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Abstract We consider a very general class of delayed reaction–diffusion equations in which
the reaction term can be non-monotone as well as spatially non-local. By employing compar-
ison technique and a dynamical system approach, we study the global asymptotic behavior
of solutions to the equation subject to the homogeneous Dirichlet condition. Established are
threshold results and global attractiveness of the trivial steady state, as well as the existence,
uniqueness and global attractiveness of a positive steady state solution to the problem. As
illustrations, we apply our main results to the local delayed diffusive Mackey–Glass equation
and the nonlocal delayed diffusive Nicholson blowfly equation, leading to some very sharp
results for these two particular models.

Keywords Dirichlet condition · Global asymptotic behavior · Nonlocal reaction–diffusion
equation · Threshold dynamics
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1 Introduction

When considering the population growth of a species with age structure and diffusion in a
spatial domain �, one faces a reaction–diffusion equation of the form

∂u(x, t)

∂t
= d�u(t, x)

+
∫
�

�(Di , τ, x, y)b(u(t−τ, y)) dy−δu(t, x), (t, x)∈(0,∞)×�. (1.1)

T. Yi · X. Zou
School of Mathematics and Statistics, Central South University, Changsha 410083, Hunan,
People’s Republic of China
e-mail: yits007@gmail.com

X. Zou (B)
Department of Applied Mathematics, University of Western Ontario, London, ON N6A 5B7, Canada
e-mail: xzou@uwo.ca

123

Author's personal copy



960 J Dyn Diff Equat (2013) 25:959–979

Here u(t, x) is the mature population of the species at time t and location x , d and Di are the
diffusion rates of the mature and immature individuals, τ is the average mature time for the
species, δ and δi are the death rates of mature and immature, b(u) is the birth function. The
kernel function �(Di , τ, x, y) accounts for the probability that an individual born at location
y can survive the immature period [0, τ ] and has moved to location x when becoming
mature (τ time units after birth). Therefore, the temporally delayed and spatially nonlocal
term given by the integral reflects the combined effect of the survivability and mobility
of the immature individuals. It is related to the semi-group S(t) generated by solutions of
the equation vt (t, x) = Di�v(t, x) − δiv(t, x) under respective boundary conditions on
∂� in the sense that (S(τ )φ)(x) = ∫

�
�(Di , τ, x, y)φ(y)dy. In general, an explicit form

of �(Di , τ, x, y) can not be obtained except for some simple cases. For example, when
� = R, (a, b) or (a, b) × (c, d), applying the method of separation of variables to the
above PDE, one may obtain explicit forms of �(Di , τ, x, y) for these simple cases. See
[10,17] or the survey [5] for details of derivation of such a model. In particular, for a species
whose immature individuals do not move (Di = 0), the kernel �(0, τ, x, y) is given by the
Dirac delta function centered at x multiplied by the survival probability, reducing (1.1) to the
following spatially local equation

∂u(x, t)

∂t
= d�u(t, x)+ e−δi τb(u(t − τ, x)− δu(t, x), (t, x) ∈ (0,∞)×�. (1.2)

When the spatial domain � is unbounded, existence of traveling wave solutions of (1.1)
or (1.2) is one of the main concerns, and has been investigated by many authors under some
particular forms of the kernel function �(Di , τ, x, y) (see, e,g., [4,13,17,19,23,31] and the
references therein). When the spatial domain � is bounded, various boundary conditions
can be posed for (1.1) or (1.2), among which are the homogeneous Neumann boundary
value condition or zero flux condition (NBVC) and the homogeneous Dirichlet boundary
value condition (DBVC) with the former accounting for an isolated domain and the latter
explaining a scenario that the boundary is hostile for the species.

In the case of bounded � and under NBVC, Yi and Zou [27,28] developed a dynam-
ical system approach which has allowed the authors to obtain very sharp conditions for
delay independent global stability of steady states of the spatially local (1.2). When such
a sharp condition is violated for the Ricker’s birth function (leading to the so-called dif-
fusive Nicholson’s blowfly equation), Yang and So [25] found that the stability of the
positive steady state of (1.2) can be destroyed by large delay, giving rise to stable peri-
odic solutions through Hopf bifurcation. By applying a fluctuation method, Zhao [30]
has recently established the global attractiveness of the positive steady state of (1.1).
Using the idea of exponential ordering, Wu and Zhao [22] also obtained some thresh-
old results for (1.1) in terms of the principal eigenvalue of a non-local eigenvalue prob-
lem.

In the case of bounded � but under DBVC, the dynamics of (1.1) or (1.2) is usually
much more difficult to determine. This is mainly due to the fact that a non-trivial pos-
itive steady state is not a constant and it has to possess some spatial pattern which is
unknown. Thus the uniqueness/multiplicity and stability of a positive steady state all become
hard problems. For the local version (1.2) with the Ricker’s birth function, So and Yang
[18] obtained some results, by energy method, on the existence and stability of a positive
steady of (1.2). By modifying some of the arguments in Yi and Zou [27], Yi et al. [26]
described the threshold dynamics of (1.2) subject to DBVC which include some results
in [18] as special cases. When (1.1) possesses monotonicity, Xu and Zhao [24] obtained
some results on the uniqueness and global attractiveness of a positive steady state of (1.1)
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under DBVC by appealing to the theory of monotone dynamical systems. Also along the
line of monotone dynamical systems, Wu and Zhao [22] established some results on thresh-
old between extinction and persistence for (1.1) under DBVC, as well as existence and
attractiveness of a positive steady state in terms of the principal eigenvalue of a non-local
eigenvalue problem. In both [24] and [22], the monotonicity (in some sense) and the sub-
linearity played crucial roles. However, in the non-monotone case, as remarked in [30],
uniqueness and stability of a positive steady state for (1.1) or (1.2) subject to DBVC still
largely remain open and challenging. Most recently, Guo et al. [6] made another attempt,
in which the authors focused on the existence and uniqueness of positive steady state of
(1.1) under DBVC. Developed in [6] was a technique that combines the method of sup-sub
solutions and an estimation of the integral kernel, which enabled the authors to obtain some
sufficient conditions for the non-existence, existence and uniqueness of a positive steady
state.

In this paper, we are interested in the global dynamics of (1.1) in a bounded domain with
DBVC. Motivated by [27,28], we will develop a dynamical system approach to study the
global asymptotic behavior for (1.1) subject to DBVC. It turns out that this approach offers
a unified treatment for the global dynamics of a class of very general delayed reaction–
diffusion equations, including spatially local as well as nonlocal cases. Our results not
only re-confirm the existing results in [18,26] for local cases, but also establish unique-
ness and global attractiveness of a positive steady state (the open problem raised in [30])
under the condition that population can persist, without assuming monotonicity. In Section
2, we present and prove our main results for a more general setting (2.1) [than (1.1)]. We
first transform (2.1) to its associated integral equation with the given initial function; then
we obtain some basic information about the solution semiflow of the associated integral
equation [mild solution of (2.1)]. By employing the comparison technique, the Krein–
Rutman theorem in [9] and the spectral mapping theorem for semigroups in [2], we derive
conditions that assure the global attractiveness of the trivial steady state, the existence and
global attractiveness of a unique positive steady state of (2.1) with the nonlinearity not
necessarily being monotone. In Sect. 3, we apply the main results obtained in Sect. 2 to
the local delayed diffusive Mackey–Glass equation and to the nonlocal delayed diffusion
Nicholson blowfly equation with DBVC, leading to some very sharp results for these two
particular models. Our very different approach to study the global dynamics of the Dirichlet
problem provides a new and unified treatment applicable for both local or non-local equa-
tions.

2 Main Results

Let R and R+ be the sets of all reals and nonnegative reals, respectively, and let � be a
bounded domain in R

m with smooth boundary ∂�, � be the Laplacian operator and ∂
∂ν

be
the derivative in the outward normal direction of ∂�. Let C0 = {φ ∈ C(�,R) : φ|∂� = 0}
and X = {ϕ ∈ C([−τ, 0] ×�,R) : ϕ|[−τ,0]×∂� = 0} be equipped with the usual supremum
norm ‖ · ‖. Also, let C+ = {φ ∈ C0 : φ|� ≥ 0} and X+ = {ϕ ∈ X : ϕ|[−τ,0]×� ≥ 0}. For
any a ∈ R, we also use a to denote the constant function in the corresponding function space
taking constant value a, when no confusion arises.

For any ξ , η ∈ C0, we write ξ ≥C η if ξ − η ∈ X+, ξ >X η if ξ ≥C η and ξ �= η.
Similarly, for any ϕ, ψ ∈ X , we write ϕ ≥X ψ if ϕ − ψ ∈ X+, ϕ >X ψ if ϕ ≥X ψ and
ϕ �= ψ . For simplicity of notations, we shall write ≥, >, respectively for ≥∗, >∗, where ∗
stands for one of X and C .
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For convenience, we embed (1.1) into the following more general form
⎧⎨
⎩

∂u
∂t (t, x) = d�u(t, x)− μu(t, x)+ μK ( f (u(t − τ, ·)))(x), (t, x) ∈ (0,∞)×�,

u(θ, x) = 0, (θ, x) ∈ [−τ, 0] × ∂�,

u(θ, x) = ϕ(θ, x), (θ, x) ∈ [−τ, 0] ×�,

(2.1)

where μ is a positive constant, � is the Laplacian operator on �, ϕ ∈ X+. The non-
linear function f is a continuously differentiable function on [0,∞) with f (0) = 0 and
f ((0,∞)) ⊆ (0,∞). The operator K is linear from C0 into C0 such that K (C+ \ {0}) ⊆
C+ \ {0} and

||K || � sup

{ ||K (φ)||
||φ|| : φ ∈ C+ \ {0}

}
= 1.

This condition is motivated by the form of K given by in (1.1), that is K (φ)(x) =∫
�
�(Di , τ, x, y)φ(y) dy.
For an interval I ⊆ R, let I + [−τ, 0] = {t + θ : t ∈ I andθ ∈ [−τ, 0]}. For u :

(I + [−τ, 0]) × � → R and t ∈ I , we write ut (·, ·) for the element of X defined by
ut (θ, x) = u(t + θ, x) for −τ ≤ θ ≤ 0 and x ∈ �.

Let T (·) be the semigroup on C0 generated by the operator d�−μI d under the Dirichlet
boundary condition. It is well-known that T (·) is an analytic, compact and positive semigroup
on C0 (see [15,16,21]). Denote by AT the generator of the strongly continuous semigroup
T (·) and let D(AT ) ⊆ C0 be the domain of AT . Define F : X+ → C0 by

F(ϕ) = μK ( f (ϕ(−τ, ·))).
Associate to (2.1) with the following integral equation with the given initial condition,

{
u(t, ·) = T (t)ϕ(0, ·)+ ∫ t

0 T (t − s)F(us)ds, t ≥ 0,
u0 = ϕ ∈ X+.

(2.2)

A solution of (2.2) is called a mild solution of (2.1) in the sense of Martin and Smith [11,12].
By the step argument and the definition of F , it is easy to see that, for any ϕ ∈ X+,

(2.2) has a unique solution which exists for all t ≥ 0. Denote this solution by uϕ . Moreover,
(uϕ)t ∈ X+ for all t ∈ R+. Since the semigroup T (t) is analytic, by Corollary 2.2.5 [21],
we know that a mild solution of (2.1) is also a classical solution of (2.1) for t > τ (see also
[3,11,12,20]).

Define the map U : R+× X+ → X+ by U (t, ϕ) = (uϕ)t for all (t, ϕ) ∈ X . The following
result is a direct consequence of the abstract results in [3,20,21].

Lemma 2.1 The map U is a semiflow defined on X+ and satisfies the following properties:

(i) For a given ϕ ∈ X+, U (t, ϕ)(0, ·) is a classical solution of (2.1) for t > τ ;
(ii) At any given t > τ , U (t, ·) : X+ → X+ is completely continuous. More precisely, if

B ⊂ X+ is bounded, then U (t, ·)B is precompact for t > τ .

As a simple application of Corollary 7.2.3 and 7.2.4 in [16], and Theorem 2.5.2 in [14],
we easily obtain the following lemma.

Lemma 2.2 Suppose φ ∈ C+ \ {0}. Then

(i) T (t)(φ)(x) > 0 for all (t, x) ∈ (0,∞)×�;
(ii) ∂[T (t)(φ)(x)]

∂ν
< 0 for all (t, x) ∈ (0,∞)× ∂�;

(iii) ||T (t)(φ)|| ≤ ||φ||e−μt for all t ∈ (0,∞);

123

Author's personal copy



J Dyn Diff Equat (2013) 25:959–979 963

(iv) there exists a constant C1 such that ||AT [T (t)(φ)]|| ≤ C1
t ||φ|| for all t ∈ (0,∞).

In what follows, we shall always assume the following for the nonlinearity f :

(H1) There exists a sequence {Bn}n≥1 in (0,∞) such that lim
n→∞ Bn = ∞ and f ([0, Bn]) ⊆

[0, Bn]).
The following lemma establishes some further properties of the semiflow U (t, ϕ).

Lemma 2.3 Suppose ϕ ∈ X+ \ {0}. Then

(i) U (t, ϕ)(0, x) > 0 for all (t, x) ∈ (τ,∞)×�;
(ii) ∂U (t,ϕ)(0,x)

∂ν
< 0 for all (t, x) ∈ (τ,∞)× ∂�;

(iii) if ||ϕ|| ≤ Bn for some positive integer n, then ||U (t, ϕ)|| ≤ Bn for all t ∈ [0,∞).

Proof We first prove the statement (i). Since ϕ(θ∗, ·) > 0 for some θ∗ ∈ (−τ, 0), we
know by Lemma 2.2(i) that T (−θ∗)(K ( f (ϕ(θ∗, ·))))(x) > 0 for all x ∈ �. It follows
from (2.2) that uϕ(τ, x) ≥ ∫ τ

0 T (τ − s)K ( f (uϕ(s − τ, ·)))(x)ds > 0 for all x ∈ �. Thus,
Lemma 2.2(i), combined with the semigroup properties of U and (2.2), implies that U (t +
τ, ϕ)(0, x) = U (t,U (τ, ϕ))(0, x) ≥ T (t)(U (τ, ϕ)(0, ·))(x) = T (t)[uϕ(τ, ·)](x) > 0 for
all (t, x) ∈ [0,∞)×�, proving (i).

We next prove statement (ii). From (i), the semigroup properties of U and Lemma 2.1(i),
Lemma 2.2(ii) and (2.2), it follows that

∂[U (t, ϕ)(0, x)]
∂ν

= ∂uϕ(t, x)

∂ν
≤ ∂T (t − τ)(uϕ(τ, ·))(x)

∂ν
< 0,

where (t, x) ∈ (τ,∞)× ∂�, that is, statement (ii) holds.
Finally, we prove the statement (iii). By the assumption (H1), f ([0, Bn]) ⊆ [0, Bn].

It follows from (2.2) and Lemma 2.2(iii) that for any (t, x) ∈ [0, τ ] ×�,

uϕ(t, x) = T (t)(ϕ(0, ·))(x)+
t∫

0

T (t − s)(K ( f (uϕ(s − τ, ·))))(x)ds,

≤ ||ϕ||e−μt + μ

t∫

0

Bne−μ(t−s)ds,

≤ Bn,

which, combined with the semigroup properties of U , implies (iii). �


For ϕ ∈ X+, we define O(ϕ) = {U (t, ϕ) : t ≥ 0} and ω(ϕ) = ⋂
t≥0

O(U (t, ϕ)). By

Lemma 2.1(ii) and Lemma 2.3(iii), we know that O(ϕ) is compact and hence ω(ϕ) is non-
empty, compact, connected and invariant. According to the invariant property of ω(ϕ), for
ψ ∈ ω(ϕ), there is a global classical solution u : R × � → R of (2.1) with u0 = ψ

and ut ∈ ω(ϕ) for all t ∈ R (see Hale [7]). The following theorem addresses the global
attractiveness of the trivial steady state.

Theorem 2.1 If f (u) < u for all u > 0, then the trivial steady state of (2.1) attracts all
solutions of (2.1) with the initial value ψ ∈ X+.
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Proof Suppose thatψ ∈ X+. Take ϕ∗ ∈ ω(ψ) such that ||ϕ∗|| = sup{||ϕ|| : ϕ ∈ ω(ψ)}. We
claim that ||ϕ∗|| = 0. Otherwise, ||ϕ∗|| > 0. By the invariance of ω(ψ), there exists a global
classical solution u(t, x) : R × � → [0,∞) of (2.1) such that u2τ = ϕ∗. By employing
Lemma 2.2(iii) and (2.2), we obtain that for all (t, x) ∈ (0,∞)×�,

u(t, x) = T (t)(u(0, ·))(x)+ μ

t∫

0

T (t − s)(K ( f (u(s − τ, ·))))(x)ds,

≤ ||ϕ∗||e−μt + μ

t∫

0

|| f (u(s − τ, ·))||e−μ(t−s)ds,

< ||ϕ∗||e−μt + μ

t∫

0

||ϕ∗||e−μ(t−s)ds,

= ||ϕ∗||,
which yields a contradiction. This completes the proof. �


To proceed further, we introduce the following subset of C+:

Y+ ={φ ∈ C+ : φ ∈ C1(�,R), φ(x)>0 for all x ∈� and
∂φ

∂ν
(x) < 0 for all x ∈ ∂�}.

Lemma 2.4 Let I be a closed interval in R and let φ∗ ∈ Y+. Assume that u ∈ C(I ×
�, [0,∞)) is continuously differentiable with respect to x ∈ �, and u(t, ·) ∈ Y+ for all
t ∈ I . Let M : I ×� → R be defined by

M(t, x) =
{ u(t,x)
φ∗(x) , x ∈ � and t ∈ I,

∂u(t,x)
∂ν

/
∂φ∗(x)
∂ν

, x ∈ ∂� and t ∈ I.

Then M is a continuous function and M(I ×�) ⊆ (0,∞).

Proof From the definition of M , we can see easily that M |I×� and M |I×∂� are continuous
functions. It suffices to prove that for a given (t∗, x∗) ∈ I × ∂� and a given sequence
(tn, xn) ∈ I × �, if lim

n→∞(tn, xn) = (t∗, x∗) then lim
n→∞ M(tn, xn) = M(t∗, x∗). Indeed,

in view of the smoothness of ∂� and Lemma 4.2 in [8], we know that, for sufficient large
n, there exist x0

n ∈ ∂� and sn > 0 such that sn = dist (xn, ∂�), xn = x0
n − snνx0

n
and

x0
n − ηsnνx0

n
∈ � for all η ∈ [0, 1], where νx0

n
is the unit outward normal vector at x0

n . Thus

lim
n→∞ M(tn, xn) = lim

n→∞
u(tn, xn)

φ∗(xn)
,

= lim
n→∞

∫ 1
0

∂u(tn ,x0
n −ηsnνx0

n
)

∂η
dη

∫ 1
0

∂φ∗(x0
n −ηsnνx0

n
)

∂η
dη
,

= lim
n→∞

∫ 1
0 ∇x u(tn, x0

n − ηsnnx0
n
)νx0

n
dη∫ 1

0 ∇xφ∗(x0
n − ηsnnx0

n
)νx0

n
dη

,

= M(t∗, x∗).

Consequently, M is a continuous function. This completes the proof. �
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The next lemma establishes a relation between the topologies defined by the supremum
norm and the C1(�) norm in {ϕ(0, ·) : ϕ ∈ ω(ψ)} for any given ψ ∈ X+.

Lemma 2.5 Let ψ ∈ X+, and ϕ and {ϕn}∞n=1 be in ω(ψ). If lim
n→∞ ||ϕn(0, ·)− ϕ(0, ·)|| = 0,

then lim
n→∞ ||ϕn(0, ·) − ϕ(0, ·)||C1(�) = 0. Thus, the supremum norm and the C1(�) norm

define the same topology on {ϕ(0, ·) : ϕ ∈ ω(ψ)}.
Proof Suppose ψ ∈ X+. We claim that there exists M = Mψ > 0 such that
||ϕ(0, ·)||C1,1/2(�) ≤ M for all ϕ ∈ ω(ψ). Here ||g||C1,1/2(�) is the sum of ||g||C1(�) and
the Hölder seminorm (with exponent 1/2) of all first order partial derivatives of g.

Let γ = sup{||ϕ|| : ϕ ∈ ω(ψ)}. By employing the proof of Theorem 4.3.1 in [14],
combined with the compactness of ω(ψ) and the smoothness of f , we know that there
exist constants C2 > 0 and δ > 0 such that | f (ϕ(0, x)) − f (ϕ(−h, x))| ≤ C2hδ for all
(ϕ, x, h) ∈ ω(ψ)×�×[0, τ ]. It follows from (2.2), Lemma 2.2(iv), the invariance of ω(ψ)
and the semigroup properties of U that for any ϕ ∈ ω(ψ), there holds

∣∣∣
∣∣∣AT uϕ(2τ, ·)

∣∣∣
∣∣∣ =

∣∣∣∣∣∣

∣∣∣∣∣∣AT

⎡
⎣T (τ )(uϕ(τ, ·))+ μ

τ∫

0

T (τ − s)(K ( f (uϕ(s, ·))))ds

⎤
⎦

∣∣∣∣∣∣

∣∣∣∣∣∣ ,

≤
∣∣∣
∣∣∣AT [T (τ )(uϕ(τ, ·))]

∣∣∣
∣∣∣ +

∣∣∣∣∣∣

∣∣∣∣∣∣μAT

⎡
⎣

τ∫

0

T (τ − s)(K ( f (uϕ(s, ·))))ds

⎤
⎦

∣∣∣∣∣∣

∣∣∣∣∣∣ ,

≤ γC1

τ
+

∣∣∣∣∣∣

∣∣∣∣∣∣μAT

⎡
⎣

τ∫

0

T (τ − s)(K ( f (uϕ(τ, ·))))ds

⎤
⎦

∣∣∣∣∣∣

∣∣∣∣∣∣ ,

+
∣∣∣∣∣∣

∣∣∣∣∣∣μAT

⎡
⎣

τ∫

0

T (τ − s)(K ( f (uϕ(s, ·))− f (uϕ(τ, ·))))ds

⎤
⎦

∣∣∣∣∣∣

∣∣∣∣∣∣ ,

≤ γC1

τ
+ μ

∣∣∣
∣∣∣T (τ )[K ( f (uϕ(τ, ·)))] − K ( f (uϕ(τ, ·)))

∣∣∣
∣∣∣,

+μ
τ∫

0

C1C2

∣∣∣
∣∣∣K

∣∣∣
∣∣∣

τ − s
(τ − s)δds,

≤ C3 �
γC1

τ
+ μϕ(1 + e−μτ ) sup f ([0, γ ])+ μ

τ∫

0

C1C2

τ − s
(τ − s)δds.

On the other hand, by Theorem 5.4(II) in [1] and Theorem 7.3.1 in [14], we can easily see
that there exist C4 > 0 and C5 > 0 such that ||uϕ(2τ, ·)||C1,1/2(�) ≤ C4 + C5||AT uϕ(2τ, ·)||
for all ϕ ∈ ω(ψ). Thus, ||uϕ(2τ, ·)||C1,1/2(�) ≤ C4 + C3C5 for all ϕ ∈ ω(ψ). This and the
invariance of ω(ψ) show that

||ϕ(0, ·)||C1,1/2(�) ≤ M � C4 + C3C5 for all ϕ ∈ ω(ψ),
confirming that claim holds.

By the above claim and the Arzèla–Ascoli theorem, we know that {ϕ(0, ·) : ϕ ∈ ω(ψ)}
is pre-compact under the topology induced by C1(�)-norm. Now, let the sequence {ϕn}∞n=1
and ϕ be in ω(ψ) and satisfy lim

n→∞ ||ϕn(0, ·) − ϕ(0, ·)|| = 0. We need to prove prove
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lim
n→∞ ||ϕn(0, ·)−ϕ(0, ·)||C1(�) = 0. Otherwise, by the compactness of {ϕ(0, ·) : ϕ ∈ ω(ψ)}
in C1(�), there exist a ϕ̄ ∈ C1(�) and a subsequence {ϕnk }∞k=1 such that ϕ̄(0, ·) �= ϕ(0, ·) and
lim

n→∞ ||ϕnk (0, ·)− ϕ̄(0, ·)||C1(�) = 0. But, this, combining with the fact that lim
n→∞ ||ϕn(0, ·)−

ϕ(0, ·)|| = 0, we have ϕ̄(0, ·) = ϕ(0, ·), a contradiction. It is easy to see that lim
n→∞ ||ϕn(0, ·)−

ϕ(0, ·)|| = 0 whenever lim
n→∞ ||ϕn(0, ·)− ϕ(0, ·)||C1(�) = 0. Therefore, the supremum norm

and the C1-norm define the same topology on {ϕ(0, ·) : ϕ ∈ ω(ψ)}. �

In the sequel, for a given ξ ∈ Y+, we define Mξ : C([−τ, 0], Y+)×� → R by

Mξ (ϕ, x) =
{ ϕ(0,x)

ξ(x) , x ∈ �,
∂ϕ(0,x)
∂ν

/
∂ξ(x)
∂ν

, x ∈ ∂�.
Lemma 2.6 Let ψ ∈ X+ and ξ ∈ Y+. Then Mξ |ω(ψ)×� is a continuous positive function.

Proof By the definition of Mξ , Lemmas 2.4 and 2.5, we easily see that Mξ (ω(ψ)×�) ⊆
(0,∞), and Mξ |ω(ψ)×�, Mξ |ω(ψ)×∂� are continuous functions.

It suffices to prove that for given (ϕ∗, x∗) ∈ ω(ψ)× ∂� and given sequence (ϕn, xn) ∈
ω(ψ)×�, if lim

n→∞ ||ϕn −ϕ∗|| = lim
n→∞ ||xn −x∗|| = 0, then lim

n→∞ Mξ (ϕn, xn) = Mξ (ϕ∗, x∗).
Indeed, if ϕ∗ = 0, then by Lemma 2.5 and lim

n→∞ ||ϕn || = 0, we have lim
n→∞ ||ϕn(0, ·)||C1(�) =

0. Thus by the definition of Mξ , we easily see that lim
n→∞ Mξ (ϕn, xn) = 0 = Mξ (ϕ∗, x∗).

Next, Suppose that ϕ∗ > 0. Without loss of generality, we may assume that ϕn ∈ X+ \ {0}.
By the proof of Lemma 2.4, for sufficient large n, there exist x0

n ∈ ∂� and sn > 0 such that
sn = dist (xn, ∂�), xn = x0

n − snνx0
n

and x0
n − ηsnνx0

n
∈ � for all η ∈ [0, 1], where νx0

n
is

the unit outward normal vector at x0
n . It follows from ϕn ∈ ω(ψ)∩ Y+, Lemmas 2.4 and 2.5

that

lim
n→∞ Mξ (ϕn, xn) = lim

n→∞
ϕn(0, xn)

ξ(xn)
,

= lim
n→∞

[
ϕ∗(0, xn)

ξ(xn)
· ϕn(0, xn)

ϕ∗(0, xn)

]
,

= lim
n→∞

[
ϕ∗(0, xn)

ξ(xn)

]
· lim

n→∞

[
ϕn(0, xn)

ϕ∗(0, xn)

]
,

= Mξ (ϕ∗, x∗) lim
n→∞

∫ 1
0

∂ϕn(0,x0
n−ηsnνx0

n
)

∂η
dη

∫ 1
0

∂ϕ∗(0,x0
n−ηsnνx0

n
)

∂η
dη
,

= Mξ (ϕ∗, x∗).

Consequently, Mξ |ω(ψ)×� is a continuous positive function. This completes the proof. �

To continue to investigate the dynamics of (2.1) or its abstract form (2.2), we now formulate

another basic condition on the nonlinearity f :

(H2) f (u) < f ′(0)u for all u ∈ (0,∞).

Let A = d�−μI d+μ f ′(0)K and denote by s(A) the spectral bound of the linear operator
A. By the Krein–Rutman theorem and the spectral mapping theorems for semigroups, we
know that s(A) is a real and simple eigenvalue of A and there exists a unique ξ ∈ Y+ such
that Aξ = s(A)ξ and ||ξ || = 1.
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Theorem 2.2 Assume that (H1) and (H2) hold. If s(A) ≤ 0, then the trivial equilibrium 0
of (2.1) attracts all solutions of (2.1) with the initial value ψ ∈ X+.

Proof In view of s(A) ≤ 0, there exists μ∗ ≤ μ such that s(d� − μ∗ I d + μ f ′(0)K ) = 0
which implies that there exists φ∗ ∈ Y+ such that d�φ∗ − μ∗φ∗ + μ f ′(0)Kφ∗ = 0. Thus,
for all t ∈ [0,∞), we have

φ∗ = e−(μ∗−μ)t T (t)(φ∗)+ μ

t∫

0

e−(μ∗−μ)(t−s)T (t − s)(K ( f ′(0)φ∗))ds,

≥ T (t)(φ∗)+ μ

t∫

0

T (t − s)(K ( f ′(0)φ∗))ds.

Suppose that ψ ∈ X+. By Lemma 2.6, we know that Mφ∗
is continuous in (ϕ, x) ∈

ω(ψ)×�. Thus, there exists ϕ∗ ∈ ω(ψ) such that ||Mφ∗
(ϕ∗, ·)|| = sup{||Mφ∗

(ϕ, ·)|| : ϕ ∈
ω(ψ)} � b∗.

We now prove ϕ∗ = 0. Otherwise, ϕ∗ ∈ X+ \ {0} and thus b∗ > 0. By the invariance of
ω(ψ), there exists a global classical solution u(t, x) : R × � → [0,∞) of (2.1) such that
u2τ = ϕ∗. Obviously, by the choice of b∗, we have b∗φ∗ − u(t, ·) ∈ C+ for all t ∈ R.

We claim that b∗φ∗(x∗) − u(t∗, x∗) > 0 for some (t∗, x∗) ∈ [−τ, τ ] × �; otherwise,
u(t, x) = b∗φ∗(x) for all (t, x) ∈ [−τ, τ ] ×�. It follows from the semigroup properties of
U that u(t, x) = b∗φ∗(x) for all (t, x) ∈ [−τ,∞) × �. From (2.2) and (H2), we have for
all t ∈ (0,∞),

b∗φ∗ = T (t)(b∗φ∗)+ μ

t∫

0

T (t − s)[K ( f (b∗φ∗))]ds,

< T (t)(b∗φ∗)+ μ

t∫

0

T (t − s)[K ( f ′(0)b∗φ∗)]ds.

Thus, φ∗ < T (t)(φ∗)+ μ
∫ t

0 T (t − s)[K ( f ′(0)φ∗)]ds for all t ∈ (0,∞), a contradiction.
Let v(t, x) = b∗φ∗(x)− u(t + t∗, x) for all (t, x) ∈ R ×�. By the semigroup properties

of U and (2.2), we know that for all (t, x) ∈ [0,∞)×�,

u(t + t∗, x) = T (t)(u(t∗, ·))(x)+ μ

t∫

0

T (t − s)(K ( f (u(s + t∗ − τ, ·))))(x)ds.

This implies that for all (t, x) ∈ [0,∞)×�, we have

v(t, x) = b∗φ∗(x)− u(t + t∗, x),

≥ T (t)(b∗φ∗ − u(t∗, ·))(x)

+μ
t∫

0

T (t − s)[b∗K ( f ′(0)φ∗)− K ( f (u(s + t∗ − τ, ·)))](x)ds,

≥ T (t)(b∗φ∗ − u(t∗, ·))(x)
+μ

∫ t

0
T (t − s)[b∗K ( f ′(0)φ∗)− K ( f ′(0)u(s + t∗ − τ, ·))](x)ds,
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= T (t)(v(0, ·))(x)+ μ

t∫

0

T (t − s)[K ( f ′(0)v(s − τ, ·))](x)ds,

≥ T (t)(v(0, ·))(x),
which, together with Lemma 2.2(i–ii) and v(0, ·) ∈ X+ \ {0}, implies that v(t, x)|� > 0
and ∂v(t,x)

∂ν
|∂� < 0 for all t ∈ (0,∞). Thus, Mφ∗

(vt , x) > 0 for all (t, x) ∈ (0,∞)×�, in
particular, Mφ∗

(v2τ−t∗ , x) > 0 for all x ∈ �. Thus, the definitions of v and Mφ∗
imply that

for all x ∈ �,

Mφ∗
(ϕ∗, x) = Mφ∗

(u2τ , x) = b∗ − Mφ∗
(v2τ−t∗ , x) < b∗,

This, combined with Lemma 2.6, yields a contradiction to the choice of b∗. So, ϕ∗ = 0 and
hence ω(ψ) = {0}. This completes the proof. �


When s(A) > 0, we will see in the next proposition that (2.1) is persistent, implying that
the trivial steady state becomes unstable.

Proposition 2.1 Assume that (H1) and (H2) hold. If s(A) > 0, then there exists ξ ∈ Y+
with ||ξ || = 1 such that for any M ∈ {Bn : n ≥ 1}, there exist εM > 0 such that {ϕ ∈ X+ :
εMξ ≤ ϕ ≤ M} is a positively invariant set of U. Moreover, ω(ϕ) ⊆ εMξ + X+ for any
ϕ ∈ X+ \ {0} with ϕ ≤ M.

Proof In view of s(A) > 0, there exists c∗ ∈ (0, f ′(0)) such that s(d�−μI d +μc∗K ) = 0.
Hence there exists ξ ∈ Y+ such that ||ξ || = 1 and d�ξ − μξ + μc∗K (ξ) = 0.

Let M ∈ {Bn : n ≥ 1}. Then f ([0,M]) ⊆ [0,M] from (H1). Thus, by (H2) there is
εM > 0 such that f (x) > c∗x for all x ∈ (0, εM ] and f (x) > c∗εM for all x ∈ [εM ,M]. Let
H(ϕ) = μc∗K (min{ϕ(−τ, ·), εM }) for all ϕ ∈ X+. Then H in nondecreasing on X+, and
thus H is quasimonotone in the sense of [11,21].

Suppose that ϕ ∈ X+ \{0} with εMξ ≤ ϕ ≤ M . Lemma 2.3(iii) implies that U (t, ϕ) ≤ M
for all t ∈ [0,∞). Let u(t, x) = uϕ(t, x) for all (t, x) ∈ [−τ,∞)×�. It follows from (2.2)
that, for any t ≥ 0,

u(t, ·) = T (t)ϕ(0, ·)+
∫ t

0
T (t − s)F(us)ds,

≥ T (t)ϕ(0, ·)+
∫ t

0
T (t − s)H(us)ds.

By letting v(t, x) = εMξ(x) for all (t, x) ∈ [−τ,∞)×�, we have v(t, ·) = T (t)v(0, ·) +∫ t
0 T (t − s)H(vs)ds. Thus by ϕ ≥ εMξ and Corollary 8.1.11 in [21], we have u(t, x) ≥
v(t, x) = εMξ(x) for all (t, x) ∈ [0,∞)×�, which yields the first conclusion.

Next, suppose that ϕ ∈ X+ \ {0} with ϕ ≤ M . Let u(t, x) = uϕ(t, x) for all (t, x) ∈
[−τ,∞) × �. Without loss of generality, we may assume that u is a classical solution
and u(t, ·) ∈ Y+ for all t ∈ [−τ,∞). By Lemma 2.4, there exists ε0 ∈ (0, εM ] such that
u(t, ·) − ε0ξ ∈ C+ for all t ∈ [−τ, 0]. By the proof of the first conclusion, we easily see
that u(t, ·) − ε0ξ ∈ C+ for all t ∈ [−τ,∞). Thus, ω(ϕ) ⊆ ε0ξ + X+. Let ε∗ = sup{ε ≥
ε0 : ψ ≥ εξ for allψ ∈ ω(ϕ)}. Obviously, ω(ϕ) ⊆ ε∗ξ + X+. It suffice to show ε∗ ≥ εM ;
otherwise, ε∗ < εM . By Lemma 2.6 and the compactness ofω(ϕ), there existsψ ∈ ω(ϕ) such
that inf{Mξ (ψ, x) : x ∈ �} = ε∗. By the invariance of ω(ϕ), there exists a global classical
solution v(t, x) : R×� → [0,∞) of (2.1) such that v2τ = ψ . Letw(t, x) = v(t, x)−ε∗ξ(x)
for all (t, x) ∈ R ×�. Clearly, vt ≥ ε∗ξ and wt ≥ 0 for all t ∈ R.
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We claim that w(t∗, x∗) > 0 for some (t∗, x∗) ∈ [−τ, τ ] × �; otherwise, v(t, x) =
ε∗ξ∗(x) for all (t, x) ∈ [−τ, τ ] × �. It follows from the semigroup properties of U that
u(t, x) = ε∗ξ(x) for all (t, x) ∈ [−τ,∞) × �. Thus, ε∗ξ is a steady state of (2.1), that is,
d�(ε∗ξ) − με∗ξ + μK ( f (ε∗ξ)) = 0. It follows from the choices ξ, εM that c∗ε∗K (ξ) =
K ( f (ε∗ξ)) > K (c∗ε∗ξ), a contradiction.

By the above claim, without loss of generality we may assume thatw(0, ·) > 0. It follows
from (2.2) that, for any t ≥ 0,

w(t, ·) = T (t)(w(0, ·))+
t∫

0

T (t − s)F(vs)ds −
t∫

0

T (t − s)H(ε∗ξ)ds,

= T (t)(w(0, ·))+
t∫

0

T (t − s)[H(vs)− H(ε∗ξ)]ds,

≥ T (t)(w(0, ·)).
Combining this with Lemma 2.2(i–ii) and w(0, ·) > 0, we obtain that w(t, x)|� > 0 and
∂w(t,·)
∂ν

|∂� < 0 for all t ∈ (0,∞). Thus, Mξ (wt , x) > 0 for all (t, x) ∈ (0,∞) × �, in
particular, Mξ (w2τ , x) > 0 for all x ∈ �. Thus the definitions of w and Mξ imply that for
all x ∈ �, we have

Mξ (ψ, x) = Mξ (v2τ , x) = ε∗ + Mξ (w2τ , x) > ε∗,

This, combined with Lemma 2.6, yields a contradiction to the choice of ψ . This completes
the proof. �


According to Lemma 2.1(ii) and the fact that U (t, ϕ)(θ, x) = uϕ(t + θ, x) for all
(t, θ, x) ∈ [0,∞)× [−τ, 0] ×�, we easily obtain the following result,

Lemma 2.7 Let M > 0, t > 0, τ̃ ∈ (0, τ ] and D ⊆ X+ with D ≤ M. Assume that
D|[−τ̃ ,0]×� is pre-compact in C([−τ̃ , 0] × �,R), where D|[−τ̃ ,0]×� � {ϕ|[−τ̃ ,0]×� :
ϕ ∈ D} and C([−τ̃ , 0] × �,R) is equipped with the usual supremum norm. Then
U (t, D)|[− min{ t

2 +τ̃ ,τ },0]×� is pre-compact in C([− min{ t
2 + τ̃ , τ }, 0] ×�,R).

Proposition 2.2 Assume that (H1) and (H2) hold. If s(A) > 0, then the trivial steady state
u = 0 is unstable and (2.1) has a positive steady state, located in Y+.

Proof The instability of u = 0 is implied by the persistence of (2.1) established in Proposition
2.1, thus we only need to prove the existence of a positive steady state.

Let M = B1 and ξ, εM defined as in Proposition 2.1. Let D = {ϕ ∈ X+ : εMξ ≤ ϕ ≤ M}.
By Proposition 2.1, U (t, D) ⊆ D for all t ≥ 0.

Now suppose that T ∈ I �
{

1
2i : i = 1, 2, · · ·

}
. We claim that there exists a com-

pact convex subset KT in D such that U (T, KT ) ⊆ KT . Indeed, by Lemma 2.1(ii) and
the fact that U (t, ϕ)(θ, x) = uϕ(t + θ, x) for all (t, θ, x) ∈ [0,∞) × [−τ, 0] × �,
we know that U (T, D)|[− min{τ, T

2 },0]×� is pre-compact in C([− min{τ, T
2 }, 0] × �,R).

Let g(K ) � co(U (T, K )) for any K ⊆ D. Then g(D)|[− min{τ, T
2 },0]×� is pre-compact

in C([− min{τ, T
2 }, 0] × �,R). By applying Lemma 2.7 repeatedly, we may get that

gk(D)|[− min{τ, kT
2 },0]×� is pre-compact in C([− min{τ, kT

2 }, 0] × �,R). Choose a positive

integer k0 such that k0 >
2τ
T . Then KT � gk0(D) is a compact convex subset in D such
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that U (T, KT ) ⊆ KT . By the Schauder fixed point theorem, there is ψT ∈ KT such that
U (T, ψT ) = ψT . According to Lemma 2.1(ii) and the fact that {ψT : T ∈ I } ⊆ U (k, D)
for any positive integer k, we know that {ψT : T ∈ I } is pre-compact in X+, and thus
there exist ψ ∈ D and a sequence {Tk} in I such that lim

Tk→0
ψTk = ψ . For any t ∈ (0,∞),

there exist rk ∈ [0, Tk) and a nonnegative integer Nk such that t = Nk Tk + rk . Obviously,
lim

k→∞ rk = 0. Hence, U (t, ψ) = lim
k→∞ U (t, ψTk ) = lim

k→∞ U (rk, ψTk ) = ψ , which implies

that ψ is a positive steady state, located in Y+ of (2.1), completing the proof. �


In what follows, we denote by u+ be the positive steady state of (2.1) obtained in Propo-
sition 2.2, and let u∗+ = ||u+||. To address the attractiveness of u+, we further need the
following condition on the nonlinear function f :

(H3) For any closed interval [a, b] �= {1} with 0 < a ≤ b < ∞, either (i) G((0, u∗+] ×
[a, b]) ⊂ (a,∞) or (ii) G((0, u∗+] × [a, b]) ⊂ (0, b), where G : (0, u∗+] × (0,∞) →
(0,∞) is defined by G(k, u) = f (ku)

f (k) .

Theorem 2.3 Assume that (H1)–(H3) hold. If s(A) > 0, then (2.1) has a unique positive
steady state u+ which attracts all solutions of (2.1) with the initial value ψ ∈ X+ \ {0}.

Proof The existence of u+ is already established in Proposition 2.2, and the uniqueness will
be a consequence of the global attractiveness of u+ in X+ \ {0}. So, we only need to show
that u+ attracts all solutions of (2.1) with the initial value ψ ∈ X+ \ {0}.

Suppose ψ ∈ X+ \ {0}. By Lemma 2.6 we know that Mu+ is continuous in (ϕ, x) ∈
ω(ψ)×�.

Let a∗ = inf{Mu+(ϕ, x) : (ϕ, x) ∈ ω(ψ)×�} and b∗ = sup{||Mu+(ϕ, ·)|| : ϕ ∈ ω(ψ)}.
By the choices of a∗, b∗, and Lemma 2.6, we have 0 < a∗ ≤ Mu+(ϕ, x) ≤ b∗ < ∞ for all
(ϕ, x) ∈ ω(ψ)×�. To prove this theorem, it suffices to prove that a∗ = b∗ = 1. Otherwise,
a∗ �= 1 or b∗ �= 1. We shall show that this is impossible by discussing the two possible cases.

Case 1: a∗ = b∗ �= 1. In this case, ϕ(θ, ·) = a∗u+ for all θ ∈ [−τ, 0] and ϕ ∈ ω(ψ).
By (2.1) and the invariance of ω(ψ), we know that a∗u+ is also a positive steady state of
(2.1). Multiplying the steady state equation for u+ by a∗ and subtracting the the resulting
equation from the steady state equation for a∗u+ (noticing that K is linear), we then obtain
K ( f (a∗u+(·))) = K (a∗ f (u+(·))). On the other hand, by (H3) with [a, b] = {a∗} �=
{1}, we know that either f (ka∗) > a∗ f (k) for all k ∈ (0, u∗+] or f (ka∗) < a∗ f (k) for
all k ∈ (0, u∗+]. This, combined with the monotonicity of K , yields K ( f (a∗u+(·))) >
K (a∗ f (u+(·))) or K ( f (a∗u+(·))) < K (a∗ f (u+(·))), a contradiction.

Case 2: 0 < a∗ < b∗. In this case, by the assumption (H3) with [a, b] = [a∗, b∗], we know
that either (I) f (ku) > a∗ f (k) for all (k, u) ∈ (0, u∗+] × [a∗, b∗] or (II) f (ku) < b∗ f (k)
for all (k, u) ∈ (0, u∗+] × [a∗, b∗].

For (I), by Lemma 2.6, we have a∗ = Mu+(ϕ∗, x∗) for some (ϕ∗, x∗) ∈ ω(ψ)× �. By
the invariance of ω(ψ), there exists a global classical solution u(t, x) : R ×� → [0,∞) of
(2.1) such that u2τ = ϕ∗. Obviously, by the choice of a∗, we have u(t, ·)− a∗u+ ∈ C+ for
all t ∈ R.

We now claim u(t∗, x∗) − a∗u+(x∗) > 0 for some (t∗, x∗) ∈ [−τ, τ ] × �; otherwise
by the invariance of ω(ψ) and the semigroup properties of U , u(t, x) = a∗u+(x) for all
(t, x) ∈ [0,∞)×�, that is, a∗u+ is a positive steady state of (2.1). Thus, K ( f (a∗u+(·))) =
K (a∗ f (u+(·))), yielding a contradiction to the monotonicity of K and the fact that f (ku) >
a∗ f (k) for all u ∈ [a∗, b∗] and k ∈ (0, u∗+]. Hence, the claim holds.
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Let v(t, x) = u(t + t∗, x) − a∗u+(x) for all (t, x) ∈ [−τ,∞) × �. By the semigroup
properties of U and (2.2), we know that for all (t, x) ∈ [0,∞)×�,

u(t + t∗, x) = T (t)(u(t∗, ·))(x)+ μ

t∫

0

T (t − s)(K ( f (u(s + t∗ − τ, ·))))(x)ds.

This, combined with the monotonicity of K and the fact that f (ku) > a∗ f (k) for all (u, k) ∈
[a∗, b∗]×(0, u∗+] and u+(x) = T (t)(u+)(x)+μ

∫ t
0 T (t −s)(K ( f (u+)))(x)ds, implies that

for all (t, x) ∈ [0,∞)×�,

v(t, x) = T (t)(u(t∗, ·))(x)+
t∫

0

T (t − s)F(us+t∗)ds − a∗u+(x),

= T (t)(u(t∗, ·)− a∗u+)(x)

+μ
t∫

0

T (t − s)(K [ f (u(s + t∗ − τ, ·))− a∗ f (u+)])(x)ds,

= T (t)(u(t∗, ·)− a∗u+)(x)

+μ
t∫

0

T (t − s)(K [ f (Mu+(u(s + t∗ − τ, ·), ·)u+)− a∗ f (u+)])(x)ds,

≥ T (t)(u(t∗, ·)− a∗u+)(x),
= T (t)(v(0, ·))(x).

Combining this with Lemma 2.2(i–ii) and v(0, ·) > 0, we obtain that v(t, x)|� > 0 and
∂v(t,·)
∂ν

|∂� < 0 for all t ∈ (0,∞). Thus, Mu+(vt , x) > 0 for all (t, x) ∈ (0,∞) × �, in
particular, Mu+(v2τ−t∗ , x) > 0 for all x ∈ �. Thus the definitions of v and Mu+ imply that

Mu+(ϕ∗, x∗) = Mu+(u2τ , x∗) = a∗ + Mu+(v2τ−t∗ , x∗) > a∗.

This yields a contradiction to the choices of x∗ and ϕ∗.
For (II), we are similarly led to a contradiction.
Summarizing the above Cases 1–2, we see that a∗ = b∗ = 1 and hence ω(ψ) = {u+}.

This completes the proof. �

For some special forms of the linear operator K , by applying Theorem 2.2 and 2.3, we

may obtain some more explicit results. We start with the local case, represented by K = I d ,
the identity operator. In this case, we now formulate the following condition to replace (H3):

(H4) There exists u∗ > 0 such that f (u∗) = u∗. Moreover, for any closed interval
[a, b] �= {1} with 0 < a ≤ b < ∞, either (i) G((0, u∗] × [a, b]) ⊂ (a,∞) or (ii)
G((0, u∗]×[a, b]) ⊂ (0, b), where G : (0, u∗]×(0,∞) → (0,∞) defined by G(k, u) =
f (ku)
f (k) .

Denote by λ1 the first eigenvalue of the operator −� with the homogeneous Dirichlet
boundary condition. We have following results for the local case.

Theorem 2.4 Consider K = I d and assume that (H1) and (H2) hold.

(i) If μ f ′(0) ≤ dλ1 +μ, then the trivial steady state u = 0 of (2.1) attracts all solutions of
(2.1) with the initial value in X+;
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(ii) μ f ′(0) > dλ1 + μ, then u = 0 becomes unstable and (2.1) is persistent and has a
positive steady state u+. Moreover, if (H4) holds, then u+ attracts all solutions of (2.1)
with initial function in X+ \ {0}.

Proof For K = I d , A = d� − μI d + μ f ′(0)I d . Note that there is a unique ξ1 ∈ Y+
such that �ξ1 = −λ1ξ1 and ||ξ1|| = 1. Thus, Aξ1 = d�ξ1 − μξ1 + μ f ′(0)ξ1 = (−dλ1 −
μ + μ f ′(0))ξ1, meaning that ξ1 is also a positive eigenfunction of A associated to the
eigenvalue −dλ1 −μ+μ f ′(0). By the uniqueness of the positive principal eigenfucntion in
the Krein–Rutman Theorem and the spectral mapping theorem for semigroups, we conclude
that s(A) = −dλ1 − μ + μ f ′(0). Thus, μ f ′(0) ≤ dλ1 + μ is equivalent to s(A) ≤ 0, and
hence, the conclusion in (i) follows from Theorem 2.2.

For (ii), by Theorem 2.3, we only need to verify (H3) under (H4). According to the
assumption (H4), for any u ∈ (0,∞) \ {1}, by taking a = b = u and k = u∗, we have
f (uu∗)

u∗ > u or f (uu∗)
u∗ < u, and hence f (u) �= u for all u ∈ (0,∞) \ {u∗}, concluding that u∗

is a unique positive fixed of f . This together with (H2) and the condition f ′(0)>1+dλ1/μ, we
have both f (u) > u for all u ∈ (0, u∗) and f (u) < u for all u ∈ (u∗,∞). By the continuity of
u+, there exists x∗ ∈ � such that u+(x∗) = u∗+ = sup{u+(x) : x ∈ �}. Thus,�u+(x∗) ≤ 0,
which, combined with the fact that d�u+(x) − μu+(x) + μ f (u+(x)) = 0, implies that
−μu+(x∗)+μ f (u+(x∗)) ≥ 0 and hence f (u+(x∗)) ≥ u+(x∗). Hence, u∗+ = u+(x∗) ≤ u∗.
This and (H4) imply that (H3) holds. Therefore, the statement (ii) follows from Theorem 2.3.

�

Next, we consider an integral form for K related to the non-local equation (1.1) in the

Introduction, that is,

K (φ)(x) =
∫
�

�(x, y)φ(y)dy for x ∈ �. (2.3)

In this case, we need the following replacement for (H3):

(H5) There exists u∗ > 0 such that f (u∗) = u∗. Moreover, for any closed interval
[a, b] �= {1} with 0 < a ≤ b < ∞, either (i) G((0, f ∗] × [a, b]) ⊂ (a,∞) or (ii)
G((0, f ∗]× [a, b]) ⊂ (0, b), where f ∗ = supk∈[0,u∗] f (k) and G : (0, f ∗]× (0,∞) →
(0,∞) is defined by G(k, u) = f (ku)

f (k) .

Theorem 2.5 Assume that K is given by (2.3) with � : �×� → [0,∞) being continuous
satisfying ||K || = 1. Suppose that (H1) and (H2) hold.

(i) If s(A) ≤ 0, then the trivial steady state of (2.1) attracts all solutions of (2.1) with the
initial value in X+;

(ii) If s(A) > 0, then u = becomes unstable, and (2.1) is persistent and has a positive steady
state u+. Moreover, if f satisfies the assumption (H5), then u+ attracts all solutions of
(2.1) with initial functions in X+ \ {0}.

Proof (i) is a direct consequent of Theorem 2.2. (ii) follows from Theorem 2.3 if we can verify
(H3) under (H5). Indeed, by the definition of u∗+, there exists x∗ ∈ � such that u+(x∗) =
u∗+ = sup{u+(x) : x ∈ �}. Thus, �u+(x∗) ≤ 0, which, combined with (2.1), implies
that u∗+ = u+(x∗) ≤ ||K ( f (u+)|| ≤ || f (u+)||. We claim that u∗+ ≤ f ∗; otherwise, u∗+ >

f ∗ ≥ f (u∗) = u∗. This implies || f (u+)|| = supx∈� | f (u+(x))| = supx∈� f (u+(x)) ≤
supu∈[0,u∗+] f (u) = max{ f ∗, supu∈[u∗,u∗+] f (u)} < u∗+ due to the fact f (u) < u for all
u > u∗, a contradiction. Thus (H3) is verified and hence, the statement of (ii) holds by
Theorem 2.3. �
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Remark 2.1 Similar results to those in Theorem 2.1–2.5 can be established if d� is replaced
by a uniformly elliptic operator.

3 Examples

In this section, we illustrate the results of Theorems 2.4 and 2.5 by considering two concrete
examples, one is the local diffusive Mackey and Glass equation and the other is the non-local
diffusive Nicholson’s blowflies equation.

Note that (H1) and (H2) are quite standard and minimal conditions and are easy to check.
Thus, verifying (H4) or (H5) becomes the key for applying these two theorems. The following
lemma shall be very useful for verifying (H4) and (H5), which is closely related to the
requirement that the map f (u) generates a dynamics of global convergence to a positive
fixed point of f which is a condition crucial in [27–29].

Lemma 3.1 For given k∗ > 0, let G : (0, k∗] × (0,∞) → (0,∞) be a continuously
differentiable function. Assume that G(0+, u) = u for all u > 0 and ∂G(k,u)

∂k · (1 − u) > 0
for all (k, u) ∈ (0, k∗] × ((0,∞) \ {1}). If {u > 0 : G(k∗,G(k∗, u)) = u} consists of
single point, then for any closed interval [a, b] �= {1} with 0 < a ≤ b < ∞, either (i)
G((0, k∗] × [a, b]) ⊂ (a,∞) or (ii) G((0, k∗] × [a, b]) ⊂ (0, b).

Proof Note that

∂G(k, u)

∂k
(k, u) =

⎧⎨
⎩
> 0, (k, u) ∈ (0, k∗] × (0, 1),
< 0, (k, u) ∈ (0, k∗] × (1,∞),

= 0, (k, u) ∈ (0, k∗] × {1}.
(3.1)

Obviously, G(k, 1) = G(0+, 1) = 1 for all k ∈ (0, k∗]. Let [a, b] ⊆ (0,∞) be such
[a, b] �= {1}. We will complete the proof by distinguishing three cases.

Case 1: a ≤ b ≤ 1 and [a, b] �= {1}. In this case, G(k, 1) = 1 > a for all k ∈
(0, k∗]. Since G(k, u) is strictly increasing in k when u ∈ (0, 1), we know that for any
(k, u) ∈ (0, k∗] × [a, 1), G(k, u) > lim

k→0+ G(k, u) = u ≥ a. Hence, G(k, u) > a for all

(k, u) ∈ (0, k∗] × [a, b].
Case 2: 1 ≤ a ≤ b and [a, b] �= {1}. In this case, since G(k, u) is strictly decreasing in

k when u ∈ (1,∞), we know that G(k, u) < lim
k→0+ G(k, u) = u ≤ b for any u ∈ (1, b].

Note that b > 1, and thus G(k, 1) = 1 < b for all k ∈ (0, k∗]. So, G(k, u) < b for all
(k, u) ∈ (0, k∗] × [a, b].

Case 3: a < 1 < b. By way of contradiction, we assume there exist (ka, ua) and (kb, ub)

in (0, k∗] × [a, b] such that G(ka, ua) ≤ a and G(kb, ub) ≥ b. By the discussions in
Cases 1-2, we easily see that ua > 1 and ub < 1. Thus, G(k∗, ua) ≤ G(ka, ua) ≤ a and
G(k∗, ub) ≥ G(kb, ub) ≥ b.

Let h(u) = G(k∗, u) for all u ∈ (0,∞). It follows from (3.1) and G(0+, u) ≡ u that
h(u) > u for all u ∈ (0, 1) and h(u) < u for all u ∈ (1,∞). Thus, there exist two positive
numbers ε,M such that [ε,M] ⊇ [a, b] and [a, b] ⊆ h([a, b]) ⊆ h([ε,M]) ⊆ [ε,M]. Let
I = [ε,M] and g = hI . According to the assumption that {u > 0 : G(k∗,G(k∗, u)) = u} is
a single point set, we easily see that g2 has a unique positive fixed point 1 in I . By Proposition
2.1 in [28], we have Ig = {1}, where Ig = ⋂

n≥1
gn(I ). By g([a, b]) ⊇ [a, b] and I ⊇ [a, b],

we get Ig ⊇ [a, b] �= {1}, a contradiction.
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Summarizing the above cases 1–3, we see that for any closed interval [a, b] �= {1} with
0 < a ≤ b < ∞, either (i) G((0, k∗]× [a, b]) ⊂ (a,∞) or (ii) G((0, k∗]× [a, b]) ⊂ (0, b).
This completes the proof. �

Remark 3.1 When u∗ > 0 is a fixed point of f and G(k, u) = f (ku)

f (k) , calculations show that

G(u∗,G(u∗, u)) = f 2(u∗u)
u∗ . Hence,

{u>0 : G(u∗,G(u∗, u))=u}={1} if and only if {u>0 : f 2(u)=u}={u∗}. (3.2)

Note that if (3.2) holds, then all positive orbits of the dynamical system generated by the map
f converge to the positive fixed point u∗. Thus, Theorems 2.4 and 2.5 together with Lemma
(3.1) and (3.2) reveal a relationship, to certain extent, between the global convergence of the
map dynamic { f n} and global convergence of the corresponding reaction–diffusion equation
(1.1) under DBVC.

Example 3.1 Consider the following diffusive Mackey and Glass equation
⎧⎨
⎩

∂u
∂t (t, x) = d�u(t, x)− δu(t, x)+ pu(t−τ,x)

1+(u(t−τ,x))n ,
u|∂� = 0,
u(θ, x) = φ(θ, x) for (θ, x) ∈ [−τ, 0] × �̄,

(3.3)

where d, δ, p and n are all positive constants.

For this equation, the following lemma verifies the conditions

Lemma 3.2 Let f (u) = p
δ

u
1+un for all u ≥ 0. Then the following statements are true:

(i) if p ≤ δ, then f (u) < u for all u > 0;
(ii) if p > δ, then the assumptions (H1) and (H2) hold;

(iii) if p > δ and n ≤ 2p
p−δ , then the assumption (H4) holds with u∗ = (

p
δ

− 1)
1
n .

Proof (i)–(ii) are obvious. We only need to prove (iii). Firstly, it is straightforward to verify

that u∗ = (
p
δ

− 1)
1
n satisfied f (u∗) = u∗, and it is positive when p > δ. Let k∗ = u∗ and let

G(k, u) = f (ku)

f (k)
= u(1 + kn)

1 + knun
for all (k, u) ∈ (0, k∗] × (0,∞).

Then

∂G

∂k
(k, u) = nukn−1(1 − un)

(1 + knun)2
for all (k, u) ∈ (0, k∗] × (0,∞).

From the above formulas of G(k, u) and ∂G
∂k (k, u), we easily see that G(0+, u) ≡ u and

∂G
∂k (k, u)(1 − u) > 0 when u �= 1. According to the proof of Theorem 4.5, Remarks 4.6
and 4.7 in [28], we know that {u > 0 : f 2(u) = u} = {u∗} if and only if p > δ and
n ≤ max{2, 2p

p−δ } = 2p
p−δ . By Lemma (3.1) and (3.2), we see that the assumption (H4) holds.

This completes the proof. �

By applying Theorems 2.1, 2.4, and Lemma 3.2, we then obtain the following results for

(3.3).

Theorem 3.1 The following statements hold for (3.3).

(i) If p ≤ dλ1 + δ, then the trivial steady state u = 0 of (3.3) attracts all solutions of (3.3)
with the initial functions in X+;
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(ii) If p > dλ1 + δ, then u = 0 becomes unstable, and (3.3) is persistent and has a positive
steady state u+. Moreover, if n ≤ 2p

p−δ , the positive steady state u+ attracts all solutions
of (3.3) with the initial functions in X+ \ {0}.

Example 3.2 Consider the diffusive Nicholson’s blowflies equation with the nonlocal
response,

⎧⎨
⎩

∂u
∂t (t, x)=d�u(t, x)−δu(t, x)+ε ∫

�
�1(Di , τ, x, y)pu(t − τ, y)e−u(t−τ,y)dy,

t > 0, x ∈ �,
u(0, ·)|∂�=0,

(3.4)

where d, q, τ and δ are positive constants, ε = e−δi τ with δi being the death rate of immature
individuals and Di is the diffusion rate of the immature individuals. The kernel�1(Di , τ, x, y)
is the Green function for the operator Di� associated with homogeneous Dirichlet boundary
condition.

Biologically ε is the probability that a new born individual can survive the maturation
period [0, τ ], and�1(Di , τ, x, y) is the probability that a surviving individual born at location
y has moved to location x at maturation (i.e., after τ time units). Therefore, in the case when
immature individuals do not move around (Di = 0), �1(0, τ, x, y) reduces to the Dirac delta
function centered at x , and (3.4) reduces to the following local equation:

{
∂u
∂t (t, x) = d�u(t, x)− δu(t, x)+ εpu(t − τ, x)e−u(t−τ,x) t > 0, x ∈ �,
u(0, ·)|∂� = 0.

(3.5)

When � is one dimensional (an interval), �1(Di , τ, x, y) can be given by a sine series (see,
e.g., [10]).

Let L = L(Di , t) be defined by [L(Di , t)(φ)](x) = ∫
�
�1(Di , t, x, y)φ(y)dy for all

(t, x, φ) ∈ R+ × � × C0. That is, L(Di , t) is the semigroup on C0 generated by the
operator Di� under the Dirichlet boundary condition. Thus, ||L(Di , t)|| ≤ 1 and L(Di , t) =
e
μDi

d t T ( Di
d t) for all t ≥ 0. Note that L(0, τ ) = I d . Comparing (3.4) and (2.1), we find that K

is given by [K (φ)](x) = [L(Di ,τ )(φ)](x)||L(Di ,τ )|| for all (x, φ) ∈ �×C0, and f (u) = pε||L(Di ,τ )||
δ

ue−u

for u ∈ [0,∞).
For the above function f , we easily see that f ′(0) = pε||L(Di ,τ )||

δ
and f has a positive

fixed point given by u∗ = ln pε||L(Di ,τ )||
δ

if and only if pε||L(Di ,τ )||
δ

> 1. The next lemma
further summarizes some properties of f required by Theorem 2.5.

Lemma 3.3 For the above f , the following statements hold:

(i) if pε||L(Di ,τ )||
δ

≤ 1, then f (u) < u for all u > 0;

(ii) if pε||L(Di ,τ )||
δ

> 1, then f satisfies the assumptions (H1) and (H2);

(iii) if pε||L(Di ,τ )||
δ

∈ (1, e2], then the assumption (H4) holds with u∗ = ln( pε||L(Di ,τ )||
δ

);
in particular, if pε

δ
∈ (1, e2], then the assumption (H4) holds for Di = 0 with u∗ =

1
q ln

( pε
δ

)
;

(iv) if pε||L(Di ,τ )||
δ

∈ (1, e], then the assumption (H5) holds with f ∗ = u∗ = ln( pε||L(Di ,τ )||
δ

).

(v) if pε||L(Di ,τ )||
δ

∈ (e, 2e], then the assumption (H5) holds with u∗ = ln( pε||L(Di ,τ )||
δ

) and

f ∗ = pε||L(Di ,τ )||
δe .

Proof (i)–(ii) are obvious and (iv) follows from (iii). To complete the proof of the
statements (iii) and (v), we suppose that pε||L(Di ,τ )||

δ
> 1. For any given k∗ ∈
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{
ln

(
pε||L(Di ,τ )||

δ

)
,

pε||L(Di ,τ )||
δe

}
, let

G(k, u) = f (ku)

f (k)
= uek(1−u) for all (k, u) ∈ (0, k∗] × (0,∞).

Then
∂G

∂k
(k, u) = u(1 − u)ek(1−u) for all (k, u) ∈ (0, k∗] × (0,∞).

Thus by the explicit expressions of G and ∂G
∂k , to apply Lemma 3.1, it suffices to check that

{u > 0 : G(k∗,G(k∗, u)) = u} = {1} which is equivalent to {u > 0 : h2(u) = u} = {k∗},
where h(u) = ek∗

ue−u for all u ∈ (0,∞). According to the proof of Theorem 4.2 and
Remark 4.3 in [28], we know that {u > 0 : h2(u) = u} = {k∗} if and only if k∗ ∈ (0, 2].

For (iii), taking k∗ = ln( pε||L(Di ,τ )||
δ

), we have k∗ ∈ (0, 2], and thus {u > 0 :
G(k∗,G(k∗, u)) = u} = {1}. By Lemma 3.1, the assumption (H4) holds with u∗ =
ln( pε||L(τ )||

δ
). The conclusion for Di = 0 in (iii) follows from the facts that L(0, τ ) = I d

and ||L(0, τ )|| = 1.
For (v), taking k∗ = pε||L(di ,τ )||

δe , we have k∗ ∈ (1, 2] ⊆ (0, 2], and thus {u >

0 : G(k∗,G(k∗, u)) = u} = {1}. By Lemma 3.1, the assumption (H5) holds with
u∗ = ln( pε||L(Di ,τ )||

δ
) and f ∗ = pε||L(Di ,τ )||

δe . The proof is completed. �

Note that in such a non-local case, the linear operator A is given by A = d� − δ I d +

δ f ′(0)K = d�− δ I d + pεL(Di , τ ). When Di = 0 (local case), we have seen in the proof
of Theorem 2.4 that s(A) = −dλ1 − δ+ pε. For the true non-local case, that is, Di > 0, the
following lemma gives a similar formula for s(A).

Lemma 3.4 For A = d�− δ I d + pεL(τ ), s(A) = −dλ1 − δ+ pεe−λ1α , where α = D1τ .

Proof By the definition of λ1, there is a unique ξ1 ∈ Y+ with ||ξ1|| = 1 such that �(ξ1) =
−λ1ξ1. Note L(Di , t) is the semi-group generated by the linear problem{

∂u
∂t (t, x) = Di�u(t, x) t > 0, x ∈ �,
u(0, ·)|∂� = 0.

(3.6)

That is,

[L(Di , t)φ](x) =
∫
�

�1(Di , t, x, y)φ(y) dy.

It is easy to see that e−λ1 Di tξ1(x) satisfies (3.6). This implies that∫
�

�1(Di , t, x, y)ξ1(y) dy = e−λ1 Di tξ1(x),

and particularly,

[L(Di , τ )ξ1](x) =
∫
�

�1(Di , τ, x, y)ξ1(y) dy = e−λ1 Di τ ξ1(x) = e−λ1αξ1(x). (3.7)

Therefore,

A(ξ1) = [d�− δ I d + pεL(Di , τ )]ξ1 = [−dλ1 − δ + pεe−λ1α]ξ1,

meaning that −dλ1 − δ + pεe−λ1α is a real eigenvalue of A corresponding to which, there
is the unit positive eigenfunction ξ1. By the uniqueness of the positive eigenfunction in
Krein–Rutman theorem and the spectral mapping theorem for semigroups, we conclude that
s(A) = −dλ1 − δ + pεe−λ1α , completing the proof. �
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Applying Theorems 2.1 and 2.5, Lemma 3.3(i)–(ii)–(iv)–(v) and Lemma 3.4, we then
obtain the following results for the non-local problem (3.4).

Theorem 3.2 If pε||L(Di ,τ )||
δ

≤ 1 andα > 0, then the trivial equilibrium 0 of (3.4) attracts all

solutions of (3.4) with the initial value ψ ∈ X+. If pε||L(Di ,τ )||
δ

∈ (1, 2e], then the following
statements are true:

(i) If pεe−λ1α ≤ dλ1 + δ, then the trivial steady state u = 0 of (3.4) attracts all solutions
of (3.4) with the initial value in X+;

(ii) if pεe−λ1α > dλ1 + δ, then there exists a positive steady state u+ of (3.4) which attracts
all solutions of (3.4) with the initial value in X+ \ {0}.

Remark 3.2 As we mentioned in the introduction, Wu–Zhao [22] and Xu–Zhao [24] also
obtained some results about the global dynamics of the Dirichlet problem for some nonlocal
equations of type (3.4). The main tool in [22] and [24] is the theory of monotone dynami-
cal systems, and hence, monotonicity (under some non-standard ordering) and sublinearity
on the nonlocal nonlinear terms played a crucial role. In contrast, we assume an alterna-
tive condition (H3) [or (H4) or (H5)] rather than the sublinearity, and our approach is less
dependent on ordering, and hence our results in Theorems 2.5 and 3.2 are less demanding on
monotonicity, which can be clearly reflected by the condition pε||L(Di ,τ )||

δ
∈ (1, 2e]. Indeed,

we can demonstrate this by considering Theorem 3.2(ii). Assume that pε||L(Di ,τ )||
δ

∈ (1, 2e]
and pεe−1−λ1α > dλ1 + δ, let u+ be the unique positive steady state. Then, we can
show that u∗+ = sup

x∈�
u+(x) > 1. Otherwise, assume that u+ ≤ 1. Let ξ1 ∈ Y+ satisfy

�(ξ1) = −λ1ξ1 with ||ξ1|| = 1. By a similar argument to that in the proof of Lemma
3.4, we see that [d� − δ I d + pεe−1L(Di , τ )]ξ1 = [−dλ1 − δ + pεe−1−λ1α]ξ1. Choose
ε0 > 0 sufficiently small that that u+ ≥ ε0ξ1. Then, straightforward verification shows that
v(t, x) = ε0ξ1(x)e(−dλ1−δ+pεe−1−λ1α)t satisfies the following equation,{

∂v
∂t (t, x)=d�v(t, x)−δv(t, x)+εpe−1

∫
�
�(Di , τ, x, y)v(t, y)dy, t>0, x ∈ �,

v(0, ·)|∂�=0.

(3.8)

Note that (3.8) is cooperative and ue−u ≥ ue−1 for all u ∈ [0, 1]. By the comparison
theorem (see, e.g., Corollary 5 in [11]), we know that u(t, x) � u+(x) ≥ v(t, x) for all
(t, x) ∈ [0,∞)×�. Now, in view of pεe−1−λ1α > dλ1 + δ, we have lim

t→∞ ||v(t, ·)|| = ∞,

a contradiction to u+ ≤ 1. So, u∗+ > 1, which implies the range of u+(x) contains a domain
on which the non-local delayed reaction function is not monotone. Thus the main results in
Wu–Zhao [22] and Xu–Zhao [24] do not apply in this case, but our results may be applied
as is shown in Theorem 3.2.

Replacing Lemma 3.3(iv)–(v) by Lemma 3.3(iii), we obtain the following results for the
local (Di = 0) problem (3.5).

Corollary 3.1 The following statements hold.

(i) If εp ≤ dλ1 + δ, then the trivial steady state u = 0 of (3.5) attracts all solutions of (3.5)
with the initial functions in X+;

(ii) If εp > dλ1 + δ, then u = 0 becomes unstable, and (3.5) is persistence and has a
positive steady state u+. Moreover, if pε

δ
∈ (1, e2], the u+ attracts all solutions of (3.5)

with the initial functions in X+ \ {0}.
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Remark 3.3 Clearly, the range (0, 2e] for pε||L(Di ,τ )||
δ

in Theorem 3.2 for the true nonlo-

cal case has been expanded to (0, e2] for pε||L(Di ,0)||
δ

= pε
δ

. We point out that in [25], the
authors also proved that under εp ≤ dλ1 + δ, u = 0 is globally attractive in the sense of
L2(�)) norm. Under the condition (ii) in Corollary 3.1, Yang and So [25] also obtained the
global attractiveness of the positive steady state u+ by dividing the spatial domain accord-
ing to some information from the positive steady state and these sub-domains were treated
separately, both in L2(�)) norm and C(�)) norm. By modifying some of the arguments
in Yi and Zou [27], more precisely, by combining a dynamical system argument with the
maximum principle as well as some subtle inequalities, Yi et al. [26] also established the
threshold dynamics of the Dirichlet problem (3.5) and thus re-confirmed the existing results
for the diffusion Nicholson’s blowflies equation in [25]. Our results cover all these previous
results.
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