Journal of Dynamics and Differential Equations
https://doi.org/10.1007/510884-020-09885-w

®

Check for
updates

Spatial-Temporal Dynamics of a Diffusive Lotka-Volterra
Competition Model with a Shifting Habitat Il: Case of Faster
Diffuser Being a Weaker Competitor

Yueding Yuan' - Xingfu Zou?

Received: 13 June 2020 / Revised: 1 August 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

We study a Lotka—Volterra competition—diffusion model that describes the growth, spread and
competition of two species in a shifting habitat. Some results have been obtained previously
for some cases for the diffusion rates and competitions rates, and in this paper we continue
to explore the remaining complementary case for the spatial dynamics of the system. Our
main result in this paper reveals an essential difference between the case of faster diffuser
being weak competitor and the case of faster diffuser being strong competitor: with the
severe habitat worsening with constant speed, for the former the two competing species can
co-persist by spreading, whereas for the latter, co-persistence is impossible.
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1 Introduction

In this paper, we are devoted to the study of the spatial-temporal dynamics of the following
two-species competition—diffusion model of Lotka-Volterra type

Research was partially supported by National Natural Science Foundation of China (No. 11561068),
NSERC of Canada (No. RGPIN-2016-04665) and Hunan Provincial Key Laboratory of Mathematical
Modeling and Analysis in Engineering (No. 2018MMAEZDOS).

B Xingfu Zou
xzou@uwo.ca

School of Mathematics and Statistics, Hunan University of Finance and Economics, Changsha
410205, Hunan, People’s Republic of China

Department of Applied Mathematics, University of Western Ontario, London, ON N6A 5B7, Canada

Published online: 04 September 2020 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10884-020-09885-w&domain=pdf
http://orcid.org/0000-0002-8403-3314

Journal of Dynamics and Differential Equations

duq 0%u,

ar =d R +uilr(x —ct) —uy —ajus],

d t>0, xeQCR. (1.1)
oun —d 9%us ol 0 1

5 252 ur[r(x —c a)ui — uy

Inmodel (1.1), u1 (¢, x) and u» (¢, x) denote the population densities of two competing species
at time ¢ and location x respectively; the constants d; and d, are the diffusion rates of two
competing species respectively and d; # d;; and the constanta; > 0 (a> > 0) is competition
strength of species 2 (species 1) against species 1 (species 2). Here, the way the growth rate
function r(x — ct) depends on the time ¢ and position x is through a moving pattern with a
constant speed ¢, and r(-) is assumed to satisfy

(A) r(x)iscontinuous, nondecreasing, bounded and piecewise continuously differentiable
forall x € R with 0 < r(00) < o0 and —o0 < r(—o0) < 0.

The non-decreasing property of r (x) assumes that the environment gets worse as time goes,
and the negativity of r(—o00) explains a scenario that the environment is shifting to a very
severe level.

It is well known that spatial heterogeneity and diffusion play an important role when
considering the interaction of biological species that can diffuse in the real world (see, e.g.,
[3-5,11,19,27,28]). To understand the effects of the spatial heterogeneity and diffusion on the
spatial-temporal dynamics of species, Hastings [10] and Dockery et al [7] discussed a special
case of (1.1), with ¢ = 0 and a; = ap = 1, and they found that in this special case, if the
habitat €2 is a bounded domain with no flux boundary condition (i.e., homogeneous Neumann
boundary condition), then the species with slower diffusion rate will win the competition,
that is, if d; < da, then all positive solutions to (1.1) converge to (u} (x), 0), where u7(x) is
the unique positive solution of the boundary value problem

2

0
di 3u2 +uilr(x) —u11=0, x € Q,
3141
=0, xe€df.
on

Relevantly, Carrere [6], Lin and Li [21], and Girardin and Lam [9] considered the case of
constant r(-) in (1.1), and they respectively obtained some spreading properties of (1.1) for
the monostable case (a; < 1, ap < 1), the bistable case (a1 > 1, ap > 1) and the case of
slower diffuser being stronger competitor (d; < da, a; < 1 < a2).

Meanwhile, Lou et al. [7,10,12—14,16-18,24,25] analyzed a slightly more general model
(than [6,9,21]), that is, the special case of ¢ = 0 but r(-) being non-constant in (1.1). For
this special case, they obtained some very surprising and interesting results on the long
time behaviors of solutions to (1.1), including the possibility of a globally asymptotically
stable positive steady state (co-persistent). For details, see [7,10,12—14,16—18,24,25] and the
references therein.

Recently, the climate change has been a major concern of the scientific community, includ-
ing ecologists and applied mathematicians, see, e.g., [1,2,8,15,20,22,23,26,30-36,42]. A
simple climate change pattern is the shifting of environment quality with a constant speed.
For the Lotka-Volterra competition model, adopting such a shifting pattern leads to (1.1) with
¢ > 0 representing the constant shifting speed. For (1.1) with Q = R, Zhang et al [41] and
Yuan et al [40] investigated the spatial temporal dynamics of (1.1) for the following cases:

(D di <dr,a; <1landay < 1, 1i.e., the case of weak competition;
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) dy <dy,a; > 1anday > 1, 1i.e., the case of strong competition;
(MI) dy < drand a; > 1 buta, < 1, i.e., the case of faster diffuser being stronger

competitor ( hence, the other species is slower diffuser and weaker competitor).
The results in [40,41] show that

(P1) in the weak competition case (I), species i can persist if and only if its intrinsic
spreading speed c}(00) = 24/d;r(c0) is larger than the environmental worsening
speed ¢ (hence, co-persistence happens if ¢ < ¢} (00) );

(P2) in the cases (II) and (III), since species 2, being faster diffuser (d> > dj) and strong
competitor (a1 > 1), has advantages both in dispersion and competition, species 1 will
go to extinction no matter if it is a weak competitor (a2 < 1) or a strong competition
(a2 > 1); in the mean time, species 2 will go extinct provided that ¢} (c0) < ¢ and
will persist provided that c3(c0) > c. This is in contrast to the results in [10] and [7]
and such a difference is attributed to the severe (or extreme) habitat’s worsening with
constant speed (r(—o0) < 0).

We note that [40,41] do not present any essential theoretical results for the following case
that is complementary to (I)-(II)-(IV):

AV) dy <dyanda; < 1 < ay, i.e., the case of faster diffuser being weaker competitor.

One then naturally wonders what happens in this remaining case. For this case, can the two
competing species co-persist by spreading to the right, and moreover, what would be the
spatial-temporal dynamics of species described by (1.1)? Note that model (1.1) is hetero-
geneous in space and time. The heterogeneity described by r(x — ct) makes the existing
theory on spreading properties not applicable to (1.1). In order to obtain their main results,
the authors of [40,41] used a fluctuation method, which was developed by Li et al [20]. Unfor-
tunately, since (IV) is a mixed case, the fluctuation method does not apply, at least directly,
making the study more challenging and subtle. This may explain (at least partially) why
Zhang et al [41] and Yuan et al [40] only presented some simulation results and conjectures
for case (IV).

In this paper, we continue to explore the spatial dynamics of model (1.1) with 2 = R and
case (IV). That is, we consider the following model system

2

oup 0°uy

En = dla—z +uilr(x —ct) —uy —ayuz],

at i t>0, xR, (1.2)
% =dog +us[r(x — ct) — aguy — uzl,

where ¢ > 0, r(x) satisfies Assumption (A), and d; and a;, i = 1,2 satisfy (IV). As
mentioned before, the heterogeneity described by r(x — ct) prevents us from applying those
nice results in the existing theory on spreading properties. To overcome this difficulty, we will
modify the method developed in [40] to obtain the spatial dynamics of the model (1.2). More

oo
specifically, we construct an auxiliary sequence of functions { u%"), ué") } that satisfies

some required properties. We point out that the iteration generating this seaﬁgnce is similar
to but different from that in Sub-section 2.2 in [40] so that the different scenario for the case
(IV) can be accommodated. Then by carefully analyzing this sequence, and with the help of
Egorov’s Theorem, we show that the sequence converges to a limit function (u’]‘ ug) which
is the solution to (1.2) and also satisfies the required properties (see Theorem 2.4 in Section
2). Our results indicate that the spatial-temporal dynamics of (1.2) mainly depend on ¢ and
cf(00) = 24/d;r(00), i = 1,2 which are defined by the parameters in (1.2). We will show
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that (i) if 0 < ¢ < ¢](00), then two competing species will coexist by spreading to the right;
(ii) if ¢} (00) < ¢ < ¢5(00), then species 1 will go to extinction in the habitat and species 2
will persist by spreading to the right (thus, confirming that the being a stronger competitor
does not help species 1 survive); (iii) if ¢ > ¢;(00), then two competing species will both
go extinct in the habitat. Observe that while the conclusion in (ii) and (iii) above remain the
same as those for the cases (I), (I) and (III), the conclusion in (i) reveals that there is an
essential difference between the case of faster diffuser being weak competitor (Case (IV)),
and the case of faster diffusor being also strong competition ( Cases (II) and (III) ). These
results complement those in [41] and [40], helping us have a better understanding on the
spatial-temporal dynamics of (1.2).

The rest of this paper is organized as follows. In Sect. 2, we present the main mathematical
results regarding the spatial-temporal dynamics of (1.2). In Sect. 3 we give some numerical
simulation results that help illustrate the results from Sect. 2. To make the reading smoother,
we leave the proof of Lemmas 2.2 and 2.5 to the Appendix.

2 Mathematical Results

We first introduce some notations that are consistent with those used in [40]. Let R and R be
the sets of all real numbers and nonnegative real numbers, respectively. For any u = (u1, us),
v = (v], v2) € R2, we write u < v if and only if u; < vy and up < v, and u < v means
that u < v but u # v. For every pair u, v € R? satisfying u < v, the set

[u,v]:{weRﬂuSwfv}

is called the order interval between u and v. Clearly, [, v] is nonempty if and only if u < v.
For any constant /, we denote by [ the vector (/, /). Define f; : Ry xR x ]Ri —R,i=1,2,
by

S1@, x,u) = ui[r(x —ct) —uy — ajuy]
and
H, x,u) =uz[r(x —ct) —upy — azuy]

forall (f,x,u) € Ry xR x ]Rﬁ_. Then we can rewrite (1.2) as the following more convenient
form with given nonnegative initial function

] 92

—8”; =d 8;21 + fitt,x,u), t>0, x eR,

] 92 2.1

%:d28u22+f2(t,x,u), t>0, x eR, 21
X

u(0,x) =¢(x) >0, xeR.

Throughout this section, we always assume that 0 < d; < dz, ¢ > 0,0 <a; <1 < a (e.g.,
case (IV)) and the function r satisfies Assumption (A). _
Foranyr € Ry,x € Randu, v € [0, 7(c0)], where u = (uy, uz),v = (vy, v2),0 = (0, 0)
and 7 (00) = (r(00), r(00)), one can easily verify the following Lipschitz condition
[fit, x, u) — fi(t, x,v)| < 4r(00) (lur —vi| + lua — v2|)

fori = 1,2. Thus, if 0 < ¢ (x) < F(oo) for all x € R, then 0 and F(co) are coupled upper
and lower solutions to (2.1) (see, e.g., [29]). The theory on the existence and uniqueness of
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solutions for reaction—diffusion systems has been well established (see, e.g., Theorem 2.1 in
[29]), by which, it is known that the initial value problem (2.1) with 0 < ¢(x) < r(c0) has
a unique classical solution u(z, x, ¢) with 0 <u(t,x,d) <r(c0).

Since the work in this paper can be considered as a continuation of the work of [40,41],
it will be natural and convenient to adopt those notations and concepts used in [40,41], as
proceeded below. For r(x) > 0, define

cf(x) =2y/dir(x), i =1,2.

It is easily seen that
i (x) = inf g;(x; p),
n>0
where

d: 2
gi(x;p) = M, i=1,2.

The infimums occur at u} (x) = +/r(x)/d;, i = 1, 2. The function

Yi(pw) =2dip, i =1,2

is useful. It is easily seen that g; (x; ) > v; () forall 0 < 1 < uf(x) and g; (x; u?(x)) =
Vi (uf(x)), i =1, 2. By [20], ¢/ (c0) is nothing but the asymptotic spread speed for species
i in the absence of species j (j 7 i) and 0 < ¢ (00) < ¢;(00). In what follows, we consider
three generic cases: ¢ > ¢;(00), ¢](00) < ¢ < ¢;(00) and ¢ < ¢} (00).

For convenience, we sometime use c¢;' to denote the constant ¢} (c0), i = 1, 2. By the same
arguments as in the proofs of [40] (Theorems 2.1 and 2.2), we have the following results.

Theorem 2.1 Assume that (A) and (IV) hold, and suppose c > c;(00). Let u(t, x, ¢) be the
solution of (2.1) with 0 < ¢(x) < F(oo). If p(x) = 6f0r all sufficiently large x, then for
any &€ > 0 there exists T > 0 such that u(t, x, ¢) < & for all (t,x) € [T, +00) x R, where
g = (e ¢).
Theorem 2.2 Assume that (A) and (IV) hold, and suppose cj(00) < ¢ < c¢3(00). Let
u(t, x, ¢) be the solution of (2.1) with 0 < ¢(x) < F(00). Then the following four statements
hold.

(i) If p1(x) = O for all sufficiently large x, then for any ¢ > 0 there exits T > 0 such that

ui(t,x,p) <eforall (t,x) € [T,400) x R;
(i) Foranye > 0,

1—>+00 x<t(c—e)

lim |: sup uz(t,x,qb)i|=0;

(iii) If ¢p2(x) = 0 for all sufficiently large x, then for any ¢ > 0,

lim |: sup uz(t,x,¢):|:0;

t—+00 th(c§‘+£)

@iv) If 1(x) = 0 for all sufficiently large x and ¢»(x) > 0 on a closed interval, then for
any e with0 < & < (¢ — ¢)/2,

lim |: sup |r(oo)—u2(t,x,¢)|] =0.

17400 | t(cte)<x=t(cs—e)
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Remark 2.1 Theorem 2.1 shows that if two competing species initially live only on a bounded
domain and their intrinsic spreading speeds are less than the habitat’s worsening speed c, then
both species will go to extinction. Theorem 2.2 indicates that if one of the species spreads
with a speed faster than the habitat’s worsening speed, then that species is able to persist in
the spreading sense.

Now we deal with the third case: ¢ < ¢ (c0). For this case, by employing the comparison
principle and results in [20], we first have the the following theorem.

Theorem 2.3 Assume that (A) holds and ¢ < c}(00). Let u(t, x, ¢) be the solution of (2.1)
with 0 < ¢(x) < F(00). Then the following two statements hold.

(i) Foranye > 0,

lim |: sup u,-(t,x,¢)i|=0, i=1,2;

t—>+00 x<t(c—¢)

(ii) If ¢i(x) = O for all sufficiently large x, then for any ¢ > 0,

lim |: sup ui(t,x,¢)i|:0, i=1,2.

1—>+o0 x>t(c}+e)

Theorem 2.3 shows that if the intrinsic spreading speeds ¢ for the two competing species
are both larger than the habitat’s worsening speed ¢, then an observer moving toward the
right direction with a speed less than the habitat’s worsening speed ¢, or moving with a speed
faster than ¢} but with the two competing species initially living only in a bounded domain,
will not be able see individuals of the two competing species as t — 00. In such a case,
it is very natural and interesting to ask if the conclusion (iv) in Theorem 2.2 remains true
for species 1 as well, meaning that species 1 can also persist in the moving mode as stated
in Theorem 2.2-(iv) for species 2. This problem turns out to be very challenging due to the
presence of competition between the two species. As mentioned in the introduction, Zhang
et al [41] and Yuan et al [40] have attacked this question for three cases (I)-(II)—(III), and
they found that in case (I), under some stronger condition, the answer to above question
is affirmative, with the persistence levels for each species modified to reflect the effect of
competition; and for cases (II) and (III), the answer to the above question is negative, as
species 1 may become extinct in the habitat whereas species 2 persists by spreading to the
right. However, for the case of faster diffuser being weak competitor, (i.e., case (IV)), the
authors of [40,41] could not obtain any essential theoretical results. In the sequel, we shall
show that in case (IV), the answer to above question is affirmative, with the two competing
species co-persisting and by spreading to the right at their respective intrinsic spreading
speeds. Indeed, our approach will allow us to prove the following main theorem of this paper.

Theorem 2.4 Assume that (A) and (IV) hold, and suppose 0 < ¢ < ¢} (00). Let u(t, x, ¢) =
(u1(t,x, @), ur(t, x, ¢)) be the solution of (2.1) with the initial function ¢ satisfying 0 <
¢ (x) < 7(00). Then the following statements hold.

(i) Foranye > 0,

lim|: sup ul(t,x,¢>):| =0;

1—=0oo x<t(c—e)
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(ii) If ¢i(x) = 0 for all sufficiently large x, then for any ¢ > 0,

lim |: sup ui(t,x,¢)i| =0, i=1,2;

1700 [x=t(c (c0)+e)

(i) If ¢1(x) > 0 on a closed interval, then for every & with 0 < & < (ci(00) —¢)/2,

lim [ sup Ir(oo)—ul(t,x,¢)|:| =0

7% Li(e+e) sx<t(cf(o0)—e)

and

lim |: sup uz(t,x,¢):| =0;

170 | x<i(ct(c0)—e)

@{iv) If ¢i(x) > 0 on a closed interval for i = 1,2, then for every ¢ with 0 < ¢ <
(c5(00) = ¢} (00))/2,

lim |: sup |r(o0) —us(t, x, ¢>)|i| =0.
1700 | 4(c* (00)+e) <x<t(ch(00)—¢)

Note that (i) and (ii) in Theorem 2.4 are already included in Theorem 2.3, but we repeat
them in this theorem because their proofs together with the proofs of (iii)—(iv) will be carried
out under the same framework. However, the result in Theorem 2.3-(i) for i = 2 cannot
cannot be obtained in our proof of Theorem 2.4, and it needs some modifications.

To proceed toward the goal of proving this theorem, we will use a technique developed
in [40] to overcome the difficulty of the heterogeneity described by r(x — ct). Firstly, we
consider the following auxiliary system

d 92
%:dla—uzl—l—ul[r(x—ct)—ul], t>0, x eR,
X
d 32 2.2
%:dza—uzz+u2[r(x—ct)—u2—a2u1], t>0, x eR, 22)
X

u0,x) =¢(x), xeR,

where 0 < ¢(x) < F(00), p(x) = 0 for all sufficiently large x and ¢ (x) > 0 on a closed
interval. We denote by (uio) (t, x,9), uéo) (t, x, ¢)) the solution of the system (2.2). Then by
[20], we obtain that for any & > 0, uﬁo) (t, x, ¢) satisfies

=00 x<t(c—e¢)

lim |: sup u(lo)(t,x,¢):| =0,

lim |: sup uio)(t,x,¢)i| =0

1= x=>t(cj(00)+e)

and

lim |: sup

1700 | f(cte)<x<i(ct(00)—e)

r(co) — ul® (1. x. ¢)ﬂ —0.
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Therefore, for any given ¢ with 0 < ¢©@ < (c5(00) — ¢ (00))/3, we choose a number
8O e (0, r(00)) such that

ci(00) + 0 < 2\/dy(r(00) — 8©) < ¢4 (00) — @, (2.3)
Then there exists Ty > 0 such that
w5, 8) <80 Jaz, V(0 € {650 [65,3) € R = To v = (€ 00) +eO)s |
(2.4)

Obviously, if £© is sufficiently small, then we can also choose a sufficiently small §© such
that (2.3) holds true.
For the above given Ty > 0, we consider the following equation

du 9%u
aftz =az 8x22 +u2[R(O) —up], t>Ty x €R,

ur(To, x) = ul (Ty, x, ¢), x €R,

(2.5)

where RO (7, x) = r(x —ct) — azuio) (t, x, ¢).Itis clear from (2.2) that u(zo) (t, x, @) satisfies
2.5).

For above given 8O > 0, let rO(x) = r(x) — 89, Then r@(00) > 0. Therefore, for
r©O(x) > 0, define

cFo@) =2VdirOx), i=1,2.

It is easily seen that
¢ o(x) = inf g o(x; 1),
’ n>0

where

dip® +r O (x)

giolx; n) = i=1,2.

The infimums occur at 11} ((x) = VrO(x)/d;, i = 1,2. Itis easily seen that g; o(x; i) >
Yi(w) forall 0 < < uf((x) and gi o(x; puj o(x)) = ¥i(ujo(x)), i = 1,2. By (2.3), we
have

¢ (00) + & < ¢5 y(00) < c5(00) — . (2.6)

Definition 2.1 We call a function u; a continuous weak lower solution of Eq. (2.5) if u, is
continuous on [Ty, T'] X R, ur(Tp, x) < u(zo)(To, x, ¢) and

dur 9%2u,
<

I 2 92 +u2[R(0) — us]

in the distributional sense, i.e., forany n € C12([Ty, T1x R) with 7 > 0 and suppn(z, -) € R
(meaning that suppn(t, -) is bounded interval in R) for all ¢ € [Tp, T], there holds

+00 =T
f wa (e, (e, dx |12

o0
TD' +oo

s// [uz(s,x)<dznxx+nz)<s,x>+n(s,x)uz(s,x)(R@)(s,x)—uz(s,x))]dxds,
To —0
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3%n(t.x)

for T, € [To, T1, where (s, x) = S5 | 1 1) and n; (s, x) = P10

ot |(va)=(S,X) .

For fixed y > 0, consider the following function of x on the interval [0, 7z /y ] parameter-
ized by u > 0:

—px PN
oG x) = e Msin(yx), if 0<x <m/y, 27

0, elsewhere.
Such function was used in [37,38] in studying reaction-diffusion systems, in addition to
[20]. Obviously, ¢(u; x) is continuous in x and its second order derivative in x exists and is
continuous at x # 0, 77/y. The maximum of ¢(u; x) occurs at o (1) = ¥y~ tan~ ' (u~'y)
and o () is strictly decreasing in u. Therefore, by (2.6), we have the following useful lemmas.

Lemma2.1 Assume that 0 < ¢ < cj(00) < c¢5(00). For any € with 0 < € <

K % _ (0
M, let £ be a number such that C;O(Z) = c;o(oo) —€e. Let0 < pu <

no < ;L;()(K) with Y2 (1) = ¢ (00) + O 4 ¢ and Ya(ur) = c’z",o(oo) — 2¢. Then for any
W € (11, n2l and for the above given Ty, there exists sufficiently small B > 0and y > 0 such
that Bo(w; x—L—yra ()t) with ¢ given (2.7) is a continuous weak lower solution of (2.5). Fur-

thermore, ifugo)(To, x,9) > Bo(u; x—1~), then ug))(t, x,9) > Bo(u; x—L—yrn(n)(t—To))
forallt > Ty.

Proof For any T > Ty, let T, € [Typ,T] and n € C1'2([To, T] x R) with n > 0 and
suppn(t,-) € R for all # € [Tp, T]. Then by employing the definition of ¢ and integration
by parts, we obtain that

T.

o +00
/ @(u; x — € —Is)nxx (s, x)dxds
To —00

T L+ls+m/y
= / / (s x — £ —Is)nxx (s, x)dxds
To L+1s

T C+ls+m/y
= / / @xx (s x — € —Is)n(s, x)dxds
To +is

l

Ts

—l—y/ [n(s,Z—i—ls—i—n/y)e_”"/V —l—n(s,[—f—ls)] ds
Tt

0

(2.8)

and
Ts p+oo
/ / o(u; x — L€ —1Is)ns (s, x)dxds
To —00

+oo pT,
= / f o(u; x — € —Is)n, (s, x)dsdx
—0o0 To
—+00

7,
s —/ wz(u;x—E—IS)n(s,X)dS] dx

To

= / [n(s, X)p(u; x — € —Is)

+00
= / o(u; x — £ —1t)n(t, x)dx

—00

=T, To oo
=10~ / / n(s, X)) (u; x — € — Is)dxds,
To —00
(2.9)
where

¢ x — € —1n)
Oex(; x —€—1s) = 952 |(t,x):(s,x) s
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dp(u; x — £ —11)
oy x —L—1s) = e l0=(s,0

and
=) (2.10)
Direct calculations show that
(0 — dope) (s x — £ —11) = day(u® + YD) p(u; x — € — It) (2.11)

forall u € [1, u2l, x # €+1t and x # €41t + 7 /y, where [ is given in (2.10). Therefore,
we have

r(0) =80 —dapz = r(0) — dop

1
= 4d, [(02 o(z)) (03,0(00) - 26)2]

1
o [(¢30(00) )" = (3 o(00) —2¢)’]

= 2d (¢3.0(c0) — 1.5¢)

22 ( (00) + £© +e) (2.12)

| \/

Let Ha (1, x, u2) = uz(R© — uy). It follows from (2.8), (2.9), (2.11) and (2.12) that for any
i € [, uz] and for sufficiently small 8 > O and y > 0, up(u; 1, x) = Bo(u; x — £ —
Yo ()t) satisfies

+00
/T f (2 (s 5, x) (danxx + ne) (s, x) + 0(s, x)Ha (s, x, W2 (13 5, x))] dxds
0 —00

—+o00 T
- / B s 1, (e, Wy [T

L+Hs+m)y
[ / [—Bdo(11® + y P (u; x — € — Is) + Ha(s, x, W (; 5, x)) | (s, x)dxds
To L+ls

+d2ﬂy/ [n(s, €+ 1s +m/y)e ™Y + (s, € +1s)] ds
To

T,
—ﬂ/ / n(s, )@ (s x — € — Is)dxds
To Q(s)

T Z—Hv—b—n/y 0) ) )
f / [roe = e9) = a5, x.8) = do(u? + ) = B (s x — €~ )]
To L+ls

Ty
x@(u; x — L€ —1Is)n(s, x)dxds + d By / [n(s, L4 1s +7/y)e ™Y 4 (s, £+ ls)] ds
Ty

T l+ls+n/y
o [T 00— v poti = e —19)]
0

L+ls
T
x@(u; x — € —1Is)n(s, x)dxds + dr By / [n(s, C+Is+m/y)e MY (s, 0+ ls)] ds
Ty
L+is+m/y
/ [ € (ct(00) +&© +6) —dyy? — Bo(u: x —K—ls)]
L+ls
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Ts

x@(p; x — € —1s)n(s, x)dxds + d2 By / [n(s, L4 1s +7/y)e ™Y 4 (s, 0+ ls)] ds
Ty

>0,

where Q(s) = {xlx e R,x <L+ Is}J{x|x e R,x > ¢ +1Is+m/y} and [ is given in
(2.10). It follows from Definition 2.1 that for any © € [u1, 2] and for sufficiently small
B>0andy >0, Bo(u; x — € — Y ()t) is a continuous weak lower solution of (2.5).

If ul” (Ty, x, ¢) > Be(u; x — ), then it follows from Lemma 1.2 in Wang [37] that

w1, x,¢) = Bo(u; x — € — Ya(u)(t — Tp)) forall ¢ > Ty. The proof is completed. O

Lemma 2.2 Assume that (A) holds and 0 < ¢ < ¢} (00) < c5(00). If 0 < ¢a(x) < r(00),
and ¢2(x) > 0 on a closed interval, then for every e with 0 < & < (c3(00) — c7(00))/2,

lim sup r(oco) — uéO)(t, X, q&)’ =0.
700 | 1(c} (00)+e) <x<t(c5 (00) —¢)

The proof is similar to that of Theorem 2.2 in [20] with some minor modifications, and is
given in the appendix for reader’s convenience.

Lemma 2.3 Assume that (A) holds and 0 < ¢ < c}(00) < c3(00). Then the following
statements are valid.

) If0 < ¢i(x) <r(oco) fori = 1,2, and ¢p1(x) > 0 on a closed interval, then for any
>0,

lim sup uéo)(t,x,¢>) =0;
1700 | x<t(cf(c0)—¢)

(ii) If0 < ¢a(x) < r(o0) and ¢y (x) = 0 for all sufficiently large x, then for any ¢ > 0,

lim sup uéo) (t,x,¢)| =0.

1700 Lxzt(es (o) +e)

Proof The verification of statement (ii) is straightforward and is thus omitted. We now prove
statement (i). Clearly, for any given € > 0, uéo) (t, x, ¢) satisfies the integral equation

+00
u(t, x, ¢) = / e P ko (t, x — y)pa(y)dy
- (2.13)

t —+00 0
+/ e””/ kot (s, WS (0, t — s, x — y)dyds,
0 —00

where p =

gl

y2

1 7
ko (s, y) = Tt s (2.14)
>

and
W, s,y) =u(s, y, ¢) [,o +r(y—cs) —ul (s, y, ¢) —au'® (s, y, ¢>] . (2.15)

Note that [ "2 ka1 (s, y)dy = 1. Since 0 < u” (1, x, ¢) < r(co) forall (1, x) € Ry x R
and i = 1, 2, we obtain that

WS (p, 1, x) < r(00)(p + 2r(00) 4 azr(00)), V(1,x) € Ry x R. (2.16)
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On the other hand, due to the fact that f0+°° e P5ds is convergent, for above given € > 0,
there exist n > 0 and A > 7 such that

n +oo
/ epr/ kai (s, y)héo)(p, t—s,x —y)dyds < £ (2.17)
A . 10
and
400 +00
/ e_"sf kot (s WhS (o, 1 — s, x — y)dyds < —. (2.18)
A N 10

By (2.2) and [20], for above give € > 0 and for any & with 0 < & < (c] — ¢)/5, there exists
T > 0 such that

+0o0
/ e Pkt (t, x — y)po(Y)dy < €/5, V(t,x) € [T, +00) x R (2.19)

—0o0

and

r(y —cs) — azuio)(s, y,P) < 3i V(s,y) € {(s, y) ‘s >T,s(c+e)<y=<s(j—e }

0’
We claim that
2

0 €
hg)(p,s,y) < 150

0’ Vis.y) € {(s.y)[s=T,s(c+e) <y=<s(ci—e}. (2.20)

In fact, ifu(zo)(s, v, ) < f—o and (s, y) € {(s, y) |s >T,s(c+e)<y=<s(]—e) }, then

€2

€ €
héo)(,o,s, y) < E(P + %) = 150"

Andif uf” (s, y, ¢) > {5 and (5, y) € {(s,y) [s = T, s(c +&) < y < s(c} — &)}, then

2
0)

€ € €
h (o, s, y) <ul (s, ¥ g+ 35~ 150 =0

- < —.
30 10 150
Thus, (2.20) holds true.

For above given ¢ > 0, we write

A +00 0 3
[P | h o —six - ydvds = Y tie.nn. @2
n —00

i=1

where
A ‘ x—(c{—&)(t—s) o)
Ii(e, 1, x) =/ e*"“/ ka1 (s, y)hy (o, t —s,x — y)dyds,
n —00
A x—(c+e)(t—s) 0
b(e.t,x) =/ e—“/ ko1 (s, S (p.t — s, x — y)dyds,
n x—(ci—e)(t—s)
and

A +00 0
Ig(e,t,x)zf e—p“f ki (s, WS (o, t =5, x — y)dyds.
n x—(c+e)(t—s)

It follows from x < (¢j —2¢)t and y < x — (c¢] — &)(¢ — s) that

y < (c] = 28)t — (c] —e)(t —s) = —¢t + (c] — &)s.
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Therefore, by (2.14) and (2.16), for all x < (¢} — 2¢)t and t > Acj /e, we have
A x—(c]—e)(t—s)
Ii(e, 1, x) < r(00)(p + 2r(00) + axr(c0)) / e / kai (s, y)dyds
n 00
A —et+(ci—¢)s
< r(00)(p + 2r(00) + azr(co)) / e / ka1 (s, y)dyds
n —0Q

A —et+(ci—¢e)A
< £(00)(p + 2r(00) + a2 (00)) / e / ka5 y)dyds  (2.22)
n —00

- rlef—oA—en)/VARA
< r(00)(p + 2r(co) +a2r(oo))f e””/ — e dzds
JT
[(c;—e)A—st]/ADA
< 1(00)(p + 2 (00) +a2r(oo>)— / e dz.
Obviously,
y (cf —e)A —et
im ———— = —o0.
t—+00 JVadr A
Thus, for above given € > 0, there exists #; > max {T', Ac}/e} such that
Li(e,t,x) <¢€/5 forallx < (c¢f —2¢)tandt > 11. (2.23)
If
x—(c]—&)t—s5)<y<x—(c+e)t—ys),
then
(c+e)t—s)<x—y=(c]—8e)t—s).
Therefore, it is clear from (2.20) that
0 €’
h(z)(,o,t—s,x—y) < 150 forall t > T and
x—(f—e)t—s)<y<x—(c+e)t—ys), (2.24)
where s € [n, A]. Therefore, by (2.24), we obtain that
x—(c+e)(t—s)
12(8 t, X) < ﬁ/ / kQ](S, y)dyds
x— (c —&)(t—s) (225)
150,0 - g forall (1, x) € [T, +00) x R.
It follows from x > t(c +2¢) and y > x — (c + &) (¢ — ) that
y>tlc+2)—(c+e)t—s)=c¢et+ (c+¢)s. (2.26)
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Therefore, by (2.14) and (2.16), for all x > (c + 2¢)t, we have

L, t,x) < r(w)(p+2r(00)+azr(00))/ e ’”/ ko1 (s, y)dyds
x—(c+e)(t—s)

< r(00)(p + 2r(c0) +a2r(00))/ e “/ ka1 (s, y)dyds
et+(c+e)s

< r(00)(p + 2r(00) + azr(00) / e / kot (s, y)dyds  (2.27)
et+(c+e)n

< r(00)(p + 2r(c0) +a2r(oo))/ e "’5/ —e -2 dzds
le14+(c+e)nl/VABA VT

< r(o0)(p + 2r(c0) + azr(OO))i / e 7 dz.
[et+(c+e)n)/Vddr A

Since
. et+ (c+¢e)n
lim ——mMm—
t—>+o00  J4dr A

(2.27) implies that for above € > 0, there exists f, > t; such that

= +o0,

Iy(e,t,x) <€/5 forallx > (c+2¢e)t and t > 15. (2.28)
Thus, it follows from (2.13), (2.17), (2.18), (2.19), (2.21), (2.23), (2.25) and (2.28) that
ul (1, x,¢) < e forall (¢, x) € [f2, +00) X (¢ + 28)1, (¢} — 26)1),

which implies

lim sup WP, x,¢)| =0
1700 | (c426)1<x<t(ci—2¢)
By [20] and the comparison principle, for the above ¢ > 0,
lim | sup u(t,x,¢)|=0.
=00 x<(c—e)t

Because ¢ > 0 is arbitrary, we have actually shown that for any ¢ > 0,

lim sup ugo)(t,x,d)) =0.
(=00 x=(cj—et

The proof is completed. O

Similarly, we consider the system

a 92

%:d 8u2 +u1[r(x—ct)—u1—a1u§)], t>0, x eR,

9 32 2.29
o _ zi—i—m[r(x—ct)—uz—azul], t>0, xeR, ( )
ot 9x2

u0,x) =¢x), x e R,
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Let (u(ll) (t,x, ), uél) (t, x, ¢)) be the solution of the system (2.29). Then by the comparison

principle and ug)) > 0, we obtain that ugl) < uﬁo)

[20] that for any € > 0,

and ugl) > ug)). And it is easy to see from

lim | sup u\V@t,x, )| =0 (2.30)
I—>+00 x<t(c—e) ]
and
lim sup ulV(t,x, )| =0. 2.31)
t—>+00 xzt(cf-he‘) ]

For any given e with 0 < e < (c}(00) — ¢)/3, we choose a real number s ¢
(0, r(00)) such that

c+eM < 2vd(r(00) — M) < ¢f(o0) — eV, (2.32)
Then by Lemma 2.3, for above 8 = 0, there exists 7} > 0 such that
uV(t, x, ¢) < 8V /ay (2.33)

forall x < (c’l“ (00) — 8(1))l and ¢t > Tj. Obviously, if e ig sufficiently small, then we can
also choose a sufficiently small 8 such that (2.32) holds true.
For the above given 77 > 0, we consider the following equation

ou| 9%u,
— = RV —uy), t>T, x eR,
a0~ Ngpr PRl =T (2.34)

ui(Ty, x) = “il)(Tl,X, #), x €R,

where RO (¢, x) = r(x — ¢t) — alug)) (t, x, @). It is easily seen that uil)(t, x, ¢) satisfies
(2.34).

For the above given s > 0,1let rV(x) = r(x) =M. Then rV (c0) > 0. Therefore, for
r(x) > 0, define

i) =2vdirM(x), i=1,2.
It is easily seen that
¢f1(0) = inf gi,1(x: o),
where

dip®+rPe)
g1 = —r-—"2 m ,i=1,2.

The infima occurat 1} | (x) = VrO(x)/d;,i =1, 2. 1tis easily seen that g; 1 (x; ) > ¥; (1)
forall0 < u < ,ul’.‘,l(x) and g; 1(x; ,u:."l(x)) =i (M;k’l(x)), i =1,2.By (2.32), we have

c+e® <cf (00) < cf(o0) — e (2.35)

Definition 2.2 We call a function u; a continuous weak lower solution of Eq. (2.34) if u; is
continuous on [T}, T] x R, u; (T}, x) < ugl)(Tl, X, ¢) and

oup 9%u;

gur _ RO _
o SN 53 +ui[ ui]
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in the distributional sense, i.e., forany n € CcL2(ITy, T1xR) with n > O0andsuppn(z,-) €R
for all t € [Ty, T], there holds

+00 _
/ uy (¢, x)n(t, x)dx ‘:%
—00
Ty p+oo .
sz f (10165, @rna + 10 (5,00 + s, a5, 0RD (5,20 = a5, dds,
1 —00
for T, € [T}, T].

Similar to Lemma 2.1, we obtain the following lemma for (2.34).

* e
Lemma 2.4 Assume that 0 < ¢ < c}(00). For any € with 0 < € < M, let £ be
a number such that cT,l(Z) = cT’l(oo) —€. Let0O < pup < o < MT’I(Z) with Y1 () =
c+eW+eand Yi(p2) = CT,I(OO) —2¢. Then for any u € 1, 2] and for the above given
T1, there exists sufficiently small B > 0 and y > 0 such that Bo(u; x — £ — Y1 (w)t) with ¢
given (2.7) is a continuous weak lower solution of (2.34). Furthermore, ifuﬁl)(T] , X, P) >

Bo(u; x — ), thenu(" (t, x, $) > (s x — £ =y (W)(t — Tv)) forall t > Th.

Proof For any T > Ty, choose T, € [T1,T] and n € CY2([Ty, T] x R) with n > 0 and
suppn(t, -) € Rforall ¢ € [T}, T]. By the definition of ¢ and integration by parts, we have

T +o00
/ / o(; x — £ — 1s)nyx (s, x)dxds
T —00

T pl+ls+m/y
= / / o(u; x — £ — Is)nyx (s, x)dxds
T Je+s (2.36)

Ty pl+Hs+m/y
= / f Oxx (s x — € —Ls)n(s, x)dxds
T, +ls

¢

T

—I—y/ [n(s,Z—i—ls—i—n/y)e_’”‘/V +n(s,£+ls)]ds
T,

1

and
Ty +00
/ / o(u; x — € —Is)n; (s, x)dxds
T —00

+oo T,
= / / o(u; x — L€ —1s)n: (s, x)dsdx
—00 Tl
+00

Ts
/ [n(s,x)w(u;x—e—m T —/ gof(u;x—E—ls)n(s,x)ds] dx
—00 T1

=T, To oo
t;TT - / / n(s, x)e (u; x — € —Ils)dxds,
Tl —0Q
2.37)

+o0
= / o(u; x — € —1It)n(t, x)dx

—0o0

where [ = 1 (). It follows from the direct calculations that

(@ — dige) (s x — € —11) = dy (1 + y2)p(u; x — £ — 1) (2.38)
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forall u € [y, n2l, x # €+ 1t and x # £ + It + 7 /y, where [ = 1 (u). Therefore, we
have

r@) =W —dips =r'V @) —dip3

1
= 2 L1 @) = 127

1
= ﬁ I:(CT,I(OO) - 6)2 - (CT,l (00) — 26)2] (2.39)

:2d (cT 1 (c0) — 1.5¢)

2 o0 (c +e® 4. Se)

Let H (¢, x,u1) = u1(RD — uy). It follows from (2.36), (2.37), (2.38) and (2.39) that for
any u € [u1, 2] and for sufficiently small 8 > 0 and y > 0, uy (u; 1, x) = Bo(u; x — € —
Y1 (u)t) satisfies

T “+00
/ / (i1 (s s, x) (dinex +n00) (5, %) +0(s, x)Hi (s, x, @1 (13 5, x))] dxds
T, —00

+00 T
_/ 1 (s 1, (1, )dx [ [0

€+Is+71/y
/ / [=d1 (4 + Y u: x — € — 1) + Hy (s, x. T (s 5. 2] (s, x)ddxds
T, L+ls

+d1/3y/ [n(s, € +1s +m/y)e ™ Y + (s, € +1s)] ds
T

T
- ,3/ / n(s, )@ (u; x — £ — Is)dxds
T Q(s)

T l+la+7r/y ) 5 )
/ / V(X—CS)—alug (s,x,9) —di(u” +y )—ﬂw(u;x—ﬁ—lS)]
Ty

L+1s
TU
x o(u; x — € —Is)n(s, x)dxds + d1 By / [n(s, C+Is+7/y)e THY 4o(s, €+ ls)] ds
T
Z+ls+7r/y
f [r@© =80 =13+ v = Boui x — ¢~ 1s)]
L+1s
T
X o(u; x — € —Ls)n(s, x)dxds + dy By / [n(s, L+ 1s + ﬂ/y)e_”“/y +n(s, £+ ls)] ds
T
LHis+m)y
/ / [6 c—l—s(l)—l—l56)—d1y2—;8(p(u;x—€—ls)]
T, C+ls

T
x o(u; x — € —1s)n(s, x)dxds + d1 By / [r](s, C+1s+m/y)e MY 4, €+ ls)] ds
T

>0,

where Q(s) = {x[x e R,x <L+ Is}U{xlx e R, x > L+ Is+n/y}and ] = ¢y (u). It
follows from Definition 2.2 that for any p € [i1, 2] and for sufficiently small 8 > 0 and
y >0, Bo(u; x — € — Y1 (u)t) is a continuous weak lower solution of (2.34).

If usl)(Tl,x, @) > Be(u; x — £), then it follows from Lemma 1.2 in Wang [37] that

ugl)(t, x,9) > Bo(u; x — € — Y1 (u)(t — Tp)) for all > Tp. The proof is completed. O
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By Lemma 2.4, we obtain the following lemma.

Lemma 2.5 Assume that (A) holds and 0 < ¢ < . If 0 < ¢1(x) < r(00), and ¢1(x) > 0
on a closed interval, then for every e with0 < & < (cf —¢)/2,

lim [ sup r(00) — uﬁ“(t,x,qs)ﬂ —0.

17400 | t(cte)<x=t(c]—e)

The proof is similar to that of Theorem 2.2 in [20] with some minor modifications, and is
given in the appendix for reader’s convenience.

Obviously, by employing (2.29)—(2.31), Lemma 2.5 and the same arguments as in the
proof of Lemmas 2.2 and 2.3, we obtain the following lemma.

Lemma 2.6 Assume that (A) holds and 0 < ¢ < cj(00) < c}(00). Then the following
statements are valid.

) If0 < ¢i(x) < r(o0) fori = 1,2, and ¢1(x) > 0 on a closed interval, then for any
e >0,

lim sup ugl)(t,x,cj)) =0;
1700 | x<t(cf(c0)—¢)

(ii) If0 < ¢ (x) < r(o0) and ¢r(x) = O for all sufficiently large x, then for any ¢ > 0,

lim sup ugl)(t, x,¢)| =0.

=00 | x>1(c5(c0)+e)

(iii) If 0 < ¢o(x) < r(o0), and ¢p2(x) > 0 on a closed interval, then for every & with
0 <& < (c5(00) = ci(00))/2,

lim sup r(o0) —usP(t, x, ¢)’ —0.
=00 | (et (00)+e) <x <t (c5 (00)—¢)
Lemmas 2.2, 2.3, 2.5 and 2.6 motivates us to consider the following iteration scheme:
(n) 2. .(n)
u 0“u _
8; =d, 8x12 + uin) [r(x —ct) — uin) — alu(zn 1)] , >0, x eR,
(n) 2 (n)
u 0“u
8? =d 3x22 + u;") [r(x —ct) — ué") - azugn)] ,t>0, x eR, (2.40)
u(0,x) =¢(x), xR,
n=1,2,....

With (u%o), u§0)> being the solution of the system (2.2), this iteration generates a sequence

o0
{(uﬁ"), u(zn))} of functions. By Lemmas 2.2, 2.3, 2.5 and 2.6, this sequence obviously

satisfies the following properties:

o
(a) the function sequence iuﬁ")] o is non-increasing and the function sequence

n=

] o
U, o non-decreasing:
n=

O

ro) zu” zu =z u” =u{" = >0
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and
0<ul <ul < o<l <ud™V <. < r(00);
(b) for any ¢ > 0,
lim [ sup u”@t,x, )| =0, n=1,2,...; (2.41)
=00 x<t(c—e¢)

(¢) if ¢; (x) = O for all sufficiently large x, then for any ¢ > 0,

lim sup u(t,x,4)| =0, i=1,2, n=1,2...; (2.42)
1700 | xz1(c} (c0)+e)

(d) if ¢1(x) > 0 on a closed interval, then for every ¢ with 0 < & < (cj(00) — ¢)/2,

lim sup r(o0) — ul™(t, x, ¢)‘ -0 2.43)
799 [t(e+e) <x<t(c} (c0) )
and
lim sup ul(tx, )| =0, n=1,2,..; (2.44)
1700 | x<i(ct(00)—¢)
(e) if ¢i(x) > 0 on a closed interval for i = 1,2, then for every ¢ with 0 < ¢ <
(¢5(00) = €1 (00))/2,
lim sup r(00) — u, )(t X, (/))‘ =0, n=1,2,.... (245
=00 | (et (00)+e) <x <t (c5(00)—¢)

By Property (a), the sequences [ (")l 0 and { (")] both converge pointwise, as
e
n — oo, that is, there exist u} (¢, x, ¢) and u3(t, x, ¢) such that forall (r,x) € Ry xR,

lim u\"(t,x, ¢) = u(t, x, ¢), i=1,2. (2.46)
n—oo ! !
Now we are in a position to prove our main result, Theorem 2.4.

Proof of Theorem 2.4 Denote by z the vector (¢, x). For any given T > 0 and M > 0, let
A =1[0,T] x[—M, M]. Now we show that (2.46) uniformly holds for all z € A. Indeed, by
(2.40), we can obtain that foranyn =1,2,...and p=1,2, ...,

t +oo
Pz, ¢)—u§”*”>(z,¢>=f / kit — s.x — Yhi(s. y.n. p)dyds. Vz € A,
0 —00

(2.47)
where
2
kii(t,x) = e i 2.48
1, x) Jandi (2.48)
and
hi(s, y,n, p) = [uﬁ"ﬂ’)(s, VA ul s,y +aud s, y) —r(y — CS)]
x [ (5, 9) = 5, 0 | + a5, ) (249)
—1
(1057650 = 6w ]
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Let i} = 22 + a;)r2(co). Then |hi(s, y,n, p)| < hy foralls e Ry, y e R,n=1,2,...
andp=1,2,...
For any given ¢ > 0, there exists L > 0 such that

/L 1 _xzd -1 e
—=€ X —_ .
LT - 5Th

Therefore, for any s > 0,

L/4ds 1 2 e
/ 7e_mdx Z 1 —_ =~ .
—LJ4dys A/A4mdys 5Thy

It is clear from (2.47) that

"z ) — a2 )

“+00

kn(s, Vhi(t —s,x —y,n, p)dyds

L«/4[1]_S
kii(s, Y)hi(t —s,x —y,n, p)dyds
—L+/4ds

x+L/4d;(t—s)
—L./4d|(t—s)

kii(t —s,x —y)hi(s, y,n, p)dyds|, Vz € A.

Letd; = Eif In the case of ¢ < §;, we obtain that
1

1”@ ) — " 2, 9)|
. 4 LYATT)
L

< kit —s,x —y)lhi(s,y,n, p)ldyds
L./4dy(t—s)
e - 81 +00
< - +h1/ / ki1(s, y)dyds
5 0 —00
2 viea
= 5 s Z .

In the case of t > 81, we have

x+L/4d (t—s)
ki1 (t —s,x — y)hi(s, y,n, p)dyds
—L./4d(t—s)

81 +oo
5/ / Kt (s, ¥) 1hi(t — s, x — y.n, p)|dyds
0 —00

- 81 +0o
<h / / ki1 (s, y)dyds
0 —00

= ¢ VzeA
=3 b4 .
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Therefore, it follows that

"z ) = "7 2. 9)]|

x+L/4d (t—s)
/ / kii(t —s,x — y)hi(s, y,n, p)dyds
Vad (t—s)

8
5

+

t x+L+/4d; (t—s)
/ / kit —s,x — y)hi(s,y,n, p)dyds

x—L/4d(t—s)

x+L+/4d(t—s)
kit —s,x —y)hi(s, y,n, p)dyds|, Vz € A.
Jad (t—s)
(2.50)
Let
A =[0,T] x[-M — L\/4d,T, M + L./4d,T]
and

Ay = {(5»)’)|O§S§f—5l,X—L 4d,(t — ) §y§x+L\/4d1(t—s)}.

Then A, C A is bounded. Thus, by Egorov’s Theorem (see, e.g., Theorem 3.2.8 in [39]),
for above ¢ > 0 there exists a measurable subset A, of A such that m(A; — A;) <

VErd(5h) "2,
lim u\”(z, ¢) = ul(z,¢) and lim ul”(z,9) = u5(z, $) (2.51)
n—00 n— 00

uniformly for all z € A., where m(A; — A,) is the measure of the set A| — A;. So, for
above ¢ > 0 there exist K, > 0 and P, > 0 such that

2¢e
5T (3 + 2a;)r(c0)’
2¢e
5T (3 4 2ay)r(o0)’

P 4~ w2 )] <

foralln > Ko, p> P, z € Ag.

’Mgn+p—l)(z’ é) — (n 1)(Z ¢)‘
(2.52)

It follows from (2.49) and (2.52) that

2
|hi(s, y,n, p)| < é foralln > K¢, p > P, (s,y) € A,. (2.53)
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By (2.50) and (2.53), we obtain that
"z 9) = w2 )|

< —+// kn(t—s x —y)|hi(s, y,n, p)ldyds

+// kit (= s.x — y) | (s, y. n, p)| dyds
A1 s)mA

28 2¢e v
< 7// ki1(t —s,x — y)dyds
5T A: (A,

+1h / / ki(t —s,x — y)dyds (2.54)
A=A A

28+28ft/+ook( )dd—l—ﬁ// L o aya
=< — - 118, y)ayas 1 —=€ yas
5 0 J—o 3./7‘[

=<+ 71?1(/\1 —A¢)

-5 Jad

<g¢ foralln > K., p> Ps, 7€ A,

where AS = f((A1 — Ag)[)A;), m(A}) is the measure of the set A} and f : (A —
A A, — R? is a bijective function defined by

y—x
Jadi(t —s)

Thus, the convergence in lim,_, ui")(z @) = uj(z, @) is uniform for all z € A. Sim-

fls,y) =, ), ¥s,y) € (A1 — A [ )A:

ilarly, we obtain that the limit lim,_, uzn)(z @) = u5(z, ¢) uniformly holds for all
z € A. Because T and M are arbitrary, we have actually shown that the function sequence

[(u&"), ué") )} , converges to (u}, u}) uniformly on each bounded subset of R} x R.
n=,

Therefore, it follows from (2.40) that (47, u3) is a solution to (2.1) with the initial function
¢. By the uniqueness of solution to the initial value problem associated to (2.1), we have
(uy, u3) = (u1(t, x, ¢), uz(t, x, #)).

What leftis to pass the properties (b)—(e) for the sequence (u1 , uzn)) to its limit (ui*), Uy )
to obtain the conclusions in (i)—(iv) from (b)—(e) respectively.

We first show Theorem 2.4-(i) holds. By (2.41) in (b), for any ¢ > 0 and for any § > 0,
there exists a positive constant 7 such that

8
’ME")(z, ¢>)’ < for
zeho={t, )| Ts<t<Ts+71,—-M <x<t(c—¢)}, M>0, t>0. (2.55)
For above § > 0, there exists K5 o, > 0 such that
8
’“(1”)(5’ ) — u*f(z,d))‘ <3 forall z € Ag, n > Ks a,- (2.56)
Thus, for above § > 0 there holds

iz p)| < [ul”(z, ¢)’ —ui(z. )| <8 forallz e Ag.
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Because t and M are arbitrary, we have actually shown that
lui(z, p)| <& forallz € {(z,x)|r > T5, x < t(c—¢)}.

Since § > 0 is arbitrary, we conclude that

f—>0o0 x<t(c—e¢) o0 x<t(c—e¢)

lim [ sup ul(t,x,qb)] :tlim |: sup u’l‘(t,x,¢):| =0, (2.57)

proving Theorem 2.4-(i). Applying the similar arguments to (2.42), (2.43), (2.44) and (2.45),
we can obtain (ii), (iii) and (iv) of the theorem respectively. The proof is completed. ]

3 Some Numeric Simulations

In this section, we present some numerical simulations to model (2.1) with

1.7

and the initial data
09sin(x —16), if 16 <x <16+ m,
$1(x) = (3.2)
0, elsewhere
and
0.5sin(x —11), if 11 <x <11+ m,
$2(x) = (3.3)
0, elsewhere.
Firstly, we choose
dy =081, do=1, a; =02, ap=1.. 3.4

Then we can calculate to obtain ¢} (00) = 1.8, ¢5(00) = 2.

Now, if ¢ = 2.1, then, ¢ > ¢5(00), a scenario that the environment is worsening very fast.
Not surprisingly, the two species will eventually go to extinction, as the simulation results
show in Fig. 1.

Next, we consider a case that worsening speed c is a little bit slower: ¢ = 1.83 €
(c}(00), c3(00)), a scenario that the spreading capability of species 1 without competition
is not enough to allow this species to survive the environment worsening speed, but the
spreading capability of species 2 without competition enables it to survive the environment
worsening speed. The numerical results, presented in Fig. 2, indicate that species 1 eventually
becomes extinct in the habitat and the species 2 persists by spreading to the right with spread
speed ¢ (00) = 2.

‘We further consider an even smaller value of ¢, ¢ = 1.4. Then, ¢ < cf(oo), a scenario of
Theorem 2.4. The numeric simulations (see Fig. 3) confirm that the two competing species
co-persist in a spreading pattern, and their respective asymptotical spreading speeds seem to
be ¢} (00) = 1.8 and ¢} (00) = 2, respectively.
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Fig. 1 Numerical simulations on (2.1) with (3.1)—(3.4): when the environment worsening rate is too large
(c=2.1> c>2k (00)), both species go to extinct in the habitat
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Fig. 2 Numerical simulations on (2.1) with (3.1)—~(3.4): when the environment worsening rate is neutral in
the sense that ¢ = 1.83 € (c"f(oo), cg(oo)), species 1 becomes extinct in the habitat and species 2 persist by
spreading to the right with the speed ca‘ (00) =2
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Fig. 3 Numerical simulations on (2.1) with (3.1)—(3.4): when the environment worsening rate is very small

(c = 1.4) in the sense that ¢ < c’f(oo), both species co-persist by spreading to the right respective speeds
¢j(00) = 1.8 and c§(c0) =2

4 Conclusion and Discussion

We have seen that the two combined parameters ¢ (00) = 24/d;r(00), i = 1,2 play a
crucial role in determining whether the species i will go to extinction or can persist by
spreading. Summarizing the results in this paper and those in [40,41], one can conclude that
when the habitat is worsening with a constant speed ¢ and the grow functions satisfying (A),
competition strengths become less important and it is the the intrinsic spreading speeds c} (c0)
and c; (0o) that mainly determine the extinction or persistence of the respective species. This
is understandable because in the assumption (A), » (—o0) is assumed to be negative, implying
that the habitat worsening is severe or extreme. A natural question then arises: what happens if
r(—o0) > 0, meaning that the habitat worsening is mild. In such a scenario of mild worsening
for the habitat, we would expect that the competition strengths will play an important role
because a species will be able to persist without spreading to the right, and hence. Under such
a circumstance, there may be a trade-off between diffusion and local competition in terms of
the species’ fitness. We believe that there should be some more interesting yet challenging
mathematical problems in studying the interplays of d;, a; and r(c0) and r(—o0) if the the

condition r(—o00) < 0 is replaced by r(—oo) > 0. We leave this as an open problem for
future exploration.

Appendix

In this appendix, we give the detailed proof of Lemmas 2.2 and 2.5.
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5 o (00)—c(00)—e®

Proof of Lemma 2.2 For any € with 0 < € < min {%, r© (00), ==—F5—— }, let £ be

a real number such that
C;yo(z) = CZO(OO) — €.

We choose 0 < 1] < up < ,uzo(é) such that Y (1) = ¢} (00) + O 4 ¢ and Yo (o) =
c;‘,o(oo) —2¢.ByLemma 2.1, forany u € [141, 2] and sufficiently small 8 > O and y > O,

Wg&(ﬂ; x — € —Yrn(n)t) with ¢ given by (2.7) is a continuous weak lower solution of

Since ¢2(x) > 0 and ¢a(x) # 0, ul (¢, x,¢) > 0 forall (¢, x) € (0, +00) x R. Choose

To <ty <To+ ];2((’;11)), and choose sufficiently small 8 > 0 and y > 0 such that

w/y +o(ur) —o(u2)

5.1
Yo (u2) — Y2 (i)
and
uS (10, x,9) = B, Vx € [+ Yo (u)To, £+ 47/y + Y2 (u2) Tol. (5.2)
Define
e x — £ — Yo () To)
it 4+ Yo(u)To <x <L+ o(uy) + va(ur)To;
B ifl+o(u)+va(u)To <x <L+ 3n/y +0o(u) + va(2)To;
w(Ty, x) =

m‘p(ﬂﬂ x —£€ =3y —Y2(u2)Tp)

if 4+ 3m/y +0(u2) + Y2 (u2)To < x < L+ 4m/y + Y2 (u2) To;

0 elsewhere.

It is easily seen that

w(To, x) = #w(m; x =L —Yo(u)To—s), Vs €[0,2n/y]
@(1; 0 (1))
and
w(To, x) = ,Lw(uz; x =€ =3n/y —¥2(u2)To +s), Vs €[0,2n/y].
(2 0 (12))

By (5.2) and Lemma 2.1, for any ¢ > fy, we have

0
u; '(t, x, )

> #(p(m;x — =Y (u)(To+1t—19) —s), Vs €[0,2x/y] (5.3)
;o (1))
and
M;O)(t,xﬂf))Z 7’8 o(ua; x — € —3m/y
(u2; 0 (142))
=Y (u2)(To +t —t9) +5), Vs €[0,2n/y]. 5.4
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Inequalities (5.3) and (5.4) imply that for any ¢ > 1y,

SOy X — €= () (Ty + 1 — 1))

if €+ Yo(u)(To+1t —tg) <x <L+o(u)+v2(u)(To+1t —1t9);
u (0. x.9) = 4 B it et o(ui) + va(u)(To+1 —10) < x < L+27/y (55
+o(n1) + Y2 (u)(To + 1t —to);

0 elsewhere

and
B ifl+m/y +o(u2) +va(u2)(To+1t—1to) <x <L+3m/y
+0 (2) + Y2 (u2)(To + 1 — 1);
o W‘P(LQ; x—L—=3m/y —Y2(u2)(Tp + t — 1))
uy (t,x,¢) > (5.6)
it +3n/y +o(u2) +¥2(u2)(To+1t —to) <x < L+4m/y

+Y2(u2)(Tp + t — to);

0 elsewhere.
Let
_nw/y +o(u1) —o(u2)
T V) —va(w)
Then (5.1) implies that 2 > 0. Since
£+ 2n/y +o(u1) + Y2 (u)(To + 1 — 1)
>Ll+m/y +o(u2) +v2(u2)(To +1t —to), Vte€lty, 1o+ h],

inequalities (5.5) and (5.6) imply that
ud (6, x,¢) = w(t — 15, %), Vi €10, 10+ h), 5.7

where 1§ = 19 — Tp and
SOy e X — €= Y ()t — )

i LYo (un) (0~ 1) < x < ko Gu) +Ya(un) @~ ):
B if €+ o (ur) + Ya(u)(t —10) < x < €+31/y + 0 (12) + Y2 ()t — 13);
w(t —ty,x) =

T (M2 x — £ =37 /y — Y (u2)(t — 1))

if €+ 3n/y +o(u2) +¥2(u2)t —t5) <x < L+4m/y +¥a(ua)t — 15);

0 elsewhere.

(5.8)
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We claim that (5.7) holds true for all ¢+ > fy. Assume that (5.7) is valid for r € [tg, t9 + nh]
for some positive integer n. Then for any s € [0, 27/y + (Y2 (u2) — Y2 (1)) (To + nh)],

w(Ty + nh, x) > ,Lw(m; x =€ =Y (u1)(To + nh) —s)
o(n1; o (1))
and
w(Ty + nh, x) > ,#w(uz; x =€ —=37/y —Y2(u2)(To + nh) + s).
@(n2; o (u2))

Therefore, Lemma 2.1 implies that for any r > 7y + nh and s € [0,27/y + (Y2 (u2) —
Ya(u1))(To + nh)l,

WO 0. $) 2 —— gy x — €= Yo (To + nh) — Ya(u)t — (to + nh)) — 5)
o(ur; o ()
5.9)
and
’4;0)(1, X, ¢) > #¢(I«L2§ x—40—3m/y
o(pu2; o (u2))
=2 (u2)(To + nh) — Y2 (u2)(t — (to + nh)) +5). (5.10)

Inequalities (5.9) and (5.10) imply that for any t > 1ty + nh,

iy 0 x — € =Y () (To + 1 — 10)
L Y20 (T 1 = 10) < < L0 () + 20 (To +1 = 0);
uéo)(t,x,@ >3 8 ifl+o(u)+vo(u)(To+t—1) <x <t(+2n)y

+o (1) + Y2 (u)(t — (to + nh)) + Y2 (u2)(To + nh);

0 elsewhere

(5.11)
and

B ifl+m/y +o0(u2) + Y2(u2)(t — (to + nh)) + Y2 (1) (To + nh)

<x 28+ 3n/y +o(u2) + Ya(u2)(To +t —to);
o Sy s x — €= 31 /y = Ya(pa)(To + £ — 1))
uy (t,x,¢) > (5.12)
if€+37/y +o(u2) +¥2(u2)(To+t—to) <x < L+4x/y

+Y2(u2)(To +t — tp);

0 elsewhere.
Since

421 )y + o () + Y2 ()t — (to + nh)) + Y2 (u2)(To + nh)
>0+ m/y 4+ o)+ v2(u2)t — (to + nh)) + v2(u1)(To + nh)
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forall t € [to + nh, 1o + 2n + 1)h + 2Tp], inequalities (5.11) and (5.12) imply that (5.7)
holds true for all ¢ € [t9 + nh, to + (n + 1)k]. By induction, (5.7) is true for all > 1.
For the chosen € > 0 and 8 > 0, there exists L > 0 such that

L
1
/ e dx >1— Be.

L T

Therefore, for any s > 0, we have

L/Adys 1 2
e "Msdx > 1— Be.
/_L@ VAardys

Let 11 > 1o be sufficiently large. Then, for > 1, the solution uéo) (t, x, ¢) of (2.5) satisfies
the integral equation

+o00
0, x, ¢) =/ Kt — 11, x — Y (1, v d)dy

o0
o ©) ©
+/ / ka(t —s,x — y)uy (s, y, $) [p+R(°)(s,y)—u2 (s,y,¢)]dyds,
1 —00

(5.13)
where p > 3r(0c0) — r(—o0) is a real number and
ka (2, x) L o (5.14)
,X) = e . .
? JArdot
It follows from (5.7) and (5.13) that for any ¢ > 11,
0 +00
u (t, x, §) z/ kao(t — 11, x — y)w(ty — 1§, y)dy
—o0

t ptoo
+/ / ko(t —s,x — y)w(s — 15, y) [p + RO, y) — w(s — 1, y)] dyds.
N —00
(5.15)

Fort > #; and x, y satisfying
C+o () + Ya(u)(tr — 1) + L/Ada (1 — 11) <16
<x <+ o)+ Valua)(tr — 1) 4+ 3 )y — LJ/Adr(t — 11) e
and

— L\/4dr(t — 1) <y < L\/4da(t — 11), 5.17)

we have that
C4o(u) +Y2(u)t —15) <x —y < €+0(u2) + Y2 (u2)(ty — 15) +3m/y. (5.18)

@ Springer



Journal of Dynamics and Differential Equations

It follows from (5.8) and (5.18) that

+00
/ ka(t — 11, x — y)w(ty — 15, y)dy

—00

+00
:/ ka(t — 11, pyw(ty — 15, x — y)dy

—00
LVABG=T) 2
> e—p(f—m/ T L cwmemwg —igx—ypdy 19
— LA =) VArdy(t — 1)
L/4dy(t—17) 1 _ 42
:ﬂeﬂo(tftl)/ ¢ Mgy
— LAy =) VArdy(t — 1)
> (1= pe)per70
for all x satisfying (5.16). For ¢ > # and x, y satisfying

4o (1) + V2(u1)(s — 1)) + L/4da(t — s)

<x <l+0ou)+va(ua)(s — 1) +3n/y — LAda(t =), Vs € [tl,,](s'zo)
and
— L\4dy(t —5) <y < L\/4da(t —5), Vs € [11,1], 521)
we have
4o () + ¥ = 1)
<x—y<Lt+o(u)+va(ua)(s —15) +3n/y, Vs €ln,1] (5.22)
and

x—y—cs=Ll+o(u)+Pa(u)s —t5) —cs > L+o(u) +Ya(u)To > £, Vs €[, 1].
(5.23)

Then it follows from (5.8), (5.22) and (5.23) that
t oo
/ / ko(t — s, x — y)w(s — 15, y) [,o + RO, y) — w(s — 1. y)] dyds
I3 —00

t +o0o
:/ / kot — s, Y)w(s — 15, x — y) [,o—i—R(O)(s,x—y)—w(s—tg,x—y)]dyds
n —0o0
t L./4dy(t—s) 1 2
> / efp(’f“')/ e T w(s —1j,x —y)
f —LJAdy(—s) VA4mdy(t —5)
X [,o + RO, x —y) —w(s — t5, x — y):| dyds

t ) L/4dr(t—s) 1 2
— ﬂ/ e—ﬂ(r—s)/ PR IEn) |:p + R(O)(s, x—y) — ’3] dyds
1 —LJady(—s) VAmdy (1 —5)

t
> B+ rO(00) — ut _ / —p<r—s>/ _
Blp + 1 (c0) Mz,o(oo)f B ; e = ,—4”0,20 —

t
> (1= Be)(p +r ¥ (00) — 13 o (00)e — ﬂ)[ e P g
f

L/4d(t—s) 1 2
e =) dyds

(5.24)
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for all x satisfying (5.20). Here we have used the fact that for x satisfying (5.20) and y
satisfying (5.21),

RO, x—y) > r9w > rP(c0) — ic; 0(00) = r @ (c0) — U3 o(00)€.
L2 )

By (5.15), (5.19) and (5.24), we obtain that
w1, x, ) = 057 (1) (5.25)
for all t > #; and x satisfying (5.16) and (5.20), where
8(1) = B = pe)e ™ + B(1 = pe)(p + ¥ (o0)

t
—13,0(00)e — B) / e P9 gs. (5.26)
t

1
It then further follows from induction and (5.13) that
uS (e, x, ¢) = 03 (1) (5.27)
for all t > #; and x satisfying (5.16) and
4o (1) + Vo) (s — 1) +nL/Ada(t —s)

(5.28)
<x =l+o(u)+v2(ua)(s —t5) +3n/y —nL/A4da(t —5), Vs € [t1, 1],

where

t
85" (1) =B(1 — pe)e ™™ + (1 - pe) f e P8 s)
t

1 (5.29)
X [p +rO(c0) — 3 o(00)€ — f)é"*l)(s)] ds.
Direct calculations and induction show that
05" (1) = ay" + b ()P, (5.30)
where
ay" = ay""" (1 = pe)(p + ' (00) — 3 p(o0)e — a3 )/ o, (531)
" = B(1 — Be)(p + r'V(00) — 3 o(c0)e — ) /p (5.32)

and l;g')(t) is a sum of products of polynomials and exponential functions of the form
e~/P=1) with j being a non-negative integer. Therefore,

lim 8" (1) = a{" (5.33)
—>00
and &én) <r(oo) foralln > 1. Let &50) = B. Then for small € and 8, we have
a3 —a)” = "V (00) — 3 g (c0)e — B — B2pe)/p > 0. (5.34)
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It follows from (5.34) and induction that

&£n+l) _ &éﬂ)

- [&5’”(/) +1r®(00) — u o (00)e —as")
3 _ 1—Be
R 1 A 1
=ay" " (p +1r0(00) — 3 9000 — " )| — (5.35)
o e ] 1 — B8
=@ =l [p+rO(c0) = 13 glo0re — af' " — "] Tﬂ

>0, Vn>1.

o0
Thus, {&é")} . is increasing and 8 < &é") < r(oo) forall n > 1. So, lim,,— oo &;") exists.

n=
Let

. ~A(n) _ ax
nli)ngoa2 =a;. (5.36)

Then 8 < a3 < r(co) and by (5.31), we obtain that

a3 = as(1 — Be)(p +r'V(c0) — uk o (c0)e — a3)/p. (5.37)

Therefore, it follows from (5.37) that

a3 = r(co) - (u’g,o(oo) + P ’;6) c. (538)

Thus, by (5.30), (5.33), (5.36) and (5.38), we obtain that there exist a positive integer N and
t» > t1 such that

Bp
1 — Be

ﬁén)([) > r(o)(OO) _ <1 + /L;,O(OO) + >E, Vt > t), n> N. (5.39)

Clearly, if

L4 o () + Ya(u)t —t5) + NLJ/4do(t — 11)
(5.40)

<x <l+o(w) +v2(u2)(ti — t5) + 37 /y — NLV4da(t — 1),

then (5.16) holds and (5.28) with n replaced by N also holds. Choose t; = ml + t()“ and
t —t; =1, wherem > 1 and/ > 0 are both sufficiently large. Then we can rewrite (5.40) as

4o (1) + Yo (u)l(m + 1) + NL/4d>l

(5.41)
<x <L +o(u2) +miya(n2) +3n/y — NL4dl,
that is,
L+o(uy) NL./4d, I[(m+1)
(fg +10m+1)) [I/IZ(M) + Tty + (m+l)\/27:| g+ m+1)
(5.42)
<x <@ +1m+1) [,,,%wz(m) + opolisnly gﬁ%] s,

Now for any given ¢ with 0 < ¢ < (C;o(oo) — cj(c0) — PAC)) /2, choose € sufficiently
small such that € < ¢/3. Then there exist /o and mq sufficiently large such that for any
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m >mg, | >lpandt =15 +1(m + 1) > 12, we have

L4+o0(nw1) NL/4d, Im+1)
[m +1) (m+1)ﬂ} 5 +1m+1)
<t(Wa(u1) +€) =1(cj(00) + e +e+e)

<o)+ +¢)

(15 +1(m + 1)) [I/fz(/tl) +

and
. m L+o(up) +3/y NL«/4d2] I(m+1)
) 1 _
(fg +10m + ))|:m+1wz('u2)+ Im+1) (m+DV/1]t5+1m+1)

> t(Ya(u2) — €) = 1(c5 n(00) — 2€ —€)
> 1(c5 9(00) — &).

Lett3 = 15 +lo(mo+ 1). If t > 13, then £(cf(00) + &P +¢) < x < 1(c5 ((00) — &) implies
that (5.40) holds. Thus, by (5.27) and (5.39), we obtain that

lim [ inf u(t, x, ¢)}

1700 1 1(cf(00)+eO +e)<x<t(ch o (00)—€)

> r@(c0) - (1 +12,0(00) + 5 Ep&) € ©.43)

Because € can be arbitrarily small and (5.43), we have actually shown that

lim

inf w1, x, ) | = r @ (c0). (5.44)
1—>00 t(c’f(oo)+£(0)+5)§xft(cio(oo)fs)

Since £ > 0 is arbitrary, we have actually shown that for every & with 0 < & < (c5(00) —
€1(00))/2,

lim n
1=00 | t(c} (00)+e) <x <t(c;(c0)—¢)

u$ (1, x, ¢)} > 7(00). (5.45)

It follows from u” (¢, x, ¢) < r(co) for all (¢, x) € [0, +00) x R that

lim sup r(o0) —ul(t. x, ¢)‘ = 0. (5.46)
1720 Li(ct (o0)+e)=x <t (e} (00)—2)
The proof of Lemma 2.2 is completed. O

¢t 1 (00)—c—eh
3

Proof of Lemma 2.5 For any € with 0 < ¢ < min { %, r® (00), }, let £ be areal

number such that
e (0) = cf 1 (o0) — €.

We choose 0 < u; < up < ,u’f,l(ﬂ) such that ¥1(u1) = ¢ + &M + € and ¥ (u2) =
CT’I (00) —2¢. By Lemma 2.4, for any u € [, (2] and sufficiently small 8 > Oand y > 0,

w(u:i(u)) @(u; x — € — Y1 (u)t) with ¢ given by (2.7) is a continuous weak lower solution of
(2.34).
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Since ¢ (x) > 0 and ¢1(x) # 0, u{" (¢, x, ¢) > 0 forall (z, x) € (0, +00) x R. Choose

T, <ty <T)+ IZI((MM'I)) , and choose sufficiently small 8 > 0 and y > 0 such that

w/y +o(u1) —o(u2)

Y1(u2) — Y1) i 647
and
uV o, x, ) = B, ¥x € [+ Y1 (un)Th, £+ 47/y + Y1 (u2) Th]. (5.48)
Define
S e x = €= Y ()T
ifl+ Y1) <x <L+o)+yi(rDT;
B ifl+o(u)+yYi1(u)T <x <€+3m/y 4+ o(u2) +¥1(u2)Ti;
w(Ty, x) =

iy ¢ (M2 x — € =31 )y — Y1 (u2)T)

if€+3n/y +o(p2) +vi1(u2)Th = x < +4n/y +¥i(u2)Th;

0 elsewhere.

It is easily seen that

w(Ty, x) > #fﬂ(m;x —L—=yi(p)Th —s), Vs €10,27/y]
P(pr; o (pr))

and

w(Ty, x) > .L(p(uz; x =€ =3n/y =1 (u2)T1 +5), Vs €[0,2n/y].
@(p2; 0 (12))

It follows from (5.48) and Lemma 2.4 that for any ¢ > 1,

u(ll)(t,x, )]
> Lw(m; x—L—Y1(u)(T1 +1—1) —s), Vs €[0,2n/y]  (5.49)
o(pr; o(m))
and
uﬁl)(t, X, $) = Ltp(uz; x—£—=3m/y
T @(u2; 0 (12))
Y (u)(Ty +1 — 1) +5). Vs € [0,27/y]. (5.50)
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Inequalities (5.49) and (5.50) imply that for any ¢ > 1y,

W‘P(M;x =L =Y (u)(Th +1 —19))
L+ Yi(uD)(T +1—10) <x < +o () + Y1) (T +1 = 10);
W2, )= B it o) + v (T +1—10) <x <0+21)y 551)

+o (1) + Y1 (u) (T +t —to);

0 elsewhere

and

B ifl+m/y +o(ua)+vi(u)(T1 +t — 1) <x <€+3n/y
+0o (2) + Y1 (u2) (T + 1 — 19);
" Sy @ (2 X — =37 /y — Y1 (u2)(Th + 1 — 19))
ul" (1, x, 9) > (5.52)
if € +3n/y +o(u2) + Y1 (u2)(T1 +t —to) <x <L+4n/y
+Y1 () (T + 1 — 1p);
0 elsewhere.

Let
_a/y+o(u) —o(u)
oY) — Y ()
Then (5.47) implies that 2 > 0. Since

1.

C+2n/y +o(uD) +Yi(u)(T1 +t —10) =2 L+ 7/y + o (pn2) + Y1) (Th + 1 — 1)
for all ¢ € [1y, to + h], inequalities (5.51) and (5.52) imply that

WV, x, ¢) = w(t — 1, x) (5.53)
forall t € [to, to + h], where 15 = to — Ty and

Sy e x = €= () = )
i+ Y (D — 1) < x = +o(p) + i) —1);

B if€+o(u) + () —15) <x < +3n/y +0(u2) + 1 () —15);
w(t — 1§, x) =
Sty P2 x — € =37 /y = Y1 (1) = 1))

if € +3m/y +o(u2) + Y1 (w2t — 1) <x < L+4n/y + Y1 ()t —13);

0 elsewhere.

(5.54)
We claim that (5.53) holds true for all # > #y. Assume that (5.53) is valid for ¢ € [tg, to + nh]
for some positive integer n. Then for any s € [0, 27 /y + (Y1 (n2) — Y1 (i) (T + nh)],

w(T + nh, x) = Lw(m;x — = Y1 (u)(T1 + nh) — )
@(p1; o (1))

@ Springer



Journal of Dynamics and Differential Equations

and

w(Ty +nh, x) > ,Lw(m; x =€ =37/y = Y1(u2)(Th + nh) +s).
®(u2; o (u2))

Therefore, Lemma 2.4 implies that

ulV(t, x, ¢) > Ot X — € — Y1 () (Ti + nh) — Y1 () (¢ — (fo + nh)) — s)

o(pr; o(pr))
(5.55)
and
W5 $) 2 —Lpurix — £~ 3m)y
@ (u2; o (12))
=1 (u2)(T1 +nh) — Y1 (u2)(t — (to +nh)) +5) (5.56)

forallt > tg +nh and s € [0,27/y + (Y1 (u2) — ¥1(u1))(T1 + nh)]. Inequalities (5.55)
and (5.56) imply that for t > 19 + nh,

mw(m;x — L= y1(u)(Tr + 1t — 1))
i+ Y (n)(Tr+t—t9) <x <L+o(u) +Y1(n)(T +1t—19);
Wt x,9) = VB AL+ o () + Y1 (u)(Ti 41 —10) <x < £+ 27)y (5.57)

+o (p1) + Y1 (u) @ — (fo + nh)) + Y1 (p2)(T1 + nh);

0 elsewhere
and

pitl+n/y +o(u2)+ vi(u2) — (1o +nh)) + 1 (u)(Th + nh)

<x <L+3n/y +o(u2) + Y1 (u2)(T1 +t — to);

0 m‘ﬂ(ﬂx x —L€—=3n/y — Y1 (u2)(T1 + 1 — 10))
up 't x,9) > (5.58)

if €+ 3n/y +o(u2) + Y1 (u)(T1 +t —to) <x <L+4n/y

+Yi(u)(Th +t — 1);

0 elsewhere.
Since

L+2m/y +o(ur) +Y1(u)( — (to +nh)) + Y1 (u2)(Ty + nh)
>+ m/y +o(u2) + Y1(u2)(t — (to +nh)) + Y1 (1) (Ty + nh)

forall ¢t € [to + nh, to + (2n + 1)h 4 2T1], inequalities (5.57) and (5.58) imply that (5.53)
holds true for all ¢ € [tg + nh, to + (n 4+ 1)h]. By induction, (5.53) is true for all # > ;.
For the chosen € > 0 and 8 > 0, there exists L > 0 such that

L
/ e Pdx > 1 — Be
L AT -
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Therefore, for any s > 0, we have

LJAdis 1 2
e MMsdx > 1— Be.
/_Lm Amdys

Let 1 > o be sufficiently large. Then, for t > 1, the solution uﬁl)(t, x, @) of (2.34) satisfies
the integral equation

+o00
ulV(t, x, 9) =/ kit — 11, x — 'V, y, ¢)dy

o0
t +00 1
+/ / kl(t—s,x—y)ug)(S,yJ’)
131 —00

[p+ RV G ) —uf(s, v, )| dyas, (5.59)
where p > 3r(00) — r(—0o0) is a real number and
1

JAmdt
It follows from (5.53) and (5.59) that for any ¢ > 11,

x2
ki(t,x) = PR T (5.60)

a oo
Wt x, $) zf kit — 11, x — yywts — 15, y)dy

—00

t +00
+/ / ki(t —s,x = y)w(s — 15, ) (5.61)
131 —0o0

[p+ RV, 3) = wis = 15, )] dyds.
Fort > #; and x, y satisfying

L+ o () + i)t — 1) + LJ/4d (t — 1)

(5.62)
<x <t+4o(u2)+Y1(ua)(ty —t3) +3n/y — L/4d 1 (t — 1)
and
— Ly/4di(t — 1)) <y < Ly/4d(t — 1), (5.63)

we have that
C4o(pn) +vi(n)t — 1) <x —y < L+40(u2) + Y1)t — 15) + 37 /y (5.64)
It follows from (5.54) and (5.64) that

+o0
/ kit — 113 — ity — 13, y)dy

—00

+00
=f kit —t1, y)w(t; — 15, x — y)dy

—0Q
— 2
R /L\/4d1 (=) ;e_mw(tl — i3 x — )y (5.65)
LA =) VAmdi(t —t1)
L/4d,(t—11) 1 2
— ﬂe—p(t—tl)f e = gy
LA =) VAmdi(t —t1)
> (1—Be)pe P~
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for all x satisfying (5.62). For t > t; and x, y satisfying
L+ o (1) + Y (s —ty) + L/4di(t —s)

<x < Ll+o(u)+Yi(ua)(s —15) +3m/y — LJAd (t —s), Vs €t t§5.66)
and
— L/4d\(t =) < y < L/4d\(t —5), Vs €[, 1], (5.67)
we have
4o () + Pi(ua)(s — 1)
<x—y < Ll4o(u)+yi1(u2)(s —15) +3n/y, Vs elt,1] (5.68)
and

x—y—cs=Ll+o(u)+ Y1) —15) —cs > €
+o(ur) +Yi(u)Ty > £, Vs e[, t]. (5.69)

Then it follows from (5.54), (5.68) and (5.69) that
13 “+o0
f / ki(t —s,x — y)w(s — 15, y) [,0 +RW (s, y) — w(s — 1, y)] dyds
t —00
] t +00
= f / ki(t —s, yyw(s — 15, x — y) [p+ RV (s,x —y) —w(s — 1§, x —y)]dyds
1 —00

' LA ) 1 2
> / e Pt=s) / e M (s — tg’ x—y)
1 —L/4d(t—s) dd (t — s)

X [p + RW(s,x —y) —w(s — 5, x — y)] dyds

t L/4d(t—s) 1 B 2
= ﬂf e—ﬂ(l—.v)/ PR I () [p + R(l)(s,x —y) - ﬂ:l dyds
g —LJadi(—s) Va4rdi(t —5)

) ; t pt—s) L\/4d(t—s) 1
> B(p +r 7 (00) — uj 1 (00)e — B) e ———
’ f _LVAdG—s) VAmd (t —5)

= (1= pep +rV(00) — i (0)e = ) [ e
n

2
-
e M@ dyds

(5.70)

for all x satisfying (5.66). Here we have used the fact that for x satisfying (5.66) and y
satisfying (5.67),

RV, x —y) > rP @) > rMD(co) — zid]cfl(oo) =rD(c0) — U1 (00)€.
By (5.61), (5.65) and (5.70), we obtain that

WV, x,0) = 0V 0) (5.71)

for all # > #; and x satisfying (5.62) and (5.66), where
8 () = B(1 = Be)e ™17 1 B(1 = Be)(p + D (00)

t
—u1 1 (00)e — B) / e PU=9gs. (5.72)
n
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It then further follows from induction and (5.59) that
(e, x. ¢) = 07" (1) (5.73)
for all # > t; and x satisfying (5.62) and

C+o(un) + Y1 (s — 1) +nLy/adi (t — )
(5.74)

<x <tlH4ou2)+Y1(u2)(s —15) +3m/y —nL/4di(t —5), Vs € [, ],

where

13
570 =p(1 = pere 7 (1= pe) [ eI
n

(5.75)
x [+ rM(o0) = uf (000 = 5"V (5)] ds.
Direct calculations and induction show that
31y = & 4 B (et (5.76)
where
i = a1 = perp +rio0) — i (o0)e —ay" V)/p. (5T)
ay = Bl = pe)p +r(00) = i 1 (00)e = B)/p (5.78)

and Z;Y’) (t) is a sum of products of polynomials and exponential functions of the form
e~/P(=1) with j being a non-negative integer. Therefore,

lim 3" (1) = a!” (5.79)
—00
and &i") <r(oo) foralln > 1. Let &;0) = B. Then for small € and B, we have

al —a” = (rM(00) — ul | (00)e — B — Bpe)/p > 0. (5.80)
It follows from (5.80) and induction that

&in+]) _ &in)

~ ~ ~(n—1
=[a" 0 + 0 (00) = i, (00)e — af™) = af" Vo +r(o0)

1— Be

~(n—1
—uf 1 (00)e — ay" ))] 5

(5.81)

A ~(n— a(n— . 1-p6
= @" —a"") [p+rV(0) -t 00 —af" " —af" | Tﬁ

>0, Vn>1.

)

o0
Thus, {&;")} . is increasing and 8 < &5" < r(oo) forn > 1. So, lim,_, oo &1(") exists. Let

n=

lim a\" = af. (5.82)
n—oo

Then g < &T < r(oo) and by (5.77), we obtain that

at = ar(1 — pe)p +r(co) — i (00)e —ap)/p. (5.83)
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Therefore, it follows from (5.83) that

i =0~ (uf 00+ 122 ) e (5.84

Thus, by (5.76), (5.79), (5.82) and (5.84), we obtain that there exist a positive integer N and
t» > t1 such that

Br
1 — Be

90y > r(o0) — (1 + 1 (00) + )e, Vi>t0, n>=N. (585)

Clearly, if

E4 o () + Y1) —15) + NLy4di(t — 1)
(5.86)

<x <l+o(p)+Yi(ua)t —15) +3n/y — NLV4di (1 — 1),

then (5.62) holds and (5.74) with n replaced by N also holds. Choose #; = ml + t(’]" and
t —t; =1, wherem > 1 and !/ > 0 are both sufficiently large. Then we can rewrite (5.86) as

C+o(u) +Yi(u)lim+1) + NLy4d,!

(5.87)
<x <Ll+o(u2) +mlyi(u2) +3n/y — NLJ4dil,
that is,
4o (iy) N L/4d, [(m+1)
(15 +10m + 1) [ Gur) + G240 4 YLD ] o)
(5.88)
4o (o) 431/ NLVAL | 1m+1)
S0 6+ L 1) [y o)+ SRR — G | A

Now for any given e with 0 < & < (¢ ;(00) — ¢ — £1)/2, choose € sufficiently small such
that € < ¢/3. Then there exist [y and m( sufficiently large such that for m > mq, [ > [y and
t=t5+Ilm+1) >,

C+o(n)  NLJAd, Ilm+1)
I(m+1) (m+1)ﬁ]rg+l(m+1)
<t@(u)+e) =tc+eV +e+e)

<t(C+8(l)+8)

(ty +1(m + 1)) [lﬂl(m) +

and

. m C4o(u2) +3n/y  NLJAd } I(m+1)
(fo +1(m + 1)) [m+1¢1(”2)+ I(m+1) (m + DI 1§ +1m+1)

> t(Y1(u2) —€) = t(c] 1 (00) — 2€ —€)
> 1(cf 1 (00) — &).

Let 3 =15 +lo(mo + 1). If 1 > 13, then 1 (c + &V + &) < x < 1(c} | (c0) — &) implies that
(5.86) holds. Thus, by (5.73) and (5.85), we obtain that

lim inf u(t, x, 9)
=00 l(c+5(”+£)§x§t(cil(oo)—s)
> rM(c0) — <1 + i (00) + ] fpﬂe) €. (5.89)
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Because € can be arbitrarily small and (5.89), we have actually shown that

lim inf uVt, x, ¢) | = rM(o0). (5.90)

1=00 | t(c4eD +e)<x=t(c} | (00)—€)

Since ¢ > 0 is arbitrary, we have actually shown that for every & with 0 < ¢ < (c(o0) —

/2,

lim inf ulV(t,x,0) | = r(c0). (5.91)

=00 | t(ct+e)<x<t(c](00)—¢)

It follows from uﬁl)(t, x,¢) < r(oo)forall (z, x) € [0, +00) x R that

lim sup r(oo) —ul @, x, ¢)| | = 0. (5.92)

1709 | t(c+e)<x<t(cl(o0)—¢)

The proof of Lemma 2.5 is completed. O
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