�λ), 0, 0). There are two
possible single-strain-infection equilibria E1 = (S̄, V̄1, Ī1, 0) and E2 = (Ŝ, V̂1, 0, Î2), where

S̄ = α1

β1
, V̄1 = rα1

μβ1
, Ī1 = 1

β1

(
�β1

α1
− λ

)
,

and

Ŝ = �

β2Î2 + λ
, V̂1 = r�

(μ + κÎ2)(β2Î2 + λ)
;

with Î2 being determined by the quadratic equation

AÎ 2
2 + BÎ2 + C = 0, (3)

where

A = α2β2k, B = α2β2μ + α2λk − β2�κ, C = α2λμ − β2�μ − �kr.

Obviously, E1 is biological meaningful if and only if

β1

α1

�

λ
> 1. (4)
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380 S.M. Ashrafur Rahman and X. Zou

Now we seek the condition under which E2 is biologically meaningful. Firstly, we note that C ≥ 0
is equivalent to

α2λμ − β2�μ − �kr ≥ 0

⇐⇒ α2(r + μ)μ − β2�μ − �kr ≥ 0 (5)

⇐⇒ α2 ≥ β2�μ + �kr

μr + μ2
.

We claim that Equation (5) implies B > 0. Otherwise, B ≤ 0, which is equivalent to

α2β2μ + α2λk − β2�κ ≤ 0

⇐⇒ α2β2μ + α2(r + μ)k ≤ β2�κ (6)

⇐⇒ 1

α2
≥ β2μ + rk + μk

β2�κ
.

Then, combining Equations (5) and (6) leads to

1 ≥ β2�μ + �kr

μr + μ2

β2μ + rk + μk

β2�κ

⇐⇒ μrβ2�κ + μ2β2�κ ≥ β2
2�μ2 + β2�μrκ + β2�μ2κ + �krβ2μ + �k2r2 + �k2rμ

⇐⇒ 0 ≥ β2
2�μ2 + �krβ2μ + �k2r2 + �k2rμ,

a contradiction. Thus, C ≥ 0 implies B > 0. By the property of quadratic equations, we know
that when C > 0, Equation (3) has no positive solution and hence, E2 is biologically meaningless.
On the other hand, if C < 0, then Equation (3) has a unique positive solution Î2. Therefore, E2 is
biologically meaningful if and only if C < 0, that is,(

β2

α2
+ k

α2

r

μ

)
�

λ
> 1. (7)

It is also possible for the model (2) to have a double-strain-infection equilibrium (all components
are positive) E∗ = (S∗, V ∗

1 , I ∗
1 , I ∗

2 ), where

S∗ = α1

β1
= S̄

I ∗
2 = rα1

α2β1 − α1β2
− μ

κ

V ∗
1 = rS∗

μ + κI ∗
2

I ∗
1 = �

α1
− β2

β1
I ∗

2 − λ

β1
.

It is easily seen that I ∗
2 > 0 if and only if(

β2

α2
+ κ

α2

r

μ

)
α1

β1
> 1. (8)
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Journal of Biological Dynamics 381

Also, in order for I ∗
1 > 0, if and only if

β1�

α1
+ β2μ

κ
>

β2rα1

α2β1 − α1β2
+ λ. (9)

3.2. Basic reproduction number

The basic reproduction number, denoted by R0, is a parameter that plays an important role in
determining the disease persistence. It is defined as ‘the expected number of secondary cases
produced, in a completely susceptible population, by a typical infected individual’ (see, e.g.
[1,6,13]), and can be calculated by using the idea of next generation matrix [13]. Below, we
follow the setting-up and notations in [13] to compute R0 for our model (2).

Let

F =
⎛
⎜⎝β1

�

λ
0

0 β2
�

λ
+ k

r

μ

�

λ

⎞
⎟⎠ , V =

(
α1 0
0 α2

)
.

The matrix F is non-negative and is responsible for new infections, while the V is invertible and
is referred to as the transmission matrix for the model (2). It follows that

FV −1 =
⎛
⎜⎝

β1

α1

�

λ
0

0
β2

α2

�

λ
+ k

α2

r

μ

�

λ

⎞
⎟⎠ .

The basic reproduction number is then given by the spectrum radius of FV −1, that is,

R0 = ρ(FV −1) = max

{
β1

α1

�

λ
,
β2

α2

�

λ
+ k

α2

r

μ

�

λ

}
.

Define

R1 = β1

α1

�

λ
, R2 = β2

α2

�

λ
+ k

α2

r

μ

�

λ
.

By the meanings of the parameters involved, one easily sees the biological meanings of Ri for
i = 1, 2: Ri is the (average) number of secondary cases of strain i produced by an single infected
individual with strain i during his/her infective period. The basic reproduction number can then
be written as

R0 = max{R1, R2}.
By Theorem 2 in [13], we have the following theorem relating the stability/instability of E0 to

the value of R0.

Theorem 3.1 The DFE E0 is asymptotically stable, if R0 < 1; and it becomes unstable if
R0 > 1.

In terms of the dynamical systems theory, the loss of stability of E0 should cause some new
phenomenon. It turns out, as in other epidemic models, that the occurrence of new equilibrium
is the new phenomenon. Indeed, this can be seen from the above theorem and the fact that when
R0 < 1, then neither Equation (4) nor (7) holds; and when R0 > 1, then either Equation (4) or
(7) holds, implying that either E1 or E2 comes into existence.
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382 S.M. Ashrafur Rahman and X. Zou

3.3. Global stability of equilibria

In the previous section, we have seen that when R0 < 1, the disease-free equilibrium E0 is
asymptotically stable. We show that E0 is actually globally asymptotically stable in this case.
After this, we will move on to explore the global stability of other possible equilibria, under
appropriate conditions. To this end, we employ Lyapuov functions of very classic forms used
recently by [7,8,10]. Such Lyapunov functions all take advantage of the properties of the function

g(x) = x − 1 − ln(x),

which is positive in R+ except at x = 1, where it vanishes. The key for the success of such a
Lyapunov function V lies in appropriately organizing terms in the derivative of V along the model
system to achieve the optimal benefit. Fortunately, the recent work [7] has established some very
useful (and precise in some sense) guidelines for this purpose, by using results from combinatory
and graph theory. We will follow these guidelines to achieve our goal.

Theorem 3.2 The DFE E0 is globally asymptotically stable if R0 < 1.

Proof Consider the Lyapunov function

V (S, V1, I1, I2) = S0g

(
S

S0

)
+ V 0

1 g

(
V1

V 0
1

)
+ I1 + I2.

Obviously, V is non-negative in the positive cone R4+ and attains zero at E0. We need to show V̇

is negative definite. Differentiating V along the trajectories of Equation (2), we obtain

V̇ =
(

1 − S0

S

)
Ṡ +

(
1 − V 0

1

V1

)
V̇1 + İ1 + İ2.

Using the model equations and rearranging the related terms, we get

V̇ =
(

1 − S0

S

)
(� − β1I1S − β2I2S − λS) +

(
1 − V 0

1

V1

)
(rS − μV1 − kI2V1)

+ (β1I1S − α1I1) + β2I2S + kI2V1 − α2I2

= (� − β1I1S − β2I2S − λS) − �
S0

S
+ β1I1S

0 + β2I2S
0 + λS0 + (rS − κI2V1 − μV1)

− rS
V 0

1

V1
+ κI2V

0
1 + μV 0

1 + (β1I1S − α1I1) + (β2I2S + κI2V1 − α2I2)

= 2(r + μ)S0 − (r + μ)S − (r + μ)
S0

S
+ I1(β1S

0 − α1) + I2((β2S
0 + κV 0

1 − α2)

+ rS − r
S0

V 0
1

V1 − rS
V 0

1

V1
+ rS0

= μS0

(
2 − S

S0
− S0

S

)
+ α1I1(

β1

α1
S0 − 1)

+ α2I2(

(
β2

α2
S0 + κV 0

1 − 1

)
+ rS0

(
3 − S0

S
− V1

V 0
1

− S

S0

V 0
1

V1

)
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Journal of Biological Dynamics 383

= μS0

(
2 − S

S0
− S0

S

)
+ α1I1(R1 − 1)

+ α2I2(R2 − 1) + rS0

(
3 − S0

S
− V1

V 0
1

− S

S0

V 0
1

V1

)
.

If R0 < 1, then R1 < 1 and R2 < 1. By these and the relation of geometric and arithmetic means,
we conclude V̇ ≤ 0, with equality holding only at the equilibrium E0. Therefore, E0 is globally
asymptotically stable if R0 < 1. �

We have seen from above that when R0 > 1, then E0 becomes unstable and at least one of
the E1 and E2 exists. We now investigate the global stability of these two possible single-strain
equilibria.

Theorem 3.3 Assume that E1 exists (i.e. Equation (4) holds). If

R̄2 :=
(

β2

α2
+ k

α2

r

μ

)
S̄ < 1, (10)

then, E1 is globally asymptotically stable.

Proof Consider the Lyapunov function

V (S, V1, I1, I2) = S̄g

(
S

S̄

)
+ V̄1g

(
V1

V̄1

)
+ Ī1g

(
I1

Ī1

)
+ I2.

By the properties of g(x), we know that the function V is non-negative in the positive cone R4+ and
attains zero at E1. We need to show V̇ is negative definite. Differentiating V along the trajectories
of Equation (2), we obtain

V̇ =
(

1 − S̄

S

)
Ṡ +

(
1 − V̄1

V1

)
V̇1 +

(
1 − Ī1

I1

)
İ1 + İ2.

Using the equations in (2), taking advantage of the equilibrium equations for E1 and rearranging
the terms, we get

V̇ =
(

1 − S̄

S

)
(� − β1I1S − β2I2S − λS) +

(
1 − V̄1

V1

)
(rS − μV1 − kI2V1)

+
(

1 − Ī1

I1

)
(β1I1S − α1I1) + β2I2S + kI2V1 − α2I2

= (� − β1I1S − β2I2S − λS) − �
S̄

S
+ β1I1S̄

+ β2I2S̄ + λS̄ + (rS − κI2V1 − μV1) − rS
V̄1

V1

+ κI2V̄1 + μV̄1 + (β1I1S − α1I1) − β1Ī1S + α1Ī1 + (β2I2S + κI2V1 − α2I2)

= β1Ī1S̄ + λS̄ − λS − (β1Ī1S̄ + λS̄)
S̄

S
+ λS̄ + rS − μV1 − rS

V̄1

V1

+ μV̄1 − β1Ī1S + β1Ī1S̄ + (β1I1S̄ − α1I1) + (β2I2S̄ + κI2V̄1 − α2I2)
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384 S.M. Ashrafur Rahman and X. Zou

= 2β1Ī1S̄ + 2(r + μ)S̄ − μS − (β1Ī1S̄ + rS̄ + μS̄)
S̄

S
+ rS̄

v1

V̄1
− rS

V̄1

V1

+ rS̄ − β1Ī1S +
(

β2I2S̄ + κI2r
S̄

μ
− α2I2

)

= β1Ī1S̄

(
2 − S

S̄
− S̄

S

)
+ μS̄

(
2 − S

S̄
− S̄

S

)
+ rS̄

(
3 − S̄

S
− V1

V̄1
− S

S̄

V̄1

V1

)

+ α2

(
β2

α2
S̄ + k

α2

r

μ
S̄ − 1

)
I2.

Now Equation (10), together with the relation of geometric and arithmetic means, implies that
V̇ ≤ 0 with the equality holding only at the equilibrium E1. By the Lyapunov–LaSalle theorem
[9], we conclude that E1 is globally asymptotically stable in R4+, completing the proof. �

Remark 3.4 Note that Equation (4) is equivalent to S̄ < �/λ, and the opposite of Equation (7) is(
β2

α2
+ k

α2

r

μ

)
�

λ
≤ 1.

Thus, if E1 exists (R1 > 1) but E2 does not exist (R2 ≤ 1),

β2

α2
S̄ + k

α2

r

μ
S̄ − 1 <

(
β2

α2
+ k

α2

r

μ

)
�

λ
− 1 ≤ 0,

implying that Equation (10) holds and hence, E2 is globally asymptotically stable.

Remark 3.5 If the inequality in Equation (10) is reversed, that is, if R̄2 > 1, then E1 becomes
unstable. To see this, we compute the Jacobian matrix of model (2) at E1:

J (E1) =

⎛
⎜⎜⎝

−(β1Ī1 + λ) 0 −β1S̄ −β2S̄

r −μ 0 −κV̄1

β1Ī1 0 β1S̄ − α1 0
0 0 0 β2S̄ + κV̄1 − α2

⎞
⎟⎟⎠ .

It is easy to see J (E1) has the principal eigenvalue

η̄ = β2S̄ + κV̄1 − α2

= β2S̄ + κ
r

μ
S̄ − α2

= α2

{(
β2

α2
+ κ

α2

r

μ

)
S̄ − 1

}

= α1(R̄2 − 1).

Thus, if R̄2 > 1, then η̄ > 0 and hence, E1 is unstable, having a one-dimensional unstable
manifold pointing to the interior of the R4+.

Parallel to Theorem 3.3, we have the following theorem for E2.
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Theorem 3.6 Assume that E2 exists (i.e. Equation (7) holds). If

R̄1 := β1

α1
Ŝ < 1, (11)

then E2 is globally asymptotically stable.

Proof The proof of this theorem is symmetric to that of Theorem 3.3, and hence we omit some
details. Let us consider the Lyapunov function

V (S, V1, I1, I2) = Ŝg

(
S

Ŝ

)
+ V̂1g

(
V1

V̂1

)
+ I1 + Î2g

(
I2

Ī2

)
.

Differentiating V along the trajectories of Equation (2), we obtain

V̇ =
(

1 − Ŝ

S

)
Ṡ +

(
1 − V̂1

V1

)
V̇1 + İ1 +

(
1 − Î2

I2

)
İ2.

Using the Equations in (2) and rearranging the terms, we get

V̇ =
(

1 − Ŝ

S

)
(� − β1I1S − β2I2S − λS) +

(
1 − V̂1

V1

)
(rS − μV1 − kI2V1)

+ β1I1S − α1I1 +
(

1 − Î2

I2

)
(β2I2S + kI2V1 − α2I2)

= � − β1I1S − β2I2S − λS − �
Ŝ

S
+ β1I1Ŝ + β2I2Ŝ + λŜ + rS − μV1 − κI2V1 − rS

V̂1

V1

+ μV̂1 + κI2V̂1 + β1I1S − α1I1 + β2I2S + κI2V1 − α2I2 − β2Î2S − κÎ2V1 + α2Î2

= β2Î2Ŝ + λŜ − μS − (β2Î2Ŝ + λŜ)
Ŝ

S
+ λŜ − (r

Ŝ

V̂1

− κÎ2)V1 − rS
V̂1

V1

+ (rŜ − κÎ2V̂1) − β2Î2S − κÎ2V1 + (β2Î2Ŝ + κÎ2V̂1)

+ (β2I2Ŝ + κI2V̂1 − α2I2) + (β1I1Ŝ − α1I1)

= 2β2Î2Ŝ + 2(r + μ)Ŝ − μS − (β2Î2Ŝ + rŜ + μŜ)
Ŝ

S
− r

Ŝ

V̂1

V1 − rS
V̂1

V1

+ rŜ − β2Î2S + α1I1

(
β1

α1
Ŝ − 1

)

= β2Î2Ŝ

(
2 − S

Ŝ
− Ŝ

S

)
+ μŜ

(
2 − S

Ŝ
− Ŝ

S

)
+ rŜ

(
3 − Ŝ

S
− V1

V̂1

− S

Ŝ

V̂1

V1

)

+ α1I1

(
β1

α1
Ŝ − 1

)
.

By Equation (11) and the relation of geometric and arithmetic means, we conclude that V̇ ≤ 0,
and the equality holds only at E2. By the Lyapunov–LaSalle theorem, we conclude that E2 is
globally asymptotically stable in R4+, completing the proof of the theorem. �
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Remark 3.7 The existence of E2 (i.e. I2 > 0, or Equation (7)) implies S̄ < �/λ. On the other
hand, the opposite of Equation (4) is (β1�)/(α1λ) ≤ 1. Therefore, if E2 exists but E1 does not
exist, then Equation (11) holds and hence, E2 is globally asymptotically stable.

Remark 3.8 If the inequality in Equation (11) is reversed, that is, if R̄1 > 1, then E2 becomes
unstable. To show this, we first calculate the Jacobian matrix of Equation (2) at E2:

J (E2) =

⎛
⎜⎜⎝

−(β2Î2 + λ) 0 −β1Ŝ −β2Ŝ

r −μ 0 −κV̂1

0 0 β1Ŝ − α1 0
β2Î2 κÎ2 0 β2Ŝ + κV̂1 − α2

⎞
⎟⎟⎠ .

It is easy to see that J (E2) has the principle eigenvalue

η̂ = β1Ŝ − α1 = α1

(
β1

α1
Ŝ − 1

)
= α1(R̄1 − 1).

Thus, if R̄1 > 1, then η̂ > 0, and hence, E2 is unstable, having a one-dimensional unstable
manifold pointing to the interior of R4+.

Theorem 3.9 The endemic equilibrium E∗, as long as it exists, is always globally asymptotically
stable in the interior of R4+.

Proof Assume E∗ exists. Then the following function is well defined in R4+ :

V (S, V1, I1, I2) = S∗g
(

S

S∗

)
+ V ∗

1 g

(
V1

V ∗
1

)
+ I ∗

1 g

(
I1

I ∗
1

)
+ I ∗

2 g

(
I2

I ∗
2

)
.

Differenting V along the trajectories of Equation (2), we obtain

V̇ =
(

1 − S∗

S

)
Ṡ +

(
1 − V ∗

1

V1

)
V̇1 +

(
1 − I ∗

1

I1

)
İ1 +

(
1 − I ∗

2

I2

)
İ2

=
(

1 − S∗

S

)
(� − β1I1S − β2I2S − λS) +

(
1 − V ∗

1

V1

)
(rS − kI2V1 − μV1)

+
(

1 − I ∗
1

I1

)
(β1I1S − α1I1) +

(
1 − I ∗

2

I2

)
(β2I2S + kI2V1 − α2I2)

= (� − β1I1S − β2I2S − λS) − �
S∗

S
+ β1I1S

∗ + β2I2S
∗ + λS∗ + (rS − κI2V1 − μV1)

− rS
V ∗

1

V1
+ κI2V

∗
1 + μV ∗

1 + (β1I1S − α1I1) − β1I
∗
1 S + α1I

∗
1 + (β2I2S + κI2V1 − α2I2)

− β2I
∗
2 S − κI ∗

2 V1 + α2I
∗
2

= (β1I
∗
1 S∗ + β2I

∗
2 S∗ + λS∗ − λS) − (β1I

∗
1 S∗ + β2I

∗
2 S∗ + λS∗)

S∗

S
+ λS∗ + rS − μV1

− rS
V ∗

1

V1
+ μV ∗

1 − β1I
∗
1 S + β1I

∗
1 S∗ + (β1I1S

∗ − α1I1) + (β2I2S
∗ + κI2V

∗
1 − α2I2)

− β2I
∗
2 S − κI ∗

2 V1 + α2I
∗
2
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= 2β1I
∗
1 S∗ + β2I

∗
2 S∗ + 2(r + μ)S∗ − μS − (β1I

∗
1 S∗ + β2I

∗
2 S∗ + rS∗ + μS∗)

S∗

S

+ (−μV1 − κI ∗
2 V1) − rS

V ∗
1

V1
+ (μV ∗

1 + α2I
∗
2 ) − β1I

∗
1 S − β2I

∗
2 S

= 2β1I
∗
1 S∗ + β2I

∗
2 S∗ + 2(r + μ)S∗ − μS − (β1I

∗
1 S∗ + β2I

∗
2 S∗ + rS∗ + μS∗)

S∗

S
− rS∗ V1

V ∗
1

− rS
V ∗

1

V1
+ (rS∗ + β2I

∗
2 S∗) − β1I

∗
1 S − β2I

∗
2 S

= β1I
∗
1 S∗

(
2 − S

S∗ − S∗

S

)
+ β2I

∗
2 S∗

(
2 − S

S∗ − S∗

S

)
+ μS∗

(
2 − S

S∗ − S∗

S

)

+ rS∗
(

3 − S∗

S
− V1

V ∗
1

− S

S∗
V ∗

1

V1

)
.

Again, by the relation of geometric and arithmetic means, we conclude that V̇ ≤ 0, and the equality
holds only at E∗. Therefore, E∗ is globally asymptotically stable and the proof is completed. �

We have established the global stability of E∗ whenever it exists, and we have known that E∗
exists if and only if both Equations (8) and (9) hold. On the other hand, by Theorems 3.2–3.6
and Remarks 3.4–3.8, we know that E∗ can exist only when R̄1 > 1 and R̄2 > 1. Obviously,
the condition R̄2 > 1 is exactly Equation (8). Tedious but straightforward verification shows that
R̄1 > 1 is equivalent to Equation (9). Combining this analysis with Theorem 3.9, we obtain the
following.

Corollary 3.10 If

1 <

(
β2

α2
+ κ

α2

r

μ

)
S̄ <

(
β2

α2
+ κ

α2

r

μ

)
�

λ
(12)

and

1 <
β1

α1
Ŝ <

β1

α1

�

λ
, (13)

both hold, then there is a positive (double-strain-infection) equilibrium E∗ which is globally
asymptotically stable in the interior of R4+.

To conclude this section, we include some numeric simulations to demonstrate the results
obtained above. Our intention is to observe the effect of vaccination for strain 1 on the infection
with strain 2 when the transmission coefficients, β2 from S to I2, and κ from V1 to I2 are different.

To begin, we set the parameter values, without vaccination, which generate Figure 2 depicting
strain 1 as endemic but strain 2 as dying out. By adding the vaccination for strain 1 with an
appropriate rate r > 0, it is observed in Figure 3 that strain 1 may also die out. Here we choose
values of κ smaller than β2. However, the increased values of κ may facilitate strain 2 to survive
and becomes endemic, as shown in Figure 4.

The model also demonstrates possible co-infections as shown in Figure 5, with the parameter
values given in the caption of this figure.

4. Discussion

In this paper, we propose a system of ordinary differential equations to model the disease dynamics
of two strains of influenza with only a vaccination for strain 1 being implemented. Investigated
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Figure 2. Endemic with strain 1. Parameter values are β1 = 0.00003, β2 = 0.00002, γ1 = 0.07, γ2 = 0.09, ν1 = 0.10,

ν2 = 0.10, r = 0.0, κ = 0.00001, μ = 0.02 and � = 200.
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Figure 3. Stable disease-free equilibrium: both strain die out. Parameter values are β1 = 0.00003, β2 = 0.00002,

γ1 = 0.07, γ2 = 0.09, ν1 = 0.10, ν2 = 0.10, r = 0.60, κ = 0.00001, μ = 0.02 and � = 200.
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Figure 4. Endemic with strain 2 by increasing κ . Parameter values are β1 = 0.00003, β2 = 0.00002, γ1 = 0.07,

γ2 = 0.09, ν1 = 0.10, ν2 = 0.10, r = 0.60, κ = 0.00003; μ = 0.02 and � = 200.
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Figure 5. Endemic with both strains. Parameter values are β1 = 0.0005, β2 = 0.0002, γ1 = 0.08, γ2 = 0.09,

ν1 = 0.01, ν2 = 0.01, r = 0.40, κ = 0.0003, μ = 0.02 and � = 200.

are the topics of existence and non-existence of various equilibria and their stabilities. Unlike
most other works on epidemic models where only local stability are addressed, here we are able
to obtain global stability for each of these equilibria under respective and sharp (necessary and
sufficient) conditions.

For convenience of discussing the implications of these mathematical results, let us rewrite the
two key in-direct parameters R1 and R2 in terms of the direct model parameters as shown below:

R1 = β1

α1

�

(r + μ)
, R2 = β2

α2

�

(r + μ)
+ κ

α2

�

μ

r

(r + μ)
. (14)

Since our major concern is the impact of the vaccination on disease dynamics, let us consider these
two parameters as functions of the vaccination rate r . One can easily see that R1(r) is decreasing
in r with

R1(0) = β1

α1

�

μ
, R1(∞) = 0; (15)

and R2(r) is increasing in r if β2 < κ; decreasing in r if β2 > κ; and remains unchanged in r if
β2 = κ . It is also obvious that

R2(0) = β2

α2

�

μ
, R2(∞) = κ

α2

�

μ
. (16)

With the above information and the results in Section 3, we conclude that while the vaccination
is always beneficial for controlling strain 1 (as expected), its impact on strain 2 depends on the
values of β2 and κ: if β2 > κ , it plays a positive role; and if β2 < κ , it has a negative impact in
controlling strain 2. This is natural and reasonable because larger κ (than β2) means that vaccinated
individuals are more likely to be infected by strain 2 than those who are not vaccinated, and thus,
is helpful to strain 2. Smaller κ (than β2) implies the opposite. For example, if κ < β2 and values
of the model parameters are such that

κ

α2

�

μ
< 1 <

β2

α2

�

μ
,
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then, sufficiently large r indeed can help reduce R2 to some value less than 1, helping in eliminating
strain 2. In opposite, if κ > β2 and the values of the model parameters are such that

β2

α2

�

μ
< 1 <

κ

α2

�

μ
,

strain 2, which is otherwise becoming extinct, may become endemic when vaccination rate is
sufficiently large.

From the above discussion, we see that introduction of a vaccination for strain 1 does have an
influence on strain 2 and it can even result in the persistence of strain 2. Such a feature has also
been numerically observed in [11] where the authors used a similar two-strain model containing
a vaccination for newborns and found that (numerically) there is a vaccine level above which the
second strain can emerge as a result of vaccination campaign. Unlike [11], our model does not
incorporate super-infection but also exhibits co-circulation of strains under some conditions.

The model can be further modified to contain two vaccinations (the situation in late 2009 when
the vaccine for the swine flu also became available), as well as partial cross-immunity and super-
infection. It is also worthwhile to consider the effect of delay on vaccine-induced immunity. We
leave these as possible future projects.
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