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1. Introduction

Recently, Hofbauer and So [8] considered the n-species Lotka—Volterra systems
with discrete delays

)'c,-(l) :Xl'(l) <r,——|—a,—,—x,—(l)+i aijj(l—Tl'j)), i= 1,2, o, n, (11)

J#i
and established the following nice result.

Theorem 1.1. Let A be the n x n community matrix of (1.1), ie., A= (a;), and
suppose that there exists a positive equilibrium x* for (1.1). Then x* is globally
asymptotically stable for (1.1) (for positive initial conditions) for all delays v;; >0 if and
only if a;<0 for i=1,2,...,n, det A#0 and A is weakly diagonally dominant,

meaning that all the principal minors of —A are non-negative, where A= (d ;) with
di = ay and d; = |ay| for i#].

The proof of Theorem 1 is by constructing a Liapunov functional, taking
advantage of the fact that there is no delay in the negative feedback terms a;;x;(¢),
i=1,2,...,n (i.e., the system has instantaneous negative feedbacks). But, as pointed
out by Kuang [11], in view of the fact that in real situations, instantaneous responses
are rare, and thus, more realistic models should consist of delay differential
equations without instantancous negative feedbacks. A simple but typical such
example is the widely studied delay logistic equation

x(1) = rx(6)[1 — x(z — 1)), (1.2)
x(s)=0 for se[-7,0],  x(0)>0. )
When incorporating delays into the terms a;x;(¢), i =1, ...,n, in (1.1), the negative

feedbacks (assuming a; <0) are delayed and we have the following system:

X’i([) :x,»(t) (V{‘l‘diix,'(t—‘[ii) +Z ai/x;(t—ﬂ:i,)>, i= 1,27 LN (13)

J#i

For such models as (1.2) and (1.3), detecting the global attractivity of a positive
equilibrium becomes a much harder job, since finding a working Liapunov function/
functional for such a system is extremely difficult due to the lack of instantaneous
negative feedbacks. To experience this a little bit, the reader is suggested to work on
the simplest case (1.2), and see how frustrating it will be in constructing a Liapunov
function/functional for such an equation.

For (1.3), one would naturally expect and it is common sense that if the delays in
the intraspecific interactions (i.e., 7;s) are sufficiently small, then the positive
equilibrium should remain globally attractive under the existing ‘“diagonally
dominant” condition. Some recent work (e.g., [4-7,11-13]) initiated valuable



504 X.H. Tang, X. Zou | J. Differential Equations 192 (2003) 502-535

attempts in this direction, which confirm to some extent the above expectation or
common sense, but the estimates for 7;;’s obtained in these works are usually implicit
and there seem to be a lot of room for improvement. Note that a well-known
criterion for the global attractivity of the positive equilibrium x* = 1 of (1.2) is rt <%,
which was obtained in [21] by a “sandwiching’ technique (see also [10]) which is a
non-Liapunov approach. Since Wright [21], similar 3/2 type criteria for global
attractivity have been obtained for autonomous logistic equations with multiple
delays [14], for non-autonomous delay logistic equation [18], and for various other
types of scalar equations with delays (see, e.g., [1,9,15,19,22-24]). When it comes to
system (1.3), which is a result of coupling of several delayed logistic equations of
form (1.2), it is reasonable to expect, as pointed out by Kuang [11], some criteria
which would reduce to the Wright’s 3/2 condition for the scalar logistic equation
(1.2) when the coupling disappears. Unfortunately, none of the aforementioned
work for systems has obtained criteria of this type (which may be called 3/2-type
criteria).

Recently, the present authors made an attempt in [20] towards this direction by
considering the following fwo-species Lotka—Volterra competition system (normal-
ized) with discrete delays

Xl(l) = lel(l)[l - Xl(l - 111) — ,ul)Cz(l‘ — ‘512)],

Xz(l) = V2)C2(l)[1 - ,ule(l — ‘521) — XQ(Z‘ — ‘Ezz)L (1.4)
with initial conditions
xi(t) = ¢,(1)=0, te[-1,0; ¢,(0)0>0, i=1,2, (L.5)

where 1 = max{t;: i,j = 1,2}, >0, y;>0fori=1,2and t; >0 for i,j = 1,2. It can
be easily seen that the non-boundary equilibrium x* = (x}, x5) of (1.4) is given by

* 1—/1]

1—
Xy = <l, x5= )
1=y

=—x1. 1.6
1=y (16)

Both the positivity of x* and the “diagonal dominant” condition for (1.4) in the
sense of Theorem 1.1 can all be implied by the assumption

(DD) u;<1 and py<l1.

Among the other criteria in [20] is the following representative one.

Theorem 1.2. Assume that (DD) holds. If
3(1 —
I’,‘T,‘[S% i:1,2, (17)

where u = max{u,, i, }, then the positive equilibrium x* of (1.4) is a global attractor.
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One easily sees that (1.7) reproduces Wright’s result when u; = p, = 0. The proof
of Theorem 1.2 is by extending Wright’s “sandwiching” technique from scalar
equations to systems. As commented by the referee for the paper Tang and Zou [20],
such extension is a non-trivial step, and it indeed contains some subtle steps, even
though it is only for a system of two equations.

Question arise naturally: can the technique be further extended to (i) systems of
more than two equations; (ii) to non-autonomous systems; and (iii) to systems with
distributed delays, to establish good criteria for global attractivity of the positive
equilibrium? The motivation for (i) is the recent work So et al [17] where a local
stability criterion for (1.3) is established which is similar to Theorem 1.1 but with a
3/2 type estimate for the diagonal delays 7;s. (ii) is motivated by So and Yu [18] where
a similar 3/2 condition in integral form is obtained for the non-autonomous logistic
scalar equation with a single delay. We point out that for such a non-autonomous
case, such a 3/2 estimate in the integral form has been proved to be the best possible
(see [22]). (iii) is suggested by the work Kuang [11], and Kuang and Smith [12,13] and
the references therein where Lotka—Volterra type systems with distributed delays are
considered.

The purpose of this paper is to answer the above questions to some extent. More
precisely, we consider the following non-autonomous n-species Lotka—Volterra
competition system (normalized) with delays

0
54() = ri()xi(t) [1 —/ xi(+5) dvils) = 3 uy/ £+ 8) dvy(s )]
—Tij J#I —Tj
i=1,2,...,n, (1.8)
with initial conditions
xi(t) = ¢,(1)=0, te[-1,0]; ¢;(0)>0, i=1,2,...,n, (1.9)
where © = max{t;: i,j = 1,2, ...,n}. Here, we always assume for i,j = 1,2, ...,n,

(H1) r;e C([Ov OO), (0, OO)),
(H3) v;(#) is non-decreasing, bounded and satisfies normalization condition:

0
/ dvi(s) =1,

and the integral is in the Riemann—Stieltjes sense.

The remainder of the paper is organized as follows. In Section 2, we give the main
results. In Section 3, we establish some preliminary lemmas, which address the
persistence and dissipativity of system (1.8), and therefore, which themselves are of
some interest and importance. In Section 4, by combining these lemmas with the
“sandwiching” technique and some subtle integration and inequality tricks, we give
the proofs of the main theorems.
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2. Main results

Let p;, = Z/#i'“if for i=1,2,...,n, and p=max{y,,,...,4,}- Then, a
“diagonal dominant” condition (also a generalization of condition (DD) in Theorem
1.2) for (1.8) is

(DD1) pu<l,

which implies the existence of a unique positive equilibrium (see [2] or [16,
Proposition 7.3, p. 97]). Used in [11] is the following slightly weaker ‘“‘diagonal
dominant” condition

(DD2) there are constants ¢,>0, i =1,2,...,n, such that Zj#éjuij<5,~ for i =
1,2,...,n,

but which does not guarantee the existence of a unique positive equilibrium.

Throughout the rest of this paper, as in [8], we always assume the existence of a
unique positive equilibrium for (1.8) and denote it by x* = (x},x3, ..., x}). We also
set a = max{x}: i=1,2,...,n}. Obviously,

0<xi<a<l and a<l+Zui,)>l, i=1,2,...,n
J#I

Our first theorem gives not only a generalization but also an improvement of
Theorem 1.2 to the non-autonomous system (1.8) with distributed delay.

Theorem 2.1. Assume that (DD1) holds, and that

/ ri(s)ds= o0, i=12 ..,n (2.1)
0
and
t _ — .
/ rs)ds<—d =1 (1 “)(’”f’), i=1,2,...,n. (2.2)
=1 za(l + :ul) Za(l + ,ul)

*

Then the positive equilibrium x* = (x7, ...,x}) of (1.8) is a global attractor.

It is easily seen that Theorem 2.1 will reproduce the Wright’s 3/2 result for the
autonomous delayed logistic equation and the result in [19] for the non-autonomous
delayed logistic equation.

Kuang [11] also studied the global attractivity of the positive equilibrium of
general n-species Lotka—Volterra system without dominating instantaneous negative
feedbacks. Applying one of the main results in [11, Corollary 3.1] to systems (1.8)
gives the following convenient criterion.
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Theorem 2.2. Assume that ri(t) = r;, i = 1,2, ...,n, and there are positive constants J;,
i=1,2,...,n such that (DD2) holds. If

- 51‘_] Z/;&iéjﬂij
1+ 5;1 Zj;éié,iruij?

i=1,2,...,n, (2.3)

r,‘r,-,-e""r” <

then, x* is globally attractive for (1.8).

Along this direction, we can generalize (to the non-autonomous system (1.8)) and
improve Theorem 2.2 with the following theorem.

Theorem 2.3. Assume that (2.1) holds, and that

t
/ ri(s)ds<d;, i=1,2,...,n. (2.4)
t

—Tii

Suppose that there are positive constants 6;,i = 1,2, ..., n such that (DD2) holds, and
fori=12 .. n

3613 iy
j#i 4 . —1 1
I D TS
2<]+5!1§ :/-#‘Sj,u[/‘) f i j; jﬂlj\3;

diexp(di+ e~ — 1)< (2.5)

2(1-5;"

RS T
1+6; Zj#ioj‘u"j

iz Oty)

sl
if 0, 3 djmy >3
J#i

Then the positive equilibrium x* of (1.8) is a global attractor.

To see that Theorem 2.3 improves Theorem 2.2, we show that when r;(f) = ry,
i=1,2,...,n, (2.5) is weaker than (2.3). Indeed, in this case, we take d; = r;1;, and
thus

d,' exp(di + eid" — 1) §dl exp(di) = }"iTil'eriTii.

On the other hand, when 6;' >, 0ju;>1,

- 51‘_] Zi;éi(sjruij < - 5:'_1 Z/’#iéfﬂij< 2(1 = 51'_1 Zj;éiéj:uij).
1+ 5;1 Zj;éi 5,1‘:“1‘]‘ 1+ 5;1 Zj;&iéjﬂij 1+ 5;1 Zj;&iéjﬂij 7

—1 1
and when 6, >, ;0,1 <3,

3- 5;1 Zj#iéj‘uij 1 1 - 5;1 Ej;’:i&/luij>1 - 5;1 Zj;éiéjluij

2(1 + 5F1 Zj;&iéf'“ij) 2 1+ 5;1 Zj#iéj:“i/ 1 +5;1 Zj#iéjluij.
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Along the direction of Theorem 1.1, where conditions are given in terms of a
related matrix, we can also obtain some result. For this purpose, we first recall the
concept of non-singular M-matrix (see [3, p. 114]).

Definition 1.1. The matrix B = (b;;) of order n is called a non-singular M-matrix if (i)
b; <0, for all i#j, and (ii) all the principal minors of B are positive.

There are many equivalent formulations of this concept (cf. [3, Theorem 5.1]). In
particular, if 4 is an non-singular M-matrix, then 4~! is a positive matrix. We will
use this version in proving the following theorem.

Theorem 2.4. Let B = (b;) be the matrix defined by

bi=1, i=12,....n (2.6)
and
~[(2+d?D?)/(2 — d*D?)|u; if d;D;<]1,
by = { —{El + 2151,-1;,-))/(2 - 2621-0;))]]:;,-/ ; diD;>1, i @7)
where
Di=exp(di+e % —1), i=12,..,n (2.8)

Assume that (2.1) and (2.4) hold, and that B is an M-matrix. Suppose that there exists
a positive equilibrium x* for (1.8). Then x* is a global attractor.

When t; =0, i=1,...,n,d; =0, i=1,...,n and B reduces to 4 = (a;), where
a; =b;=1 and a; = —p;. When confining to the competitive case and after
normalization in (1.1), the matrix A4 is exactly the matrix —A in Theorem 1.1. Thus,
in such a special case, Theorem 1.1 is slightly less restrictive than Theorem 2.4, with a
difference being between “non-—negative” and “positive” for the principle minors.
However, as stated in the title and in the introduction, dealing with positive ;s is the
primary goal of this work, to which Theorem 1.1 fails.

3. Preliminary lemmas

Lemma 3.1. Let O<a<1, 0<p<1. Then system of inequalities

y<(a-+ ) expligty — LR ] — g

x<a— (a— py) exp[—1Hy — Lo 2]

(3.1)

has a unique solution: (x,y) = (0,0) in the region D = {(x,y): 0<x<a,0<y<a/u}.
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Proof. Let
Cl-u o (=pP(+2 l-u (=42
q)(x)_ a X 6a2(1+,u) X, l//(y)_ a y+ 6a2(1—|—,u) .
Then (3.1) can be written as
<(a+ ux)e?™ —a,
y<(a+ px) (3.2)
x<a— (a—up)e '),

Assume that (3.2) has another solution in the region D besides (0,0), say (xo,yo)-
Then 0<xp<a and 0<yg<a/u. Define two curves I'y and I'; as follows:

I'y:y=

(a+ px)e?

W _—a, I'yx=a—(a—puy)e . (3.3)

By direct calculation, we have for curve I';:

]
dx 0.0)

&y
dx3

dy
dx? 0.0)

_ (=)@ +5p+512%)
3a(l + ) ’

(070)_

(= p)*(1+2p)

a*(1+p)

For I';, we first establish the following:

dx|
dy (0,0)

d*x
dy’ (0,0

Noting that

and

d’x (1 —w)(2+ 5u+ 51%)
| o0, 3a(1+ p) ’
_u( — (14 2p)

a*(1+p)
dy 1Ay
dx_Z—;C7 dx? (%)3
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we can easﬂy see that I'; shares the same Zy and £ 2 at (0,0) with I'y, but has a strictly

larger L than I'y, as estimated below:

2
3 d*x d*x
(0,0) dy? (0,0) dy’ (0,0)

(1= )[4+ 1T+ 3602 + 44 + 2504
3a2(1 + p)’*
o (= (1 + 2
a*(1+u)

4’y
dx3

Hence I'; lies above I'} near (0,0). The existence of (xy, yo) implies that the curses I';
and I', must intersect at a point in the region D besides (0,0). Let (x;, y;) be the first
such point, i.e. xj is smallest. Then the slope of I'; at (xy, y;) is no less than the slope
of I'y at (x1,)1), i.e

1
i+ (a—py)y' ()

[+ (a + pox1) @' (x1)]e?™) > Vo)

or
[+ (a + px)o ()] 4 (@ = pyn)y' ()] = /D=0, (3-4)

From (3.3), we have

x| wy  l=—p (=420 ,
(1) = C(1 -
n( a) n( a ) + a V! + 6a>(1 + p) <

'u 2 3
( Jﬁ+ﬁ)’1+33yl+ )

l—u (=142 ,
+ a yt 6a2(1 + p) ¢

LI LI
\ayl 2a2y1 3a3y1

—ln(l—%).

This implies that
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We then calculate and estimate (using (3.5)) as below:

[+ (a+ px1)e" (xn)]lu+ (@ — w )Y (1))

:{1_

3a(l + w) a 3a?(1 + )

(1-w)’(1+2p) p(1 —m]xl (= ) (1 + 2p) X%}

y {1 L |a —35()12&:)2/1) ~ u(la— u)] . #(13:;()12(+1:)2u) y%}
i _35()1222)2“) —”Ua_“)] (v —x1)
;
- l(l 35(>f<+1 :)zm _ﬂ(1; 1.
o
S
~ 4| _35()128:)2”) —”(la_u) (71— x1)
;
_|a —35()12(+1 :)2#) B u(la— D1
B R e
. (13;% W’ <+1:)zu> (LT PN
<14 { +2u ﬂ o _xl)_u(13—azu()12(i$2u) (2 +
(19—a ;(14 +1:)22 M) X1 (v —xl)+M2(19;4F84$;22”)2X?yf
<141 ‘“){W‘ﬂ@‘ —x1)
and
sy L gy

2

)

1

511
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It follows that
V0O — [+ (a4 poxr ) (x1)] [+ (@ — uy)Y (1))

2
> 1 )+ S B )
. 2
>0,

which contradicts (3.4). The proof is complete. [
The next two lemmas establish the persistence and dissipativity of system (1.8).

Lemma 3.2. Assume that (2.1) and (2.4) hold and let (x1(t),x2(t), ..., x,(t)) be the
solution of (1.8) and (1.9). Then we have eventually

0<x;(t)<exp(di +e " —1), i=1,2,...,n (3.6)

Proof. From (1.8) and (1.9), it is easy to see that x;(¢#)>0 for r>0and i= 1,2, ... n.
Hence,

0

)'c,-(t)<r,~(t)x,~(t)[1 —/ xi(t+8)dvi(s)|, i=1,2,...,n (3.7)

If x;(z) <1 eventually, then (3.6) holds naturally for large ¢. If x;(¢) > 1 eventually,

then (3.7) implies that x;(¢) is non-increasing eventually. Let lim,_, ., x;(#) = ¢;. Then
xi(t)=c¢; =1 for large ¢ and from (3.7) we have

X,‘(Z)SF,‘(!)X,‘(Z)(] —C[), i=1,2,...,n

for large ¢. Integrating the above from ¢ to oo, we obtain
In¢e, —Inx;(1)<(1 - c[)/ ri(s)ds, for large ¢,
t

which, together with (2.1), implies that ¢; = 1, i = 1,2, ..., n. Hence, (3.6) holds too.
In the sequel, we only consider the case when x;(¢) — 1 oscillates. For this case, let 7}
be an arbitrary local left maximum point of x;(#) such that x;(¢/) > 1. Then X;(}) >0,
it follows from (3.7) that there exists &, € [t} — 7y, £7] such that x;(&;) = 1 and x;(¢) > 1
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for &;<t<tf. For te[é;, t7], integrating (3.7) from ¢+ s to &; we get
&

r,»(u)dus/ ri(u) du, —t;<s<E —t.

=1

Si

—Inx;(t+s)< /

t+s

Note that —In x;(¢ + 5) <0 for &; — t<s<0. Hence,

Si
xi(t—f—s)}exp(—/ r,-(u)du), &<, —1;<s<0.
t

—Tii

Substituting this into (3.7), we obtain

=

iggéri(t){l —exp<— /ti ri(u) du)}, &<t<tr. (3.8)

=

Integrating (3.8) from ¢&; to ¢ and using (2.4), we have

Inxi(£) < /; r(t) {1 _ exp<— /: r(s) dsﬂ dr

I; l‘;f t
< / ri(s) ds — / ri(t) exp (di + / ri(s) ds) dt
& & &
« I
= / ri(s) ds + e~ —exp (d,- + / ri(s) ds>
G &

<di+e % — 1,
which implies that

xi(t7) <exp(d; +ed—1), i=1,2,...n
It follows that for large ¢

xi(f)<exp(di +e % —1), i=12,..,n

The proof is complete. [

Lemma 3.3. Assume that (2.1) and (2.2) hold, and let (x(t), x2(t), ..., x,(¢)) be the
solution of (1.8) and (1.9). Then

O< liminf x;(f)<limsup x;(¢f)< o0, i=1,2,...,n. (3.9)
— f— o0
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Proof. By (2.2) and Lemma 3.2 with d; = %, i=1,2,...,n, we have

| d? (1=’ +u+4u)
xi(0) <exp(d; + =% — 1)<ex <ex 1,
(t)<exp(d; +e ) p(2) pl s(1 1 0)°

i=1,2,..n (3.10)

From (3.10) and use that fact that a(l + y;)>1 for i = 1,2, ..., n, we obtain

’ (1= )’ 3+ +4p)’
,u~/ xi(t+s)dvy(s)< pexp !
/; ! —Tj ’ ’ L 802(14'/1:‘)4
(1 - w23 ap,)?
< pexp (1= ( +uj 1)
L 8(1 + ;)
(1= >3 + 5u)°
g,uexp( W +2 H =o, i=12,...,n
8(1 + )

It is easy to see that o <1. Substituting these into (1.8), we have
0

mm>mmmap_%_/

—Tii

xi(t—f—s)dv,-i(s)}, i=12..,n (3.11)

Now (3.9) follows from (3.10) and (3.11) and by a standard comparison argument.
The proof is complete. [

4. Proofs of the main results

Proof of Theorem 2.1. By the transformation
Xi=xi—x;, i=12..,n
System (1.8) becomes
0
5(6) = —ri( )" + x:(0) V_ xi(t + 5) dvils +; ﬂy/w Xt + 5) dvy s )]
i=12..,n (4.1)

Here we used x;(¢) instead of X;(¢) for i = 1,2, ..., n. Clearly, the global attractivity
of x* of system (1.8) is equivalent to that for (4.1),

lim x;(¢) =0, i=12,...,n, (4.2)

— 0
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for all x(7) = (x1(£), x2(2), ..., x,(¢)) > — x* for t>0. We divide into two cases to
prove (4.2).

Case 1:[° xi(1+5) dvi(s )—i—z#,,uljf xi(t+ ) dvy(s), i=1,2,...,n are all

non- oscﬂlatory. In this case, X;(¢), i =1, 2 ...,n are all sign-definite eventually
which implies that x;(¢),i = 1,2, ...,n are monotonous eventually. By Lemma 3.3,
we have x;(f)—>¢; as t—» o0 and x}f +¢;>0 for i =1,2,...,n. Hence for large T,
integrating (4.1) from T to oo, we obtain fori=1,2,...,n
‘lnx:f +X[(T).
xXi+¢
[5¢) 0 0
= / r,-(t)/ xi(t+5) dvi(s —I—Z ,u,]/ xi(t+ ) dvi(s)|dt.
T —Tii J#i T
Note that
0
htn:l’logf /4 xi(t+5) dvi(s +Z HU[ xi(t+5) dvi(s)
ii J#I Tjj
= |+ Y el
J#i
i=1,2,...,n It follows from (2.1) and (DDI) that ¢; = ¢, = --- = ¢, =0, i.e., (4.2)
holds.

Case 2: f CXi(t 4 s) dvi(s) + 304 fo x;(t + s) dv;i(s) is oscillatory for some
i=1e{l,2, ...,n}. Then there exists an 1nﬁn1ty sequence {#} such that

0 0
/ xi(tk +5) dvi(s) + Z ,“lj/ Xi(te +8)dv(s) =0, k=12,.... (4.3)
_ o

T Jj#l
Set

V,»:litminfxi(t) and U; =limsup x;(¢), i=1,2,...,n
— 0

= 0
In view of Lemma 3.3,
—X;<Vi<U<ow, i=12,..,n (4.4)
Let

—V:min{Vl,Vz,...,V,,} and UZI’H&X{U],UQ,...,U,,}.
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Then from (4.3) and (4.4), we have
0<V<a=max{x;:i=12,...,n}, 0<U<o. (4.5)

In what follows, we show that ' and U satisfy the inequalities

l—p, (1-w’(1+2u)
< — 4,
at U (a+“V)eXp[ P T (46)
and
l—u (=’ +20)
—V=(a— - . )
a—V=(a ,uU)exp[ P U 621+ 1) U (4.7)
For the sake of simplicity, we set
I e VN e DR ) i—1.2...n

"T2a(1+ ) 2a(1+ )

Without loss of generality, we may assume that U = U; and V' = —V;. Then V' <x;.
Let ¢>0 be sufficiently small such that v; = V' 4+ ¢<x}. Choose T'>0 such that

—n<xi()<U+e=w, t=T—x, i=12,...,n, (4.8)

where © = max{t;: i,j =1,2,...,n}. First, we prove that (4.6) holds. If U<V,
then (4.6) obviously holds. Therefore, we will prove (4.6) only in the case when
U>yu;V. For the sake of simplicity, it is harmless assuming U > uv;. Set v, =
(14 ;)vr and uy = (1 + g;)u;. Then from (4.1), we have

xi(1) 0
m<rl(t) {— /r,-, xi(t+5) dvi(s) + ,u,»vl} <ri(vy, =T (4.9)
and
X; (1) 0
_x; e <r(1) /—r,, Xi(t+5) dvy(s) + | <rj(Hua, t=T. (4.10)

Since U>p;v;, we cannot have x;(z)<p,v; eventually. On the other hand, if
xi(t) = vy eventually, then it follows from (2.1) and the first inequality in (4.9) that
x;(t) is non-increasing and U =lim,, o x;(#) = w;v;. This is also impossible.
Therefore, it follows that x;(¢) oscillates about w;v;.

Let {px} be an increasing sequence such that py>=T + t; X;(prx) =0,
Xi(pe) Z pivr, limy oo pr = 00 and  limg, o, x;(px) = U. By (4.9), there exists
¢relpk — ti,pk]  such  that  x;(&) =wwv; and  x;(¢)>pwv; for E<t<pg.
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For te[&, pr], integrating (4.9) from ¢+ s to &, we get

XF+xi(t+s S &
—ln’*%()évz/ ri(s) dsévz/ ri(s)ds, —ty<s<&p—t.
x; 4+ xi(&) t+s =i

Note that —In [(x} + x;(z +5))/(xF + x:(&))] <0 for & — t<s<0. Thus,

&k
xi(t+5)= — xF 4+ (x7 + 1) exp (—Uz/ ri(s) ds>,
t

—Tii

S <t<pr, —T1;<s<0.

Substituting this into the first inequality in (4.9), we obtain

Ek

x:ﬁi—(xl)l(t)g(xz* + wv1)ri(t) [1 — eXp (‘Uz /z—r,-,» ri(s) dS)], Ep<t<py.

Combining this with (4.9), we have
L(l)<min{v ri(t), (@ + pv1)ri(2) {1 —ex <v /ik ri(s) ds)]}
a—l—x,—(l)\ 20 3 ,u; 1)ri p 2 . i )
Sk SUEPre.

To prove (4.6), we consider the following two possible subcases.
Case 2.1: [I"r;(s) ds< — - In(1 — (1 — p)vi/a). Then by (2.2) and (4.11)

a+ x;(px)

a -+ uv
a+ xi(px)
a+ pvy

<(a+ po) { /pk 5)ds — /pk (t)exp<—vz /t C (s)ds) dz]
ol o )
I

In

<In

517

(4.11)
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P
If [T ri(s) ds< — LIn(1 — (1 — pvi /a) < A;, then,
a—+ Xx;
In — 22 (i)
a—+ uvg

<@+~ (1 = (1= o)

g (4,4 202 0 s )

(14 w)a b2

<@+~ (1= (1= o)

e el )}
a—i—uivl{ a—(l—u)mhl(l_(l—,u)vl)

- a(l + ) U1 a

—1+u+4;,(1 - p)(1 +ui)vl}

<—“+“""‘){ R [ e e

Sa(l+

1—u 1—,u3 l—,u4
o [ R St

_ {l—u (1—u)(u+ui)}(1ﬂ)vl(l—u)3 , (=p

a 2a(1 + w;) 6> ' 1243

2
Aow o Q- (42 ,

X |

a 6a*(1 + p) "

In the above third inequality, we have used the following inequality:
(1-x)In(l—-x)> —x+i +1x0 + Lyt o<x<l

If [2ri(s) ds<A;i< = In(1 = (1 — p)v1 /a), then

Ui



X.H. Tang, X. Zou | J. Differential Equations 192 (2003) 502-535 519

which implies that (1 — p)v; >a/2. Hence,
a+ xi(pr)
a+ uvp

1 .
<(d+ll,~vl)|: i—g(l —e 2)}

In

1 1 1
<+ o) (32— g A%+ 5 1))

Ctptdp)’ (=m0 +ptan)
Uy

(1= p’(a+un) .
8a(1 + ;) 48a2(1 + 1)’

a(l + )

i (1- #)2(3 +tut+ 4/1:‘)4 3

384031+ )"

|G pt ) (=Gt dn)’

8a(1 + )’ (1 +p)

G W G+ p+ 4t 5
84031+ )t

l—p (1 -w'(1+20) ,

< U —

<(1—p)

a 6a>(1+p;) '
lop  (-w(1+20) ,
< — :
a 6a2(1 + u) “

Case 2.2: —izln(l — (I =y /a)< i ri(s) ds< A;. Choose I € (&, px) such that
P ri(s) ds = —LIn(1 — (1 — wvi /a). Then by (2.2) and (4.11),
a+ xi(p) <@t xi(Pk)

a —+ pvp a—+ ;v

I Pk
<y / ri(s) ds + (a + pvr) {/ ri(s) ds
Ik

Sk

[oma(onf e}

I Dk
<vy / ri(s)ds+ (a+ ,u,»vl){/ ri(s) ds
I

el [ 08) om0

I
=m/)mwm+w+mm

Ek

A gl e(ae o))

In
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<Ay + (a—w) /pk ri(s) ds — w
I

a(l + )
s _(1+1u,)v1(a - Ul)ln<1 _a ‘am”l) @ _a’fi(i;ifivl)
<Al +p)or =77 i[—(l_H)+1ga/‘201+(1—#)626§21+2u)0%]
(= p(a+ pw)
a(l + p;)
< |ty - U2 ’;if(lli/;)* 2%-)] _a 6;();(;[)2/1)0%
e

Combining Cases 2.1 with 2.2, we have prove that

; 1 — 1—0)*(1+2
1na+x,(pk)< uvl_( w)(1+ “)vf,
a+ pu a 6a2(1 + p)

k=12, ... .

Letting k— oo and ¢—0, we have

2
ettt topy, (-p(d+20,
a+uV " a 6a>(1+ p)

This shows that (4.6) holds. Next, we will prove that (4.7) holds as well. If V' =0,
then (4.7) holds naturally. In what follows, we assume that V' >0. Then from (4.6),
we have

U<a(l +p)e' ™ —a<2a, pU<p[(a+ pV)el=0V/e g < V<xi<a (4.12)

Thus we may assume, without loss of generality, that V> pu;. In view of this and
(4.10), we can show that neither x;(1)> — wu eventually nor x;(1)< — wu
eventually. Therefore, x;(7) oscillates about —pu;.

Let {gx} be an increasing sequence such that g, >T + 15, X;(qx) = 0, x;(qx) < —
wur, limy, o qx = o and limg_, o, x;(qx) = —V. By (4.10), there exists n; € [gx —
7, qk] such that x;(n,) = —wuy and x;(t) < — uy for n, <t<gqx. For te[ny, qi], by
(4.10), we have

Mk
X1+ s) < (x; — pun) exp (uz / ri(s) ds) - X},
t

iz

Me<t<qr, —1;<s<0.
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Substituting this into the first inequality in (4.10), we obtain

Xj(l) . Nk
ooy SO wun)r(2) exp uz/ ri(s)ds | — 1], m<t<gx.

[=Tj;
Combining this with (4.10), we have

- #S)(Z)<min{uzrj(z), (@ = pyun)r; (1) [exp (uz /t”k r(s) ds> — 1] },

U

N ST G- (4.13)

There are also two possibilities:

1 . .
Case 2.3: fj{" ri(s) ds<A; — u—ln(l + (1 —wu/a). It is easy to verify the
g 2

inequality
1- 1— (1
(a+u1)1n(l -s—ﬂ) > (1 — —&-Mzﬁ
a 2a
1= p)*(1+2p
- %ui (4.14)

From (4.14) and use the fact that uu; <a, we have

(1 1=20)

! (L= +p 5 (—p’(l+20) 4
> — _
“a+u (1= s + 2a “ 6a? “
=t p42) (=420
= u — 5 ul.
2a(1 + ) 6a*(1 + ;)

Hence, integrating (4.13) from #, to g, and using the above inequality, we have

. 13
et / 1i(s) ds
a— fith i

(-G +u+dn) 1 (1 L u)m)]

o) ——1In
[ 2a(1 + )’ ) a

(=G +p+4) (1 =@
T In (1 +T>

1— 1—w)?(1+2
< “u1+( 1)~ (14 2p)
a 6a>(1 + ;)

2
uj.
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Case 2.4: [ 1j(s) ds>A; — - In(1 + (1 — pu /a). Choose hy € (1, qx) such that

T 1 1 —
/ r,(s)ds:A,——ln(l—f—ﬂ).
N ’ ’ 25} a

Then by (2.2), (4.13) and (4.14) we have

a+ x;(qn)
a— wiuy

T 4k Mk 9k
<u2/ ri(s) ds + (a — wur) / t) exp 2/ ri(s) ds dt—/ ri(s) ds
i I t Nk

—1In

a— [l (l—u)m_ \ o qky.s s
+<1+uj>ull a (H”’)l(A’ / ’“dﬂ

e —w(a— wu
= (@t [ o) ds — ) + L)

e a(l + )
B o a+uw (1 —pur\ | (1 —p)(a—pwu)
= (1 +,U_/)A]u1 —(1 n #j)ul ln(l + P ) + a(l+ Hj)
(I =) (1 +p+2u) (I =) (1 +2p)
N 2 2a(1 + p;) i 6a%(1 + ;) i
_ l—uul+(1—u)(1+2u) >

a 6a’(1+p;) "



X.H. Tang, X. Zou | J. Differential Equations 192 (2003) 502-535 523

Combining Case 2.3 with Case 2.4, we have shown that

_ _ N2
,1na+xj(‘1k)<1 .“ulJr(l 1) (1+2ﬂ)u2

< k=12, .
a— a 6a>(1 + p;) !

Letting k— oo and ¢—0, we have

2
me=V d-ey (1—121) (1+24) 2
a—wU "~ a 6a*(1 + ;)

Note that the fact that U <2a, we have

(a—w;U)exp

L= (L= p(1+2p)
a U~ 6a2(1 + i) Uz]

>(a— uU)exp

—p o (=p?’(1+2p)
v- 6a%(1 + u) UZ]'

It follows that

1— 1— w1 +2
“_V>(a_”U)eXp[ aHU_( 6a21(+mu)U2]’

which implies that (4.7) holds. In view of Lemma 3.1, it follows from (4.6) and (4.7)

that U = V' = 0. Thus, (4.2) holds. The proof is complete. [

Proof of Theorem 2.3. Let (x(#),x2(¢), ..., x,(¢)) be any solution of (4.1) with x} +
xi(£)>0 for t>0and i = 1,2, ...,n. By Lemma 3.2, there exists 7 >0 such that

X x(t)<exp(di+e " —1)=D;, =T, i=1,2,....n (4.15)

In view of the proof of Theorem 2.1, we only need to prove that the solution
(x1(8), x2(2), ..., xn(2)) satisfies (4.2). Let

xi(t) = oyi(t), i=1,2,...,n
Then (4.1) is transformed into
0

Vi(t) = —ri()(x] 4+ x(1)) l/ Yi(t +s) dvii(s).

—Tii

0
+5f12 5_7.“[]/ yi(t+s) dVg(S)], i=12,..,n (4.16)

JEi T
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Set
J#i
and
v =limsup |y:(1)|, i=1,2,....n (4.18)
— o0
We shall show that vy = v, = --- = v, = 0. Without loss of generality, assume that
vy =max{v;: j =1,2,...,n}>0. Then there are two possible cases.

Case 1: pi(t) is sign-definite eventually. In this case, the limit ¢; = lim,_, o, y;(¢)
exists and ¢; = — 51_1x’1‘. For the sake of simplicity, it is harmless assuming that
y1(6)=0, t=T or y,(1)<0, t=T. If ¢, > — &, 'x%, then, integrating (4.16) from T to
o0, we obtain

- >’1 xp + o (T )‘
Xl + ¢104

0 0
:51/T rl(t)[ »i(t+s)dvii(s).

11

+ 07 IZ 5].“1// Yi(t+5) dvij(s)| dt. (4.19)
J#1 Tl
Note that
0
iimin| [ (e +9) dv(s) + 67 Y o / (i 4 s)dviy(s)
=111 j#1 —Ty
> lim inf ‘/ yi(t+s5)dvii(s)]| — ;" Z 5,u1]/ lyi(t =+ s)|dvi;(s)
t— o0 —11 17&1 —1y;

- [vl —ot ) 5/“1./‘”’1

Jj#1
= (1 —p)v
It follows from (2.1) and (4.19) that v; = 0, which is a contradiction. If ¢; = —51_1x’1‘,
then y(¢)<0 for t=T and v; = —c¢;. By (DD2), there exists ¢>0 such that (v; +

&)y <v; — 2e. For the given ¢, by (4.18) and v; = max{v;: j =1,2,...,n} >0, we can
choose T7 > T such that

y1(1—111)<—01—‘r8 and y/(l—flvi)<l)1+8, t=T). (4.20)
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Hence, from (4.16) and (4.20), we have

0

—31(t) =r1(6)(x] + x1(8)) l/ yi(t+s)dvii(s)

—T11

+ oy IZ 5]#1;/ Yi(t =+ s) dvi;(s )1

J#1 J
< (O (x7 +x1(2)[—o1 + &+ py (1 + &)

< —en()(x] +x1(1))
<0, t=T.

This contradicts to the fact that —y;(¢)>0 for t>T.
Case 2: pi(t) is oscillatory. For any &e(0, (1 — u;)v;/(1+p,)), there exist
T,>T+max{t;: i,j = 1,2, ...,n} and a sequence {;} with 7> T, such that

tr—> 00, |yi(te)|-v1 as k- oo, [pi(t)] =0, ()| >v1—e, k=1,2,...
and
lyi(t)|<vi +¢ for t=T, —max{t;: i,j=1,2,...,n}, j=1,2,....n.

y1(t) (the case when |y (t)| = —y1 (%) is

We only consider the case when |y (#)| =
t)). Then from (4.16), we have

similar by using —y(¢) instead of y(

0
0= _/ Vit + ) dvii(s Zélﬂu/ Vilti +5) dvi;(s)
_ .

T j#l

0
<—/ 1t + ) dvis (s) + (01 + )

T11

or

0
/ 1t + ) dvir () < gy (01 + ),

1

which, together with the fact y, () > p, (v) + ¢) implies that there exists a &, €[t —
711, 1) such that y; (&) = u (v1 + ¢) and y(¢) > py (v + ¢) for & <t <t. Hence from
(4.15) and (4.16), we have

0

(O < () (X" +x1(2)) {—/ it +s)dvii(s) + p (v +¢)

11

grl(t)D1(1+u1)(vl +8), t=T>. (421)
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By (4.21) and the fact that y;(¢) > u; (v + ¢) for & <t<t, we have

o+ =49 <D+ ) +9) [ i

=111

Ge<t<ty, —tn<s<0.

Substituting this into the first inequality in (4.21), we obtain

&k
yl(t)éD%(l + ) (v + s)rl(t)/ ri(s)ds, & <t<y.

=111

Combining this and (4.21), we have

Sk
(O<D(1 4+ py) (v +8)r1(t)min{1,D1/ ri(s) ds}7 &<ty
t

—T11

Set

)

B max{d\D; — 5,31 + 1), w<
Y+ ) (di Dy)?, o=

W= W=

Then by (2.5)

6<17,Ll1

We will show that

yi(te) — y1(&) <O0(vy +¢).

To this end, we consider the following three subcases:

Case 2.1: yy<1/3 and D, ffti r1(s) ds<1. In this case, by (4.22) we have

yi(te) = yi(&x)
Sk

<D7(1+ ) (01 + &) [tk V1(t)/ r1(s) ds dt

Sk =1y

(4.22)

(4.23)

(4.24)
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<D+ wy)(vy +s)/rk ri(2) (d1 - /;rl(s) ds)dt

Ek

173 1 173 2
di D% / ri(s) ds — —<D1 / ri(s) ds>
Ek 2 Ek

<1+ ) (v1 +¢) (max{a’lDl7 1} — %)

= (I+m)(v +e)

11
= (14 m) (v +8)max{d1D1 —55}

= 0(v; +¢).

Case 2.2: uy<1/3 and D f;i ri(s) ds> 1. In this case, there exists n; € (¢, tx) such
that D, fnt: r1(s) ds = 1. Then by (4.22) we have

yi(te) = y1(&)

<D (1 + py)(v1 +¢)

Nk 173 Ek
/ ri(s) ds + D, / ri(2) / ri(s) dsdt
Ek Nk =111
1y Mg U Sk
/ ri(2) dt/ ri(s) ds+ / ri(?) / ri(s) ds dt]
Mg Sk i =t

= Di(1 4 py)(v1 +&) /tk ri(z) /"k r1(s) ds dt

= Di(1 +p)(v1 +¢)

e 1 2
= (14+u)(v1 +¢) {dlD%/ ri(s) ds—é(Dl/ ri(s) ds) ]

= (1 +u)(v1 +¢) (dlDl —%)

= 0(v; +¢).

Case 2.3: 1y >1/3. In this case, fé}’( ri(s) ds<d, hence, by (4.22) we have

yi(te) = y1(&x)

<D%(1 + ) (v1 + ) /: 71(t)/rgk ri(s) ds dt

—T1

<DL+ ) +2) /f no(a- / Gs) i) d
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i 1 17 2
di D%/ ri(s) ds — —<D1 / ri(s) ds)
&k 2 &k

S0+ )01 +6)(d Dr)?

O(v1 +¢).

= (I+m)(v +e)

Cases 2.1-2.3 show (4.24) holds. Let e —0 in (4.24). Then we conclude that v; <v;.
This is also a contradiction. The proof is complete. [

Proof of Theorem 2.4. Let (x(t), x2(¢), ..., x,(¢)) be any solution of (4.1) with x} +
xi(t)>0 for =0. By Lemma 3.2, there exists 7 >0 such that (4.15) holds for t>T.
We will divide two cases to prove (4.2) holds.

Case 1: f xi(t ) dvie(s) + 304 1y fiﬁ Xi(t+s)dv(s), i=1,2,...,n are all
non- osc1lldtory. In this case, x;(¢), i = 1,2, ..., n are all sign-definite eventually which

implies that x;(¢), i=1,2,...,n are monotonous eventually. For the sake of
simplicity, it is harmless assuming that x;(¢) >0, t>T or x;(¢) <0, t>T. By Lemma
3.2, we have x;(t) > ¢; as t— oo and x] +¢; =0 for i = 1,2, ...,n. Set

L={ii¢>—xi} and L ={ii¢=—x}

If ¢;e I, then by integrating (4.1) from T to oo, we obtain

‘lnxi +X1(T)’
X7 +¢
oe] 0
= / r,—(t)/ xi(t+8) dvi(s —|—Z ,u,]/ xi(t+5) dvi(s)| dt
T —Tii J#I —Tj
0 0
2/ ri(1) U/ xi(t+ ) dvii(s) —Z :“ij/ |xj(z+s)|dv,~/-(s)] dr.
T ~Ti J#i ~Ty
Note that

0

_ZM@//

i —T

0

= Jail =Y ulel-

J#
It follows from (2.1) that

|ei| = Z Kylei| <O, el (425)
J#i
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If ¢;e I, then x;(¢) <0 for t=T. For any given ¢>0, there exists 77> T such that
xi(t—ty)<ci+e t=Ti, j=1,2,....n (4.26)
Hence, from (4.1) and (4.26), we have
— Xi(1)

0

0
— RO + (1) [ | st )+ Xy [ wa+s) dvij(s)]

—Tii J#i
<r(O)(x; +xi(0)ei+e+ Y pyle+e)l, =T,
J#i
It follows that
ci+e+ Z (e +¢€)=0, ieh
J#i

or

=S miot(1+ 3 w). et

J#i J#i
Let ¢—0 in the above. Then we have
leil = > wylei| <0, iel. (4.27)
J#i
Combining (4.25) and (4.27), we have
leil + ) bylef| <0, i=1,2,...,n. (4.28)
7
Since the matrix B is an M-matrix, hence, from (4.28), we easy conclude that ¢; =
¢ =--=c¢,=0.
Case 2: At least one of f_om xi(t+5) dvig(s) + 22,4 1y fi)r[,- x;(t+s) dvyi(s), i =
1,2, ...,n is oscillatory. Set

U; =limsup |x;(8)], i=1,2

gLy ceny
t— 0

n.

By Lemma 3.2, 0<U;< o0, i = 1,2, ...,n. It suffices to prove that Uy = Uy = -+ =
. . 0

U,=0. Without loss of generality, assume that ffr,»,ﬂ xi(t+ ) dvi(s) +

djei My fgw xi(t+s) dvy(s), i =1,2, ...,k are oscillatory and ffrﬁ xi(t+ ) dvii(s) +

Z/’#i i ffw Xj(t+s)dvy(s), i=k+1,k+2,...,n are non-oscillatory. Then it
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follows from (4.1) that x;(¢), i = 1,2, ...,k are oscillatory and

x;(t) is nonoscillatory and tlim () =U;, i=k+1,...,n (4.29)
e

Hence, for any given sufficiently small ¢>0, there exist k sequences {t;,}, i =
1,2, ,k with tim — Tjj > T such that

(4.30)

tim— 0, |Xi(tin)| > Ui as m— oo, |xi(tim)|> Ui — ¢,
|Xi(tjm)|:0, |)C[(l)|<Ui+£ for t>[1, i:1727...,k,

and |x;(¢1)|<U;+¢ for t=t, i=k+1,...,n, where tj = min{t;;: i=1,2,....k}.
We can assume |x;(Z;)| = Xi(Zim) (if necessary, we use —x;(#) instead of x;(7) and —p;;
instead of y; for j#i). Then by (4.1), we have

0 0
0= / Xi(tim + ) dvi(s) + Z ,u,»j/ Xj(tim + 8) dvii(s),

Tii VE!

which yields

0
/ $ilti +5) dvi() < Y wy(Up+e), i=1,2, 0k (4.31)
—Tii J#i
Set
Bi=> wy(U+e), i=12 ..k (4.32)
J#I

In what follows, we show that

Xiltim) + Y, by(U; +2)
j#i
2¢d?D?/(2 — d*D? if d;D;<1,
< d; D/ D7) T i=1,2, ... k. (4.33)
28(261’,’Di — 1)/(3 — 2d1Dl) if diDi> ],

If x;(t;n) < p;, then (4.33) obviously holds. If x;(¢;,) > f;, then by (4.31) there exists
Eim € [tim — Tiiy tim) such that x;(&;,,) = p; and x;(¢) > p; for &, <t <t;,. From (4.1) we
have

0

Xi(0) < ri(0)(x7 + xi(2)) [— / xi(t+s) dvi(s) + B;

—Tii

<ri()Di[(Ui+e)+ by, t=Tr =1 +r, (4.34)
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where v = {7;: i,j = 1,2, ...,n}. By (4.34) and the fact that x;(¢) > f8; for &, <t<tj,
we have

éim

ﬁi_xi([+s)<D[[(l]i+8)+ﬁi]/ ri(u)du, 6im<1<timy —T[[SSSO.

=i

Substituting this into the first inequality in (4.34), we obtain
Eim

(0 < DU + &) + BJri(o) / r(s)ds,  Em<I<tm.

=7

Combining this and (4.34), we have
‘i[m

XI(I)SD,[(U, + 6) + ﬁ,-]r,-(t)min{l,D,-/t

—Tii

ri(s) ds,}, Eim << Tlim. (4.35)

We consider the following three subcases:
Case 2.1: d;D;< 1. In this case, by (2.4) and (4.35) we have

xi<tim) - xi(éim)

t"” Sim
<[(Ui+2)+ B, Dz/ / 5) ds dt
//H I

Tii

tlm t
= (Ui + &) + B, D? (/ ds—/ r,~(s)ds>dt
Eim =1 Eim

<[(U; +s)+ﬁ]D2[ /; r(s) ds—/;m (1) /; r(s) dsdl}

im im Sim

tim 1 tim 2
di/ ri(s) d. ——(/ ri(s) ds)
& 2 Eim

im

= [(Ui+e) + BJD?

d:D}[(U; +¢) + B]
d[ZD?[xi(lim) +Bi+ 28]'
Case 2.2: d;D;>1 and D; f”’” ds<1. In this case, by (2.4) and (4.35) we have

xi(lim) - xi(éim)

Cim

<[(U; +¢) + B D? / ) /t ri(s) ds dt

im —Tii

tim 1 tim 2
d,-/ ri(s)ds — = </ ri(s) ds)
& 2\Je

<[(Ui+¢) + B]D;
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(2dD DI(Ui +¢) + Bi]

NI>—‘ NI

<5 (2diD; — 1) [xi(tim) + B; + 2¢].

Case 2.3: diD;>1 and D, ft ri(s) ds>1. In this case, let 1,,, € [, tin) such that
Dy [ ri(s) ds = 1. Then by (2.4) and (4.35) we have

xl( zm) - (ézm)

<[(Ui+¢)+ B1Di [ / " (s ds + D; / " ri(t) / " is) ds dz]

Cim im —Tii

Lim Nim
<1 - D,-/ ri(s) ds) / ri(s) ds
Nim éim
tim Nim
+ Di/ ri(t)/ ri(s) ds dt}
n; 1=Tji

im

= (Ui +¢) + B)D? /n t ri(t) < /,t rils) ds - /:1~t ) ds) g

im im

tim tim 2
<[(Ui+e¢) + D} [d,-/ ri(s) ds ;(/ ri(s) ds) ]

im im

5 (2d,~D,« = D[(Ui +¢) + B

= [(Ui+e&) + B|D;

% (2d;D; — 1)[x;i(tim) + B; + 2¢].

Combining Cases 2.1-2.3, we have fori = 1,2, ...,k

2+ d*D? 2 d’D?
xi(tlm 2 d2D2 Z MU U +8 d2D2 if d,Dl§1
Loj#L

or

; i <7 . ; A _— i i> .
X,(llm) 3 3 D ];l /1 (ljl —|—F) + 3 3 [Di if d;D 1

This shows (4.33) is true. Let m— oo and ¢—0 in (4.33), we obtain

Ui+ > bUi<0, i=12,.. .k (4.36)
J#i
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On the other hand, from (4.1) and (4.29), we see that the limit ¢; = lim,_, o, x;(¢)
exists and ¢;= —x} for i=k+1,...,n. If ¢;> —Xx}, then for large 7T3>T,
integrating (4.1) from 73 to oo, we obtain

0 0
/ xi(t+8) dvis) + ) ”u/ x;j(t+ ) dvy(s)|dr

= /: ri(2) . >
>/chrf(t)“/1x1( s) dvi(s) _Z“ij/o

J#I —Tj
Note that

|x; (2 + 5)] dv,-j(s)] dt.

t— 0

>Ui_z 1 Uj.-

J#i

_Zl‘zj/o

j#i —T

0
lim inf U/ xi(t+5) dvii(s)

[ (t +3)] dej(S)]

It follows from (2.1) that

jF
If ¢; = —x}, then X;(#)<0 for t>T and ¢; = —U;. For any given ¢>0, there exists
T4> T such that
)Ci(t—fi[)< — Ui+8, and Xj([—Tij)<(]j+8, t=Ty. (438)

Hence, from (4.1) and (4.38), we have

— Xi(8)

= ri(0)(x] + x(1)) [/1 xi(1+s) dvi(s) + ) My/

J#EI —Tij

<n()(xF +x(0)[-Ui+e+ > uy(Up+e)], =T
J#i

t+5)dvi(s )1

It follows that

~Ui+e+ > w;(Ui+€)>0
J#i
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or

J#i J#i
Let £¢—0 in the above. Then we have

U= 1 Up<0. (4.39)
J#i

Combining (4.37) and (4.39), we have

U,.,Z u;Ui<0, i=k+1,..,n
J#i

and so

Ui+ > bUi<0, i=k+1,..,n (4.40)
J#i

By (4.36) and (4.40), and by using the fact that B is an M-matrix, we have U; =
U, = --- = U, = 0. Hence, the proof is complete. [
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