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This paper investigates consequences of vaccine implementation strategies for infectious diseases by a
mathematical model. For an infectious disease, the degree of infection may vary widely among the indi-
viduals. Reports show that individuals belonging to certain groups possess considerably higher risk to
infection. Incorporating this phenomenon into vaccination strategies, the host is categorized into differ-
ent groups to measure the outcome of the vaccination. A mathematical model is proposed and analysed
to evaluate this measure. Our results suggest that vaccinating a group with certain priority may lead to
elimination of the disease effectively. The strategy is cost-effective as well.
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AMS Subject Classification: 34K18; 34K20; 92D30

1. Introduction

Vaccine has had a successful history since Edward Jenner’s discovery of smallpox vaccine in
the eighteenth century [18]. His innovation is widely regarded as the foundation of immunology.
With the rapid pace of vaccine development medical science has saved millions of lives from
dreadful diseases during the last two centuries. Small pox eradication can be worth mentioning
as a successful example in this regard [1, 30]. Vaccines also contribute significantly to reducing
infections of influenza, polio and many other life threatening diseases [21, 29]. In today’s life, it
is unusual and rare for a child not to receive any vaccines.

A vaccine typically contains an agent that resembles a disease-causing microorganism which
stimulates the immune system of host and builds up antibody against the virus to recognize the
agent as a foreigner. Thus, whenever such a microorganism is encountered within a host, the
immune system destroys it. This kind of phenomenon is known as immunity. Thus, as long as a
vaccine for a disease is available, it is an ideal means of protecting a healthy population from the
disease.

An individual may receive vaccines available for a disease that is prevalent in his region.
Vaccines of some diseases are already developed and one can take the vaccine if the particular
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308 S.M.A. Rahman and X. Zou

disease is threat for him. For example, an individual can take a polio vaccine or a seasonal flu
vaccine which are already available. However, when a new infectious disease emerges but no
vaccine is available for it, the disease may cause significant infections and deaths. It takes some
time to devise an effective vaccine if successful.

Once a vaccine is available, a natural and immediate question arises: how to allocate and
implement this vaccine [31, 34]. Certainly we cannot vaccinate all the individuals to eradicate
the disease overnight. In addition to social and ethical issues, high cost may prevent universal
distribution of vaccines [25]. Certain group of individuals may pose higher risk to the infections
than the others. In influenza, for example, school-going children can be infected more easily
and can spread the disease more rapidly than other individuals [10, 16, 20, 21]. Thus to control
infections by using vaccines, a proper distribution and implementation strategy is very important.
Priority may need to be given to certain group(s) or individuals by the health professionals.
Current practice of vaccine allocation highlights the importance of identifying the groups which
are at highest risk for adverse health [24]. Effectiveness of such a vaccine allocation strategy can
be determined through analysis of a mathematical model. In this paper, we aim to shed some
light on this critical issue and hope to provide a useful guideline to the policy-maker.

To properly implement the vaccination campaign, a plausible and intellectual idea may be
to immunize individuals belonging to certain groups or locations that are most vulnerable to
infections. The transmission rates in these groups are much higher than those in the other groups
in which individuals are less susceptible or they are located in a comparatively safe area. The
individuals in the target groups may need more protections so that the overall infections can
be controlled effectively. In this paper, we formulate and analyse a mathematical model that
incorporates prioritized group-vaccination strategy.

The rest of this paper is organized as follows. In Section 2, we formulate a two-group model
based on the individual’s risk status. The basic reproduction number of the model, the equilibria
of the model and their stability, as well as the disease persistence are discussed in Section 3.
Finally, in Section 4, we discuss the policy of vaccine allocation and distribution based on the
model outcomes and offer some concluding remarks.

2. Mathematical model

As indicated in the previous section, we divide the total population into two groups: the risky
(r) group in which the infection rates are much higher within the group; and the critical (c)
group in which the individuals are conscious in their social behaviour, or the individuals that
remain isolated and are less likely to have contact with the infected group, and subsequently
their infection rate is much lower within the group.

Let the number of population in each group be divided into susceptible (S) and infected (I)
sub-classes. Having infection from either infected sub-class, a susceptible individual becomes
infected and remains in that sub-class in his/her entire life. The susceptible individuals from each
group are vaccinated at a constant rate and transferred into a common vaccinated (V) sub-class.
We do not consider the vertical infection and assume that susceptibles are recruited at constant
rates. The flow diagram of population is shown in Figure 1.

As mentioned earlier, we consider two different groups in the population according to their
risk level. The symbols and notations are explained in Table 1. The infection mechanism is
considered to be followed by saturating incidence [2, 3, 15] defined by

h(I) = I

1 + αI
, (1)
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Journal of Biological Dynamics 309

Figure 1. Schematic diagram.

Table 1. Description of variables and parameters of model (3).

Parameter Description

Sr Number of susceptible in group r
Sc Number of susceptible in group c
Ir Number of infected in group r
IP Number of infected in group c
V Number of vaccinated individuals
N Total number of individuals
β

j
i Contact rate of susceptible and infective (i, j = r, c)

νi Disease-induced death rate (i = r, c)
μ Natural death rate
θ r Vaccination rate to the group r
θ c Vaccination rate to the group c

where α ≥ 0 determines the saturation level when the infectious population is large. When α =
0, this reduces to the mass action incidence rate. The infection rate increases with the number of
infected individuals when this number is small. As the infected number increases the infection
rate becomes plateaued. This phenomenon reflects the saturation of infected numbers also known
as ‘crowding effect’. With this assumption the dynamics of the population is governed by the
following equations:

Ṡr = �r −
(

βr
r

Ir

1 + αrIr
+ βr

c

Ic

1 + αcIc

)
Sr − (μ + θ r)Sr,

Ṡc = �c −
(

βc
r

Ir

1 + αrIr
+ βc

c

Ic

1 + αcIc

)
Sc − (μ + θ c)Sc,

İ r =
(

βr
r

Ir

1 + αrIr
+ βr

c

Ic

1 + αcIc

)
Sr − (μ + νr)Ir,

İ c =
(

βc
r

Ir

1 + αrIr
+ βc

c

Ic

1 + αcIc

)
Sc − (μ + νc)Ic,

V̇ = θ rSr + θ cSc − μV .

(2)
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310 S.M.A. Rahman and X. Zou

We distinguish the groups according to contact rates and our assumption is

βr
r � βc

r ≥ βr
c � βc

c .

3. Analysis of the model

3.1. Well-posedness of the model

The model (2) consists of five equations, but the last equation is decoupled. To analyse the model,
it suffices to consider the dynamics of the following system:

Ṡr = �r −
(

βr
r

Ir

1 + αrIr
+ βr

c

Ic

1 + αcIc

)
Sr − (μ + θ r)Sr,

Ṡc = �c −
(

βc
r

Ir

1 + αrIr
+ βc

c

Ic

1 + αcIc

)
Sc − (μ + θ c)Sc,

İ r =
(

βr
r

Ir

1 + αrIr
+ βr

c

Ic

1 + αcIc

)
Sr − (μ + νr)Ir,

İ c =
(

βc
r

Ir

1 + αrIr
+ βc

c

Ic

1 + αcIc

)
Sc − (μ + νc)Ic.

(3)

For biological reason, we need to investigate the boundedness and positivity of the solutions of
our model. To this end, the first equation can be written as

Ṡr = �r − φ(t)Sr,

where

φ(t) = βr
r

Ir

1 + αrIr
+ βr

c

Ic

1 + αcIc
+ μ + θ r.

It follows that

Sr = Sr
0 e− ∫ t

0 φ(s) ds + �r e− ∫ t
0 φ(s) ds

∫ t

0
e
∫ τ

0 φ(s) ds dτ ,

which is non-negative as long as Sr
0 ≥ 0. Similarly, it can be shown that Sc ≥ 0. To show that Ir

and Ic are non-negative, consider the sub-system of Equation (3)

İ r =
(

βr
r

Ir

1 + αrIr
+ βr

c

Ic

1 + αcIc

)
Sr − (μ + νr)Ir,

İ c =
(

βc
r

Ir

1 + αrIr
+ βc

c

Ic

1 + αcIc

)
Sc − (μ + νc)Ic.

(4)

Since Sr and Sc are non-negative, this sub-system is cooperative. By monotone property [32], we
conclude that Ir and Ic are non-negative provided that Ir(0) ≥ 0 & Ic(0) ≥ 0.

Now, we consider the boundedness of the model. By adding all the equations in (3), it can be
shown that the total number of individuals satisfies

lim
t→∞ sup(Sr + Sc + Ir + Ic) ≤ (�r + �c)

(μ + θ)
,

where θ = min{θ r, θ c}. Therefore, the biologically feasible region of the model (3) is

	 =
{
(Sr, Sc, Ir, Ic) : Sr, Sc, Ir, Ic ≥ 0, Sr + Sc + Ir + Ic ≤ (�r + �c)

(μ + θ)

}
.
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3.2. Basic reproduction number

The model (3) has a disease-free equilibrium (DFE) E0(�
r/(μ + θ r), �c/(μ + θ c), 0, 0), but

there is no boundary equilibria (i.e. one infected class is present while other is absent). The
stability of E0 is closely related to the notion of the basic reproduction number for the model,
denoted by R0, which plays an important role in determining the disease persistence. The number
R0 is defined as ‘the expected number of secondary cases produced, in a completely susceptible
population, by a typical infected individual’ (see, e.g. [7]). This threshold parameter determines
whether the disease persists or dies out from the population. We use next-generation matrix
[8] to compute R0. The non-negative matrix F and the non-singular M -matrix V, known as
new-infection and transition matrices respectively, for the system (3), are given by

F =

⎛
⎜⎜⎝

βr
r

�r

(μ + θ r)
βr

c

�r

(μ + θ r)

βc
r

�c

(μ + θ c)
βc

c

�c

(μ + θ c)

⎞
⎟⎟⎠ , V =

(
μ + νr 0

0 μ + νc

)
.

It follows that

FV−1 =

⎛
⎜⎜⎝

βr
r

�r

(μ + θ r)(μ + νr)
βr

c

�r

(μ + θ r)(μ + νc)

βc
r

�c

(μ + θ c)(μ + νr)
βc

c

�c

(μ + θ c)(μ + νc)

⎞
⎟⎟⎠ .

The basic reproduction number is then defined by

R0 = ρ(FV−1).

By Theorem 2 in [8], we obtain the following result on the stability/instability of E0.

Theorem 3.1 If R0 < 1, the DFE E0 is locally asymptotically stable; it becomes unstable if
R0 > 1.

3.3. Global stability of E0

In this section, we study the global stability of the DFE E0 for the model (3). The local stability
of E0 is already established by Theorem 3.1; however, we use this theorem to further obtain the
global stability of E0.

The Jacobian matrix of Equation (3) at E0 is given by

J(E0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(μ + θ r) 0 −βr
r

Sr
0

N0
−βr

c

Sr
0

N0

0 −(μ + θ c) −βc
r

Sc
0

N0
−βc

c

Sc
0

N0

0 0 βr
r

Sr
0

N0
− (μ + νr) βr

c

Sr
0

N0

0 0 βc
r

Sc
0

N0
βc

c

Sc
0

N0
− (μ + νc)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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312 S.M.A. Rahman and X. Zou

Clearly, −(μ + θ r) and −(μ + θ c) are two eigenvalues of J(E0) which are negative, and the
other two eigenvalues are determined by the lower right block of J(E0), that is,

J22 =

⎛
⎜⎜⎝

βr
r

�r

(μ + θ r)
− (μ + νr) βr

c

�r

(μ + θ r)

βc
r

�c

(μ + θ c)
βc

c

�c

(μ + θ c)
− (μ + νc)

⎞
⎟⎟⎠ .

Hence, the stability of E0 fully depends on the matrix J22.
For any given square matrix A, let s(A) denote the stability modulu of A (i.e. the largest

real part of all eigenvalues of A). Combining the above observation and with Theorem 3.1, we
immediately have following corollary.

Corollary 3.2 If R0 < 1, then s(J22) < 0; if R0 > 1, then s(J22) > 0.

We are now able to prove the following global result.

Theorem 3.3 When R0 < 1, E0 is indeed globally asymptotically stable.

Proof From the Ṡr equation in (3), we have Ṡr ≤ �r − (μ + θ r)Sr, which implies that

lim sup
t→∞

Sr(t) ≤ �r

μ + θ r
.

Similarly,

lim sup
t→∞

Sc(t) ≤ �c

μ + θ c
.

Thus, for any ε > 0, there exists T1 > 0 such that

Sr(t) ≤ �r + ε

(μ + θ r)
, Sc(t) ≤ �c + ε

(μ + θ c)
for t ≥ T1. (5)

Applying the estimates in Equations (5) to (4), we obtain

(
İ r

İc

)
=

⎛
⎜⎜⎜⎝
(

βr
r

Ir

1 + αrIr
+ βr

c

Ic

1 + αcIc

)
Sr − (μ + νr)Ir

(
βc

r

Ir

1 + αrIr
+ βc

c

Ic

1 + αcIc

)
Sc − (μ + νc)Ic

⎞
⎟⎟⎟⎠

≤
(

(βr
r Ir + βr

cIc)Sr − (μ + νr)Ir

(βc
r Ir + βc

c Ic)Sc − (μ + νc)Ic

)

≤

⎛
⎜⎜⎝

βr
r

�r + ε

(μ + θ r)
− (μ + νr) βr

c

�r

(μ + θ r)

βc
r

�c + ε

(μ + θ c)
βc

c

�c

(μ + θ c)
− (μ + νc)

⎞
⎟⎟⎠
(

Ir

Ic

)
for t ≥ T1.

Thus, the sub-system (4) has an upper comparison system which is linear and cooperative with
following coefficient matrix:

A(ε) =

⎛
⎜⎜⎝

βr
r

�r + ε

(μ + θ r)
− (μ + νr) βr

c

�r + ε

(μ + θ r)

βc
r

�c + ε

(μ + θ c)
βc

c

�c + ε

(μ + θ c)
− (μ + νc)

⎞
⎟⎟⎠ .
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Journal of Biological Dynamics 313

Obviously, A(ε) depends on ε continuously and A(0) = J22. Since s(J22) < 0, by continuity, we
can choose ε sufficiently small so that s(A(ε)) < 0. Thus, all solutions of this comparing linear
system tend to (0, 0)T as → ∞. By the standard comparison argument, we conclude that for
every non-negative solution of Equation (3), its Ir and Ic components also approach to 0 as
t → ∞.

The above established limits Ir(t) → 0 and Ic(t) → 0 as t → ∞ indicate that the sub-system
of Equation (3) consisting of Ṡr and Ṡc equations has the following limit system:

Ṡr = �r − (μ + θ r)Sr,

Ṡc = �c − (μ + θ c)Sc.
(6)

Since every solution of Equation (6) tends to (�r/(μ + θ r), �c/(μ + θ c))T, by the theory of
asymptotically autonomous systems (see,e.g. Castillo-Chaves and Thieme [6]), the (Sr(t), Sc(t))
portion of any non-negative solution of Equation (3) also approaches (�r/(μ + θ r), �c/(μ +
θ c))T. Therefore, every non-negative solution of Equation (3) converges to the DFE E0. The
global attractiveness of E0 and the local stability established in Theorem 3.1 lead to the global
asymptotical stability of E0, completing the proof of the theorem. �

3.4. Persistence of the disease

When R0 > 1, the DFE becomes unstable and it is natural to expect that the infectious popula-
tions Ir and Ic will remain persistent in this case. In this subsection, we confirm this expectation.
Indeed, we will prove the following theorem.

Theorem 3.4 Assume that R0 > 1. Then, the disease is uniformly persistent in the sense that
there exists an η > 0 such that for every positive solution of Equation (3), there holds

lim inf
t→∞ Ir(t) > η, lim inf

t→∞ Ic(t) > η.

Moreover, there exists an endemic equilibrium in this case.

Proof We shall apply a theorem in [33] to prove the uniform persistence. To this end, we set

X = {(Sr, Sc, Ir, Ic) ∈ R
4
+ : Sr, Sc, Ir, Ic ≥ 0},

X0 = {(Sr, Sc, Ir, Ic) ∈ X : Ir, Ic > 0},

Y = X

X0
= {(Sr, Sc, 0, 0) ∈ X : Sr, Sc ≥ 0, and Ir = 0 or Ic = 0}.

Now, we show that the system (3) is uniformly persistent with respect to (X0, Y ). Since Y contains
only a single equilibrium E0, we need to show that Ws(E0) ∩ X0 = φ, where Ws(E0) denotes
the stable manifold of E0. Suppose this is not true. Then, there is a (Sr

0, Sc
0, Ir

0, Ic
0) ∈ X0 and the

corresponding solution of Equation (3) with this initial point satisfies

lim
t→∞(Sr(t), Sc(t), Ir(t), Ic(t)) →

(
�r

(μ + θ r)
,

�c

(μ + θ c)
, 0, 0

)
.
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314 S.M.A. Rahman and X. Zou

Thus, for any ξ > 0, there is T2 > 0 such that

(�r − ξ)

(μ + θ r)
≤ Sr ≤ (�r + ξ)

(μ + θ r)
,

(�c − ξ)

(μ + θ c)
≤ Sc ≤ (�c + ξ)

(μ + θ c)

0 ≤ Ir ≤ ξ , 0 ≤ Ic ≤ ξ ,

for t ≥ T2. (7)

It follows from Equations (3) and (7) that

(
İ r

İc

)
≥

⎛
⎜⎜⎝

βr
r

�r − ξ

μ + θ r

1

1 + αrξ
− (μ + νr) βr

c

�r − ξ

μ + θ r

1

1 + αcξ

βc
r

�c − ξ

μ + θ c

1

1 + αrξ
βc

c

�c − ξ

μ + θ c

1

1 + αcξ
− (μ + νc)

⎞
⎟⎟⎠
(

Ir

Ic

)
,

=: J̃(ξ)

(
Ir

Ic

)
, for t ≥ T2.

This means that the sub-system (4) has a lower comparison system which is linear and
cooperative with the coefficient matrix

J̃(ξ) =

⎛
⎜⎜⎝

βr
r

�r − ξ

μ + θ r

1

1 + αrξ
− (μ + νr) βr

c

�r − ξ

μ + θ r

1

1 + αcξ

βc
r

�c − ξ

μ + θ c

1

1 + αrξ
βc

c

�c − ξ

μ + θ c

1

1 + αcξ
− (μ + νc)

⎞
⎟⎟⎠ .

Note that s(J̃(ξ)) is continuous in ξ and s(J̃(0)) > 0 (since R0 > 1), we can choose ξ > 0 suf-
ficiently small such that s(J̃(ξ)) > 0, implying that positive solutions of the lower comparing
system grow exponentially. By the standard comparison argument, Ir(t) or/and Ic(t) components
of the solution of Equation (3) grow unbounded as t → ∞. This is a contradiction to the fact
that the solutions of the system (3) are ultimately bounded. Therefore, Ws(E0) ∩ X0 = φ. Now,
the persistence of the system (3) follows from Theorem 4.6 in [33]. Furthermore, by Theorem
3.3 in [14], we know that uniform persistence and the dissipativity established in the previous
subsection implies that system (3) has an endemic equilibrium (i.e. all components are positive).
The proof of the theorem is completed. �

The stability of E∗ will be discussed in the next subsection.

3.5. Global stability of E∗

In this subsection, we investigate the global stability of the endemic equilibrium E∗ under the
condition R0 > 1. To this end, we apply a Lyapunov function similar to those recently used by
Guo et al. [12], Korobeinikov and Maini [17] and McCluskey [22]. Such Lyapunov functions
take advantages of the properties of the function

g(x) = x − 1 − ln(x),

which is positive in (0, ∞) except at x = 1, where it vanishes. For convenience of notations in
constructing Lyapunov functions, we also make use of the following two functions:

fi(x) = x

1 + αix
, i = c, r.

Now, we establish following result.
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Theorem 3.5 The endemic equilibrium E∗ is globally attractive whenever it exists.

Proof Consider the Lyapunov function

V = Sr
∗g

(
Sr

Sr∗

)
+ Sc

∗g

(
Sc

Sc∗

)
+ Ir

∗g

(
Ir

Ir∗

)
+ Ic

∗g

(
Ic

Ic∗

)
+ V∗g

(
V

V∗

)
.

Obviously, V is non-negative in the positive cone 	 and attains zero at E∗. We need to show that
V̇ is negative definite. Differentiating V along the trajectories of Equation (2), we obtain

V̇ =
(

1 − Sr
∗

Sr

)
Ṡr +

(
1 − Sc

∗
Sc

)
Ṡc +

(
1 − Ir

∗
Ir

)
İ r +

(
1 − Ic

∗
Ic

)
İ c +

(
1 − V∗

V

)
V̇

=
(

1 − Sr
∗

Sr

)(
�r − βr

r

IrSr

1 + αrIr
− βr

c

IcSr

1 + αcIc
− (μ + θ r)Sr

)

+
(

1 − Sc
∗

Sc

)(
�c − βc

r

IrSc

1 + αrIr
+ βc

c

IcSc

1 + αcIc
− (μ + θ c)Sc

)

+
(

1 − Ir
∗

Ir

)(
βr

r

IrSr

1 + αrIr
+ βr

c

IcSr

1 + αcIc
− (μ + νr)Ir

)

+
(

1 − Ic
∗

Ic

)(
βc

r

IrSc

1 + αrIr
+ βc

c

IcSc

1 + αcIc
− (μ + νc)Ic

)

+
(

1 − V∗
V

)
(θ rSr + θ cSc − μV).

Now, using the equilibrium equation at E∗ and simplifying, we have

V̇ = βr
r Sr

∗ fr(I
r
∗)
[

2 + fr(Ir)

fr(Ir∗)
− Ir

∗Sr fr(Ir)

IrSr∗ fr(Ir∗)
− Sr

∗
Sr

− Ir

Ir∗

]

+ βr
cSr

∗ fc(I
c
∗)
[

2 + fc(Ic)

fc(Ic∗)
− Ir

∗Sr fc(Ic)

IrSr∗ fc(Ic∗)
− Sr

∗
Sr

− Ic

Ic∗

]

+ βc
r Sc

∗ fr(I
r
∗)
[

2 + fr(Ir)

fr(Ir∗)
− Ic

∗Sc fr(Ir)

IcSc∗ fr(Ir∗)
− Sc

∗
Sc

− Ic

Ic∗

]

+ βc
c Sc

∗ fc(I
c
∗)
[

2 + fc(Ic)

fc(Ic∗)
− Ic

∗Sc fc(Ic)

IcSc∗ fc(Ic∗)
− Sc

∗
Sc

− Ic

Ic∗

]

+ μSr
∗

(
2 − Sr

∗
Sr

− Sr

Sr∗

)
+ μSc

∗

(
2 − Sc

∗
Sc

− Sc

Sc∗

)

+ θ rSr
∗

(
3 − Sr

∗
Sr

− V

V∗
− SrV∗

Sr∗V

)
+ θ cSc

∗

(
3 − Sc

∗
Sc

− V

V∗
− ScV∗

Sc∗V

)
.

In the above expression, the last four terms are obviously non-positive. We only need to show that
the terms in the square brackets are non-positive. Due to similarity, we only deal with one group
of square brackets and show that it is non-positive. By using g function defined in Equation (7),
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we proceed with the expression of first square bracket of the last equation as

2 + fr(Ir)

fr(Ir∗)
− Ir

∗Sr fr(Ir)

IrSr∗ fr(Ir∗)
− Sr

∗
Sr

− Ir

Ir∗

= −g

(
Sr

Sr∗

)
− ln

(
Sr

∗
Sr

)
− g

(
Ir
∗Sr fr(Ir)

IrSr∗ fr(Ir∗)

)
− ln

(
Ir
∗Sr fr(Ir)

IrSr∗ fr(Ir∗)

)
+ fr(Ir)

fr(Ir∗)
− Ir

Ir∗

≤ − ln

(
Ir
∗ fr(Ir)

Ir fr(Ir∗)

)
+ fr(Ir)

fr(Ir∗)
− Ir

Ir∗

= − ln

(
1 + αrIr

∗
1 + αrIr

)
+ Ir

Ir∗

(
1 + αrIr

∗
1 + αrIr

)
− Ir

Ir∗
.

Now, we show that the above quantity is non-positive. Let

h(x) = − ln

(
1 + ax0

1 + ax

)
+ x

x0

1 + ax0

1 + ax
− x

x0
.

Taking the derivative, we have

h′(x) = 1

(1 + ax)2x0
[ax0(1 + ax) + 1 + ax0 − (1 + ax)2].

Note that h′(x) only has a positive zero x0. It is easy to see that h(x) attains the maximum only
at x0, which is 0. Consequently, V̇ ≤ 0 with equality holding only at the equilibrium E∗. By
Hale and Lunel [13], all positive solutions approach M, the largest invariant subset of the set
{dV/dt = 0} . Since dV/dt is zero only at E∗, M = {E∗} is a singleton set. Thus, the equilibrium
E∗ is globally attractive. �

4. Discussion

In this paper, we aim to investigate the vaccine implementation policy of an infectious disease
in a resource constrained environment. Transmission of a disease largely depends on the nature
of infected individuals, locations, modes of transmission and infection-causing organisms. Cer-
tain group(s) of people may have high risk of receiving and transmitting infections whereas
other individuals exhibit less susceptibility and infectivity. Therefore, the infection of disease
significantly depends on individual’s risk level. Considering this fact, we have proposed a sim-
ple two-group model incorporating vaccination rates. In our analysis, the model demonstrates a
global threshold dynamics in terms of the combined parameter R0 — the secondary infection
rate referred to as the basic reproduction number, as described in Theorems 3.1, 3.3–3.5. More
precisely, if R0 < 1, then the disease will be eliminated over time; and R0 > 1 the disease will
remain endemic and infectious populations will approach to positive constant levels.

Obviously, from the viewpoint of controlling the disease, one would naturally like to reduce
the basic reproduction number. Thus, it is worthwhile to investigate how we can reduce R0
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effectively by a proper implementation of vaccines. Calculating the spectral radius of the next-
generation matrix FV−1 gives the following explicit formula for R0:

R0 = 1

2

[
βr

r�
r

(μ + θ r)(μ + νr)
+ βc

c�
c

(μ + θ c)(μ + νc)

+
√(

βr
r�

r

(μ + θ r)(μ + νr)
− βc

c�
c

(μ + θ c)(μ + νc)

)2

+ 4βr
cβ

c
r �

r�c

(μ + θ r)(μ + νr)(μ + θ c)(μ + νc)

⎤
⎦

= 1

2
[βr

r Gr
r + βc

c Gc
c +

√
(βr

r Gr
r − βc

c Gc
c)

2 + 4βr
cβ

c
r Gr

cG
c
r],

where

Gr
r = �r

(μ + θ r)(μ + νr)
, Gr

c = �c

(μ + θ r)(μ + νc)
,

Gc
r = �r

(μ + θ c)(μ + νr)
, Gc

c = �c

(μ + θ c)(μ + νc)
.

Based on the above formula, we have following observations on R0.
Observation I: The two groups are weakly connected
In this case, the contact matrix is nearly reducible, that is, at least one of the cross-contact rates

βr
c or βc

r is near 0. Then, the threshold parameter Ro has the following approximation:

R0 ≈ 1
2 [βr

r Gr
r + βc

c Gc
c + |(βr

r Gr
r − βc

c Gc
c)|] = max{βr

r Gr
r, β

c
c Gc

c}.

Due to higher contact rate of risky group, we may assume that βr
r Gr

r > βc
c Gc

c. Then, we have

R0 ≈ βr
r Gr

r = βr
r�

r

(μ + θ r)(μ + νr)
.

That is, Ro does not depend on vaccination of critical group anymore. Moreover, Ro is decreas-
ing with θ r (the vaccination rate of risky group). The vaccination rate has positive effect on
the reduction of disease. The condition βr

r Gr
r > βc

c Gc
c will hold in a region where the disease is

highly infectious (just like Ebola outbreak in West African countries [9, 19]). In this situation,
when question arises on vaccine implementation, ‘vaccine to risky group only’ strategy would
be better policy. This policy seems to be more crucial when vaccines are economically costly
and insufficient, and more doses are required to provide full-immunity. Providing enough doses
to the risky individuals rather than single shot to randomly chosen individuals from both groups
should be more effective to control disease.

Now, we consider the case βr
r Gr

r < βc
c Gc

c which may occur when the recruitment to risky group
is significantly smaller than that in the critical group. This scenario prevails in a region where
comparatively greater portion of the population are less susceptive (small βc

c ) and incoming
susceptibles with lower susceptibility are also considerably larger (big �c) in the respective
group. By symmetry, the basic reproduction number becomes

R0 ≈ βc
c Gc

c = βc
c�

c

(μ + θ c)(μ + νc)
.

It is surprising that vaccine to the risky individuals do not bring any benefit to reduce R0.
Because of weak connections (βr

c ≈ 0 or βc
r ≈ 0) between the groups, the risky group could not

deteriorate the disease situation in the whole population. However, the susceptible individuals
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in this group are more vulnerable to infection. So, if vaccines are available they also need to be
immunized to protect them even though this vaccination may not have a major effect on global
disease control.

Observation II: Both groups are strongly connected
Now, we investigate the scenario when both groups are strongly connected (i.e. contacts matrix

is irreducible). Assume that both cross-contact rates βr
c and βc

r are positive. We need to look into
the threshold parameter R0 more deeply. Observe that R0 depends on four compound parameters
βr

r Gr
r, βr

cGr
c, βc

r Gc
r and βc

c Gc
c. So, we need to determine the key parameter among the following

four components:

βr
r Gr

r = βr
r�

r

(μ + θ r)(μ + νr)
, βr

cGr
c = βr

c�
r

(μ + θ r)(μ + νc)
,

βc
r Gc

r = βc
r �

c

(μ + θ c)(μ + νr)
, βc

c Gc
c = βc

c�
c

(μ + θ c)(μ + νc)

that contribute more to increase R0 in the absence of vaccination. Notice that the quantities differ
significantly on β

j
i G

j
i (i, j = r, c). By the nature of grouping, it is assumed βr

i � βc
i (i = r, c) so

that βr
i �

r > βc
i �

c (i = r, c). Therefore, increasing θ r (vaccination rate in risky group) would be
more effective than uniform vaccination policy.

In this work, we divide the host into two groups for implementing vaccines effectively. How-
ever, in reality there may be no clearly well-defined line between the groups. Moreover, there
may be more than two groups, differed by contact rates or risk factors, etc. The immunization
campaign may be administered by giving priorities to the groups having higher risk factor. The
population may be grouped in different ways, but we would emphasize the importance of some
grouping before initiating vaccine campaign.

Our the group-strategic method in out model can be applied to implement vaccines or control
measures in various infectious diseases, for example, influenza, measles or recently emerging
ebola. In fact, the grouping strategy can be found in the current practice of vaccine distributions
[5, 21] in some places and is shown to be effective against a possible outbreak [34]. In influenza,
school-going children is considered to be the most targeted group, followed by the group of
elderly individuals [10, 26]. Vaccinating healthy children against influenza can potentially reduce
the rick of epidemic [10, 16, 20, 21]. It is found that by vaccinating 70% school-going children,
the overall influenza infection can be reduced to below the epidemic level [21]. Children that
possess less pre-immunity while encounter highest exposures are easy target of infectious dis-
ease. In addition to school-going children abd elderly people, pregnant women, individuals with
critically illness and health workers could be other potential target groups. The group-strategic
method can also be applied to HIV or sexually transmitted diseases (STDs). However, an appro-
priate model is required for STDs as our model (2) is, in general, not suitable for the STDs.
An STD can be spread more rapidly in some particular groups such as sexual workers, men-
sex-with-men group, injection-drug users and so on [4, 11]. These core groups should be given
highest priority for allocating and implementing vaccines, should the HIV a vaccine becomes
available.

Another grouping of the host can be made through regional basis. A disease may outbreak in
a certain region with facile transmissibility and high case fatality, whereas individuals in some
other regions may be relatively safer due to geographical distance and the environmental condi-
tions. The recent outbreak of Ebola virus in West Africa, for example, threats with striking case
fatality (50–90%) and transmissibility [9, 19, 23, 27] in that part of the world. The individuals
surrounding the region are highly risky than those in the outer world. In this scenario, the indi-
viduals in that region should be vaccinated with utmost priority. Next preference may be given
to the health workers of outer regions, since they are among the first line of exposures. As is
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known, the first cases of Ebola reported outside West Africa are some nurses in the USA who
got infected while caring an Ebola infected patient [28] from West Africa.

While this study offers some guidelines on vaccine implementations, our model has some
limitations. We do not consider the behaviour change or the movement between the two groups.
For simplicity, the model does not distinguish the infected population according to their disease
progression (certain disease like HIV progress over the time) and uses a single transmission rate
from all infected individuals. In our model (3), we do not distinguish the mode of transmission
and population are not divided into sexes. In the case of sexually transmitted disease (STD), an
individual can be infected through sexual contact or by sharing needles; other diseases, like flu
or dengue, can be spread through airborne or vector-borne transmissions. We also ignore vertical
transmission (mother to new born) and passive immunity to keep the model simple.

Finally, our goal is to find out an optimal vaccination strategy, not to demonstrate a rigorous
analysis of a mathematical model. The formulation of the model (3) may underestimate or over-
estimate the real R0. However, this estimate does not influence the consequences of the outcome
of our analysis. That is, the proper estimation of R0 does not violate the grouping idea; rather it
helps group management. The model can be improved by incorporating several realistic aspects.
For example, to assert on immunization we may further incorporate the delay and waning of
vaccine immunity, imperfect vaccine efficacy and impact of vaccine complicacy. We leave these
as possible future research projects.
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