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Abstract

We consider a periodic Lotka—Volterra competition system without instantaneous negative feedbacks
(i.e., pure-delay systems)

% () =x; (1) |:rl~ ) =Y aij(0)x;(t — 1 (z))}, i=1,2,...,n. (%)

j=1

We establish some 3/2-type criteria for global attractivity of a positive periodic solution of the system,
which generalize the well-known Wright’s 3/2 criteria for the autonomous delay logistic equation, and
thereby, address the open problem proposed by both Kuang [Y. Kuang, Global stability in delayed nonau-
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1. Introduction

One of the most celebrated models for population dynamics is the Lotka—Volterra system. Due
to its theoretical and practical significance, the Lotka—Volterra system has been extensively and
intensively studied (see, e.g., [1-55]). In order to reflect the seasonal fluctuations, it is reason-
able to study the Lotka—Volterra system with periodic coefficients. A very basic and important
ecological problem associated with the study of multi-species population interaction in a peri-
odic environment is the existence and global attractivity of a positive periodic solution. Such a
problem also arises in many other contexts.

In this paper, we investigate the following periodic n-species Lotka—Volterra competition sys-
tem with delays

)'ci(t)=xi(t)|:r,~(t)—Zaij(t)xj(t—tij(t)):|, i=1,2,...,n, (1.1)

j=1
where r;, a;j, 7;j € C(R, R* =10, 00)) are w-periodic functions (o > 0) with

w w

1 1
Fiz—/ri(s)ds >0, Ezijz—/aij(s)ds>0, i,j=1,2,...,n. (1.2)
w w
0 0

The existence and attractivity of the positive periodic solutions of some special cases of Eq. (1.1)
have been studied extensively. Many important results can be found in [1-19,22-32,34-55] and
references cited therein. In those works the method of Liapunov functions [5,21], the theory
of monotone semiflows generated by functional differential equations [39,40], the fixed point
theory [9], and so on are extensively applied. Recently, the un-delayed version of (1.1), i.e.,
system (1.1) with 7;; (1) =0,7, j = 1,2, ..., n, was studied by Redheffer [34,35] and Tineo [51].
Under remarkably weak conditions (see [34, conditions (a)—(e)] and [51, condition (0.2)]), the
boundedness, permanence, global attractivity, and existence of positive periodic solutions are
obtained (see [34, Theorem 1], [51, Sections 3 and 4]). Recently, Teng [47] extended the main
results in Redheffer [34] to the following delayed system

)'Cg(t)=x,-(t)|:ri(t)—a,-i(t)xl-(t)—Zaij(t)xj(t—rij(t))i|, i=1,2,...,n, (1.3)
JF#

which is a special form of system (1.1) with 7;; (1) =0, i =1, 2, ..., n. In [47], the author fully
took advantage of the fact that there is no delay in the negative feedback terms a;; (¢)x; (),
i=1,2,...,n (i.e., the system has instantaneous negative feedbacks). Therefore, the methods
used in [47] would fail when applying to the pure-delay system (1.1), due to the lack of the
instantaneous negative feedbacks.

On the existence of positive periodic solutions of system (1.1), Tang and Zou [46] recently
obtained the following rather general results.
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Theorem 1.1. [46] Assume that

(C1) the linear system
n
D aixj=r, i=12,...n, (1.4)
j=1

has a positive solution.
Then system (1.1) has at least one positive w-periodic solution.
Theorem 1.2. [46] Assume that
aijt)y=a;j, Twui)=v;, i,j=12,...,n. (1.5)

Then Eq. (1.1) has at least one positive w-periodic solution if and only if (C1) holds (in this case
aij=aij, i,j=1,2,...,n).

Nevertheless, to the best of our knowledge, there is no results on the global attractivity of
the positive periodic solutions of system (1.1) when 7;;(#) #£0,i =1,2,...,n (i.e., pure-delay
system). Based on this fact, both Kuang [27] and Teng [47] proposed the following important
open problem.

Open problem. To study the global attractivity of the positive periodic solution of system (1.1)
when 7;; () #£0,i =1,2,...,n.

When n =1, (1.1) reduces to the following delayed periodic logistic equation
@) =x@)[r@t) —a@®x(t — ()] (1.6)

It was shown in Li [31] that Eq. (1.6) always has positive w-periodic solution if r,a,t €
C(R,R*) are w-periodic functions with [ r(s)ds > 0 and [;”a(s)ds > 0 (this can also be
obtained from Theorem 1.1 as a special case n = 1). In particular, if Eq. (1.6) has a trivial posi-
tive periodic solution x* (i.e., positive equilibrium x* which exists if (¢) and a(t) are positively
proportional), then in view of the result in So and Yu [41], the positive equilibrium x* is a global
attractor for Eq. (1.6) provided that

t

/ r(s)ds <

g(1)

, forall large ¢, (1.7)

[\SHROV)

where g(t) = min{s — t(s): r < s < 00}.

The above so-called 3/2-type condition (1.7) for the global attractivity of a positive equilib-
rium of Eq. (1.6) is the extension of the well-known Wright’s 3/2 criteria [54] for the corre-
sponding autonomous delay logistic equation. Recently, Tang and Zou [44,45] have extended
such 3/2-type conditions to, respectively, autonomous and non-autonomous pure delay Lotka—
Volterra systems.
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The main purpose of this paper is to further extend the above so-called 3/2-type conditions
to the periodic pure-delay system (1.1) for the global attractivity of a positive periodic solution,
and thereby, address the above open problem to some extent.

For convenience, we give some conditions related with (C1) which will be used in the rest of
the paper:

(C2) the linear system (1.4) has a unique positive solution x* = (x, x5, ..., x;).
(C3) there exist positive constants x;" ,i=1,2,...,n,such that
n
D aijnxi=ri@), i=1.2.....n (1.8)
j=1

The remainder of the paper is organized as follows. In Section 2, we give the main results.
In Section 3, we establish some preliminary lemmas, which address the persistence and dissi-
pativity of system (1.1), and therefore, which themselves are of some interest and importance.
In Section 4, by combining these lemmas with the “sandwiching” technique and some subtle
integration and inequality skills, we give the proofs of the main theorems.

Throughout this paper, we say a vector x = (x1, X2, ..., X,) ispositiveif x; > 0,i =1,2,...,n.
Set
gi(t)=min{s — 7;;(s): t <s <oo}, i=12,...,n. (1.9)
Clearly, g; () is nondecreasing and ¢ — /i < g; (1) <t — 7;;(¢) fori =1,2,...,n, where 7/ =
max;e[0,w) 5i(1),i=1,2,...,n.

2. Main results

If system (1.1) has a positive w-periodic solution, we always denote it by x*(¢) =
(x7(@®), x3(1), ..., x;(1)). Since x*(¢) is a positive w-periodic solution of Eq. (1.1), we can choose
¥, n? €10, ] such that

a; = x;“(gi*) =Sé1[1()iri)]x?‘(s), xl*(nl*) = Srer[l(a)ué)]x;"(s), i=1,2,...,n. 2.1)

If El.* < n;", then from (1.1),

‘) nf o (s) n; Etw
1n<x;—”;>=/xi* > dsgfri(s)dsg / ri(s)ds = Fi.
X; (";:, ) b X; (s) b A

If £* > 7, then from (1.1),

*

Nt

n; +w .
1n<xi (; )> zln(xii (; —i—w)) = / () ds < / ri(s)ds <riw.
xXF(ED) X} (€ x;'(s)

&' &




584 X.H. Tang et al. / J. Differential Equations 228 (2006) 580-610

Combining the above two inequalities, we have

x; () .
xFED

It follows that

*(tl)
*(tz)

_r’w< , i=1,2,...,n, Vt;,h € R.

On the other hand, integrating (1.1) from 0 to w, we get

w w n
fr,»(z)dtzfza,-j(r)xj(t—zl-j(r))dt, i=12,....n,
0 o J=1

which, together with (2.1) and (2.2), yields

n n
E &ijajgfig E c'z,‘ja.,‘erf‘”, i=1,2,...,n.
= =

Set

bi(t) =ri(t) = ) aij(OxF(t — 7 (D) = x*g;

j=1

i=1,2,...,n,

and

t
yi(t) = [xi(t) —x,-*(t)]exp(—/b,-(s)ds), i=1,2,...,n.
&

Then it follows from (2.2), (2.5) and (2.6) that

lvi®)] < |xi () = xF@)]e®, i=1,2,...,n,

t
ai + yi(t) =x7(§F) + yi (1) = x] (1) exp(— / bi(s) ds) + yi(t)
&
t

:x,(t)exp(—/bi(s)ds) >0, i=12,...,n,

&

and (1.1) is transformed into

i) =—[ai + 0] a0yt —wj®), i=12...n,
j=1

2.2)

(2.3)

(2.4)

(2.5)

(2.6)

2.7)

(2.8)

(2.9)
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where
t—1;j(t)
a;j(t) =a,-j(t)exp< f bi(s)ds>, i,j=1,2,...,n.
£
Note that
to—7;; (1)

&ij(t+a))=a,~j(t)exp( / bl-(s)ds)zdij(t), ij=12,...

&'

Thus, a;;(t), i, j=1,2,...,n, are still w-periodic functions.
When (1.5) holds, it follows from (2.3) that

n @ n

) L[, L

T =Zaij(5/xj(s)ds> =Zaijxj, i=1,2,...,n.
j=1 0 j=1

Further, if (C2) also holds, then )Ei*zxi*,iz 1,2,...,n,and

¥ .
O<a; <x/, i=1,2,...,n.

585

(2.10)

@2.11)

(2.12)

When condition (C3) holds, i.e., system (1.1) has a trivial positive periodic solution x* =
(x},x3,...,x;), which is also the positive equilibrium of system (1.1). In this case,

ai=xf, bi(t)=0, i=12,...,n.
For general case, it follows from (2.4) that

O<a; <rifay, i=1,2,...,n.

For the sake of convenience, we give some “diagonal dominant” conditions:

(DD1) there exist positive constants v;, i = 1,2, ..., n, such that

n
vidii (1) > Y _vjaij(t), tel0 ol i=12,..n
J#i

(DD2) there exist positive constants v;, i = 1,2, ..., n, such that

n

via;i(t) > Zvjaij(t), tel0,w], i=1,2,...,n;
J#i

(2.13)

(2.14)
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(DD3) there exist positive constants v;, i = 1,2, ..., n, such that

n
viaii (1) > €Y “vjaj(t), te[0, ], i=12,...n
J#i

We are now in the position to state our main results.

Theorem 2.1. In addition to (C2), assume that 7;; () =0, 7;;(t) < 1,i,j=1,2,...,n, and that
there existv; >0,i=1,2,...,n, such that

n O L
viaii(t)>zw, i=1,2,...,n, (2.15)
i I_le(%-]l ()

where éijl(t) is the inverse function of &;(t) =t — 7;;(t), i, j = 1,2, ..., n. Then system (1.1)
has a unique positive w-periodic solution x*(t) = (x]k(t), x;‘(t), ..., X (1)) which attracts all
positive solutions x(t) = (x1(t), x2(t), ..., x,(t)) of system (1.1), that is,

lim |x; (1) —xf ()| =0, i=12,...n. (2.16)
t—00

Remark 2.1. This theorem improves the corresponding results in Teng [46], since [46] requires
some other extra conditions in addition to (C2) and (2.15).

Theorem 2.2. In addition to (C2), assume that t;;(t) < 1,1, j =1,2,...,n, and that there exist
vi>0,i=1,2,...,n, such that

viaii (€7 (1) (1_ / hi(E; () ds)>i viajiE5 (1)
G U R R G O) T -tuE @)

ii

i=1,2,....n, 2.17)

where Si;l (1),i=1,2,...,n, are the same as in Theorem 2.1 and

el . ! P
hitry = 228G DA, / i O) ) (2.18)
1- Tii(gii () ) 1- Tii(sii (5))
(0) t
ri(t .
A= [gg&)a()][aii(t) exp( / ri(s) ds>:|, i=1,2,...,n. (2.19)
t—1; (1)

Then system (1.1) has a unique positive w-periodic solution x*(t), which attracts all positive
solutions of system (1.1).

Remark 2.2. When 7;;(#) =0,i =1, 2, ..., n, Theorem 2.2 reproduces Theorem 2.1.
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Theorem 2.3. Assume that (C2) and (DD1) hold, and that

t

3(1— 1— ;
fu,-&i,-(s)dsg A=) | QoWWt i) gy (2.20)
2a(1 + p;) 2a(1+ ui)
8i (1)
where
a:=max|v; 'a; i=1,2,...,n}, (2.21)
1 n
Mi::fg&i]{mzwaﬁ(z)}, i=1,2,...,n, and (2.22)
JF#
pwi=max{u;: i=1,2,...,n}. (2.23)

Then system (1.1) has a unique positive w-periodic solution x*(t), which attracts all positive
solutions of system (1.1).

Theorem 2.4. Assume that (C2) and (DD1) hold, and that

t
/ a;;(s)ds<d;, i=1,2,...,n, (2.24)

& (1)

andfori=1,2,...,n,

3—pi Lo
PIGESTAE i < 3,

[2(1—pi) o 1
1+p; Hi > 3.

Then system (1.1) has a unique positive w-periodic solution x*(t), which attracts all positive
solutions of system (1.1).

(ai + avip)d; exp[(a; + avip)d; 4 e~ @H@HIE 1] < (2.25)

When (C3) holds, we have a; = x;" and b;(t) =0 fori = 1,2, ..., n. Therefore, from Theo-
rems 2.3 and 2.4, we have the following two corollaries.

Corollary 2.1. Assume that (C3) and (DD2) hold, and that

t

/ viaji(s)ds <

gi(1)

3(1 — ™) (1 — w*)(u* + uf)

i=1,2,....n, 226
2ar (4 ) |+ 2a*(L+ pb)? ! " (2.26)
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where
a* :=max{vf1x;k: i=1,2,...,n}, (2.27)
1 n
*:= max { ——— viaii®)}, i=1,2,...,n, d 2.28
Hi te[O,w]{ via;ji(t) Z i )} l o ¢ )
J#
pw*r=max{uf:i=12,...,n}. (2.29)
Then the positive equilibrium x* of system (1.1) is a global attractor, i.e., for every positive
solutions x(t) = (x1(t), x2(t), ..., x,(t)) of system (1.1),
lim x;(t0)=x7, i=12,...,n. (2.30)
—00

Corollary 2.2. Assume that (C3) and (DD2) hold, and that

t
/aii(s)dsédi*, i=1,2,...,n, (2.31)

gi(1)
andfori=1,2,...,n,

*

(x7 4+ a*vid)d; exp[ (x4 a*vipf)df + e~ G HavirDA 1]

3-uf 1
2(1_,,_#?)7 I‘Lfg 3
< (2.32)
2(1-uf) 1
]‘Hl}k ) /’L:k > 3
where a*, ,LL;“, i=1,2,...,n, are the same as in Corollary 2.1. Then the positive equilibrium x*
of system (1.1) is a global attractor.
Note that
t+w w
/ bi(s)ds =/bi(s)ds:0, i=1,2,...,n, and
t 0

&ij(t)ge""”a,'j(t), i,j=12,...,n.
Therefore from (2.10), Theorems 2.3 and 2.4, we have the following two corollaries.
Corollary 2.3. Assume that there exist integers k;j, i, j = 1,2, ..., n, such that

5 () =it + kijo, i, j=1,2,...,n. (2.33)
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Further suppose that (C2) and (DD2) hold, and that

t

. 3(1 — 1— ) (u* +
eriwfviaii(s)dsg( w* (L= )"+ pf)

i=1,2,....,n, (234

2a(l+p)  2a(l+ uf)?
8i (1)
where u*, uf, i =1,2,...,n, are the same as in Corollary 2.1 and
R rio
a=max{ - Zl=1,2,...,l’l}. (2.35)
Vidij

Then system (1.1) has a unique positive w-periodic solution x*(t), which attracts all positive
solutions of system (1.1).

Corollary 2.4. Assume that (2.33), (C2) and (DD2) hold, and that

t
efiw / aii(s)dsgd’\i, i=1,2,...,n, (2.36)

gi (1)

andfori=1,2,...,n,

(Fi /@i + avi;)d; expl (7i /aii + avipf)di + ¢~ iliitaviudi _ 1]

3-uf *
20+’ K S 35

(2.37)
2(1—p) x 1
T4 Hi =3

where a, /Ll* i=1,2,...,n, are the same as in Corollary 2.3. Then system (1.1) has a unique
positive w-periodic solution x*(t), which attracts all positive solutions of system (1.1).

For general case, we have the following corollaries.

Corollary 2.5. Assume that (C2) and (DD3) hold, and that

t
e / viaii(s)ds <

gi (1)

3= A=+ )
2a(1 + i) 2a(1 + 1)

. i=1,2,...,n, (2.38)

where a defined as in (2.35),

_ 1 "
1; := e max viajjt)¢, i=12,...,n, 2.39
Mi e [g[(),w]ivia“(t) ; ]azj( )} l n ( )



590 X.H. Tang et al. / J. Differential Equations 228 (2006) 580-610

and
fr=max{f;: i=12,...,n}. (2.40)

Then system (1.1) has a unique positive w-periodic solution x*(t), which attracts all positive
solutions of system (1.1).

Corollary 2.6. Assume that (2.36), (C2) and (DD3) hold, and that fori =1,2,...,n,

(Fi/asi + avi ) d; expl (7 /agi + avifag)d; + e~ l@itanind ]

3—fi n.< L
2(1+lli)’ /"l’l g g»
_ (2.41)
20-f) .o 1
1+lli ’ /“Ll 3 ’
where a, [i;, c;’,', i=1,2,...,n, are the same as in Corollary 2.5. Then system (1.1) has a unique

positive w-periodic solution x*(t), which attracts all positive solutions of system (1.1).

Remark 2.3. It is easily seen that Corollary 2.1 will reproduce the 3/2-type condition (1.7) for
the nonautonomous delayed logistic equation (1.6).

Furthermore, applying Corollary 2.5 to Eq. (1.6) directly, we have

Corollary 2.7. Assume that ¥ > 0, a(t) > 0, and that

t

3G -
/ r(s)ds < 2—;16_”", (2.42)

g(1)

where g(t) = min{s —t(s): t <s < oo}. Then Eq. (1.6) has a unique positive w-periodic solution
x*(t), which attracts all positive solutions of Eq. (1.6).

3. Preliminary lemmas

In this section, we give some preliminary lemmas, which are useful in the proofs of the main
theorems. They themselves are of some interests and importance. The first lemma is directly
from [45]

Lemma 3.1. [45] Let a > 0, 0 < u < 1. Then system of inequalities

1- 1—)> (142
¥ < (a+ px)exp[ 5t — R0 —a, 3
3.1
1- 1—p)> (142
x<a—(a - py)exp[ gty — SleEE

has a unique solution (x,y) = (0, 0) in the region D ={(x,y): 0<x <a, 0<y <a/u}.
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Remark 3.1. Comparing [45, Lemma 3.1] and Lemma 3.1, the restriction 0 < a < 1 is replaced
by a > 0. In fact, the restriction a < 1 is not necessary.

The next three lemmas establish the persistence and dissipativity of system (1.1) or (2.9).

Lemma 3.2. Assume that a;;(t) >0,i=1,2,...,n. Let (x1(t), x2(¢), ..., x,(t)) be the positive
solution of (1.1). Then we have eventually

O<xit)< 4, i=12,...,n, (3.2)
where A; is defined by (2.19).

Proof. Set

ri(t) )
§; = max , i=1,2,...,n.
rel0,w]\ a;i; (1)

From (1.1), we have
%5 <xiO[ri@®) —aiOxi(t —wi(0)], i=1,2,....n. (3.3)
If x; (#) < §; eventually, then (3.2) holds naturally for large ¢. If x; (#) > §; eventually, then (3.3)

implies that x; (¢) is decreasing eventually. Let lim;_, o, x; () = ¢;. Then x; (¢) > ¢; > §; for large ¢
and from (3.3), we have

X (1) < xi(O)[ri(0) — ciaii O] < xi(Oaii ()G — i), i=1,2,....n,

for large ¢. Integrating the above from ¢ to oo, we obtain
(e.¢]
Inc; —Inx;(t) < (6; — ci)faii(s)ds, i=1,2,...,n,
t

which, together with the fact that ftoo aji(s)ds = oo, implies that ¢c; = §;,i = 1,2, ..., n. Hence,
(3.2) holds also. In the sequel, we only consider the case when x;(¢#) — §; is oscillatory. For
this case, let #/* be an arbitrary local left maximum point of x;(¢) such that x; (/) > &;. Then
X (tF) = 0, it follows from (3.3) that there exists x; (t) — 7;; (t/)) < r;i(¢)/a;; (7). Integrat-
ing (3.3) from ¢} — 7;; (¢)) to ¢ and using (2.4), we have

tF t¥

xi () < xi(tf — i (1)) exp( / i (s) ds) < [:"'((t;*)) exp( / i (s) ds)

=7 (t7)

It follows that (3.2) holds eventually. The proof is complete. 0O
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Lemma 3.3. Assume that (2.24) and (DD1) hold. Let (x1(t), x2(t), ..., x,(t)) be the positive
solution of Eq. (1.1) and let y; (t), i = 1,2, ..., n, be defined by (2.6). Then we have eventually

a; + yi (1) < (a; + avipi) exp[(a; + avipy)d; + e~ @ravirdd 1] i =1,2,...,n. (3.4

Proof. It follows from (2.8) that y; (t) > —a;, t > 0,i =1,2,...,n. Hence, by (2.9),

yi () <[ai +yi(®)] |:—51ii(l)yi (t—7i®) + Zaij(t)aj:|

Jj=1
< aii(0)[ai + yi ()] |:_yi (t— i) + Zz--L(t) Z ijlij(t)]
123 ]=1

<aii(O)[ai + yi®][—yi(t — 1 @) + avipui]
< (ai +avip)aiiOfai +yi®)], i=1,2,....n. (3.5)

If y; () < av;u; eventually, then (3.4) holds naturally for large ¢. Otherwise, let tl.* be an arbi-
trary local left maximum point of y;(¢) such that y; () > av;u;. Then y; (/) > 0, it follows
from the third inequality in (3.5) that there exists & € [# — 7;; (¢), t] C [gi(¢]), t]'] such that
yi(6) = avip; and avip; < yi(t) < y;i(t}) for & <t <t*. Fort € [§,¢f] and t — 7;;(t) < &;,
integrating (3.5) from ¢ — 7;; (¢) to &;, we get

&
a; +yi(t — it -
—111( i+l ”())> < (ai +avipg) / a;ji(u) du
ai +aviu;
1= (1)

&
< (ai +avipg) f aij(uydu, & <t<t.

gi(1)
It follows that
&
ai + yi(t — i (1) > (a; +avim)exp<—(fli +avi ;) / Elii(s)d5>» E<r<t. (3.6)
8i (1)

Fort € [§;,¢'] and t — 7;;(¢) > &;, we have y;(t) > av;u;, in this case, (3.6) obviously holds.
Substituting (3.6) into (3.5), we obtain

yi ()

&
———— < (q —i—aviui)flii(t)[l —eXP<—(ai +avip;) / Zlii(s)ds)i|, & <r<t. 37
a; + yi(t)

gi(1)

Integrating (3.7) from §; to #;* and using (2.1), we have
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(ai +Yi(l,-*))
In| ———
a; +av;u;

< (a; +aVzM1)fatt(t)|:1_eXP< (@i +av;u;) / all(s)ds>]

8i (1)
t* t t
< (@ +aViMi){ /51ii(s) ds — /5iz’(l) eXP|:(di +aViMi)(_di + /flii(s) dS>:| dl‘}
& & &
tF tf
= (a; +aviui)/5ii(s)ds + e~ itavindd _ eXP|:(ai +aviﬂi)<—di +f5ii(s)ds>]

&i
< (@ + avipi)d; + e~ TG 1,

which implies that

a; + i (1) < (ai + avipi) exp[(a; + avipi)d; + e @itavipi)d; _ 1], i=12,....n
It follows that for large ¢

ai + yi(t) < (a; + avip;) exp|(a; + avipui)d; + e~ @itavipd; _ 1), i=12,...,n
The proof is complete. O

Lemma 3.4. Assume that (2.20) and (DD1) hold. Let (x1(t), x2(t), ..., x,(t)) be the positive
solution of Eq. (1.1) and let y; (t), i = 1,2, ..., n, be defined by (2.6). Then

—via < hrnlnfy, () <limsupy;(t) <oo, i=1,2,...,n. 3.8)

t—0o0

Proof. By (2.20) and Lemma 3.3 with vid; = % i=1,2,...,n, there exists T > 0
such that

Yi(t) < —a; + (a; + avipi) exp[(a; + avipi)d; + e~ @Tird 1]

a; +av, 2d2
<—0i+(ai+avim)exp[( l ZMI) ]

21 2
< —via+via(l + ;) ex p[ A+ p)* (vld)}

¢! —u)2<3+u+4u1>2}
8(1 +M1)2

— w)?(3+5u)?
8(1 + u)?

= —vjat+va(l+ Mi)exp[

1
<—via+v,-a(1+u)exp|:( :|, i=12,....,n,t>T —1y. (3.9
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It follows that

J#

where

Zflij(f)yj'(l —7;(1)) <a{(1 + ) CXP[

Zvj'gl,‘j(l)

12
!

(1-w*3 +5M)2] |
8(1 + w)?

(1 —=p)*3+5u) ] 1ipivia(t)

8(1 4 w)?

2 2
(1 =) 3+5w1) :|_1}Vi&ii(t)
8(1 + w)?

2 .
<au[(l+u)e2(l W 1]via; (t)

=0av;a;;(t), i=1,2,....,n,t>T,

<a{(1+mexp[

<au{(1+u)e><p[

0 :=p[(1 + w2 —1] < 1.

Substituting (3.10) into (2.9), we have

yi(0) = [ai + yi®]aiO[—yi(t =t () —0avi], i=1,2,....n, t>T.

If y;(r) > 0 eventually, then a; + y;(¢) is increasing eventually. It follows from the fact that
a;i +yi(t) >0and a = max{vi_la,-: i=1,2,...,n} that (3.8) holds. If y;(¢) < 0 eventually or

vi (t) is oscillatory, then there exists a sequence {#;} such that

T<ti<bh<---,

tr — 00, yi(ty) <0, liminfy; (¢) = liminf y; ().
t—00 k—o00

It follows from (3.11) that y; (# — i (tx)) = —6av;. Set

M; = —via+via(l + n) exp[

Then from (3.11), we have

yi(t) > —
2_

(=@ +5w* i1 a
8(1+M)2 ’ T hy &y ey .

[ai + yi (1)]aii (t)(M; + 6av;)
[via + yi(®)]aii()(M; +0avy), i=1,2,....n, t>T.

Integrating the above from #; — 7; () to f, we obtain

Tk

ln< via + yi(t)
via + yi (e — i (1))

) > — / Eli,'(l‘)(Mi + Oav;) dt
te—ii (1)

> —(M; +0av))d;, i=12,...,n,
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which yields
via -+ yi (1) > [via + yi (e = 7ii (1)) Je~ M oamd
> (1= 0)vjae” Mitoavddi i 15 p
This shows that (3.8) holds. The proof is complete. 0O
4. The proofs of main results
Proof of Theorem 2.1. Set §;;(s) =¢. Then
§ijGtw)=sto—1;6+w)=§;)+to=1+o,
and so

gli+o)=s+o=£"'0+o.

Thus, a;; (éiyl(t)) and 7;; (éj_il(t)) are still w-periodic functions fori, j =1,2,...,n. Set

1 viaiE )
91': max Z / {l ]l_l s i=1,2,...,n.
rel0l | vidii (1) <=0 1 =255 (1)

Then it follows from (2.15) that 0 <6; < 1,i=1,2,...,n, and

n -1
vja;i(§:;; (1)) ,
Oivia;; (1) > Zl—jil i=1,2,...,n.
j#i _Tﬂ(éji (t))

Let x(z) = (x1(t), x2(¢), . .., x,(¢)) be any positive solution of Eq. (1.1). Set

n el
V(t):Zv{)ln(ji((tt)))‘ Z / th(s)—x;‘(sﬂds] t>0.
i=l1 i

J# . Tij(é,‘j ()

A direct calculation of the upper right-hand derivative DV (t) of V (¢) leads to

n .. f_l
VWY [—anm\x,(r)—x <o\+2M
=1 J#i l—1 ll(gl] ®))

- ],(5/, 1)

|xj (1) —x}‘(t)l}
} i (1) — x (1)

— Zvi(l — 0;)ai; (t)|x;i (t

i=1

t>0.

595

“.1)

4.2)
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The above shows that V(¢) is decreasing in [0, co) and so the limit v = lim;_, o, V(¢) exists.
Furthermore, from the above, we have

Zv,(l—e)/a,,(s)|x,(s)—x ()] ds < V(0) < o0,

i=1

and so
n o0
Zv,- /a,-i(s)|x,~(s) —x}(5)| ds < co. (4.3)
i=1
Note that
o
fai,-(s)ds=oo, i=1,2,...,n.
0
It follows from (4.3) that
n
liminf ) " vi|x; (1) — x;'(1)| = 0. 4.4)
11— 00 l:]

Again from (4.1) and (4.3), we obtain

o ayEst )

2 —
i (=1 () 1 — 7 (gij ()

’xj (s) — xj(s)| ds

/Z a,,(éu ) |j(s)—x7(s)|ds
BT l,(E,, (5))

<% Zvjaj,(s)|x,~(s)—xj(s)|ds—>o, t—>o0,i=1,2,...,n, 4.5)
t—Tym /751

where 7y = max{z;;(¢): t € [0, 0], i,j=1,2,...,n} and v =min{y;: i =1,2,...,n}. Com-

bining (4.2) and (4.5), we have
n
. x; (1)
im 3 (556 )| = o
1=

which yields

xi(t) = e VTV @),  forlarger, i=1,2,...,n. .7
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By (4.4), (4.6) and (4.7),

.. xi (1) Vi
= < -
iR ( *())‘ hrﬂé@fz it w0 O
D) /v g Vj . eWtD/v
<e htglogf 2.0 |x,~ @) —x; (t)| < hmlnf E V; |x, ) — x; (t)|
=0, 4.8)

where m = min{)cl?k ):tel0,w], i=1,2,...,n}. Hence, it follows from (4.6) that
lim |x; (1) —x ()| =0, i=1,2,...,n. (4.9)
11— 00
The proof is complete. 0O
Proof of Theorem 2.2. Set
! _ —1
R vla,l@l, ) ( / hi ;' () ds) Z vidji i ()
i) =——"— Py pekC Ll Rl e pa
—ai o\ g ) T — i )

i=1,2,...,n. (4.10)

Then, in view of the proof of Theorem 2.1, the functions R;(¢), i =1,2,...,n, are w-periodic
functions. Furthermore, it follows from (2.17) that there exists a constant > 0 such that

Rit)y=2n, i=1,2,...,n. 4.11)
Let x () = (x1(¢), x2(¢), ..., x,(¢)) be any positive solution of Eq. (1.1). Define

t
xi (1) / aii (671 (s)) .
: - — 1, X)) —x; d
n<x"*(t)> 1= i (5) i) = (0] ds

vm:Zv{
i=1

t—1;; (1

j LTHO) j Wi WD |y — x| duds
L=t o) ) 1—du a0

=i (1)
n (g

[ O e gele] 0 an
iy | GO

Note that (In — In 8) (e — B) > 0 for any «, B > 0. A direct calculation of the upper right-hand
derivative DTV (¢) of V (¢) leads to
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! NG0))
D+V(t) < V; |:_a+
; 1= (€71 (1))

! el
xi(t) — x}(t) exp( [ M[M(s) —x7(9)] dS)

X
l_Tii(Si[ (S))
1= (1)
t
a,,(éll (0))x7 (1) / aii(gn_'l(s)) *
1—.E ) -, s =X ds ) —
’ 1_1”(%-” (t)) Xp(tf..(t l_fii(gz;l(s)) [X (S) K (S)] s)

a;i (§; (S))
—h i —x*(s)|d
© / =t oy TN

t—1;; (1)

(] ; (g7
n azl‘(éi,‘ _(i)) |x1_(t) —x;k(t)‘ / hl.(‘i:il‘ E»i)) ds
1- Tii(gii () 1— Tii(gii ()

. Z aij (€ (1))
71—t o)

! aii (571 (1))
< E i| ——————|xi(t) — x]
i1 ' [ 1— (&, (1) b ® = /@)

t
aii (671 (s))
1] ; _ * d _
p( / 1—T'u(§,-,_-l(s))[x () =37 )] s)

t—1;; (1)

o / 'O
th(‘i:” ()

t—7;; (1)

| (1) —xjf(t)|]

+261u(§” (1)x] (1)
Tu(g” ()

t—7;i ()

g1 ! g1
i aleEii fi)) |X,’([) —)C;k(l)| / ht .(gii Ei)) ds
1 =75, (1) 1 =175, (5)

t—1;i (1)

n y Tll
+Z aj(éz/ ()) \xj(t)—x;(t)|:|

PR BTG O))

! aii (671 (1))
< i| ———————|xi(t) — x]
l;v [ a0 |xi (1) — xF (1)

* ! e—1
+2a,,(s,, (1) (1) Xp( / a,,FSii ,(f)) ) ds)
l_fu(él, () ) I_Tii(g,',' (s))

t—1;; (1




X.H. Tang et al. / J. Differential Equations 228 (2006) 580-610 599

' o
/ Mixi(s) —xi*(s)|ds
l_fii(%_,'i ($))

t—1;; (1)

a;i (&; (S))
—h; S W) ek d
(t) / 1- le (Sl, ( )) | (S) K (S)i '

t—7;i (1)
an &) fhET(s)
+”’%_l|x(l)—xl*(t)| / l.”—_lds
1= (&, (1) 1= (6,1 (5))

t—7;i (1)

. Z aij (€5 (1))
-1 )

n 1 ! g1
gzw[_w(l_ / Mm)hxt)—x?aﬂ
i=1

1 =1 (§; (1) ) L =1 (§; (s)

|x; (@) —x;’-‘(t)q

"oaii; @)

2

o1t )

=Z[ viai (7 (r))( / hiler' ) ds)
1— %, (1) » 1— i (5 (5))

i=1

B0 —x;’f(nq

—Tii

" vjagiE; (1)

2

xi (1) = xj (1)
- r'ﬁ@ﬁl(r))}| |

=Y RiO|x®) —x;0O]<-n)_|xi@)—x; )], t>0.

i=1

The above shows that V() is decreasing in [0, c0) and so the limit v = lim;_, o, V (#) exists.
Furthermore, from the above, we have

o0
V(0
/|x,~(s)—x§“(s)|ds<£<oo, i=1,2,...,n. (4.13)
n
0
It follows that
liminf|x; (1) — x7(t)| =0, i=1,2,....n, (4.14)
11— 00
gl
fim M[xi(s) —x}©)]ds=0, i=1.2.....n, (4.15)
=00 1 - Tii(éi,' ()

1= (t)
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-1 p -1
hi(gii (s)) f aii(sii (u))

lim i i |xi (u) — x;(u)| duds =0,
100 1= % ) ) 1= W) ’
1—1; (1) s
i=1,2,...,n, (4.16)
and
n f —1
. aij(sij () " .
Jlim — L ———|xj(®) —xj()|ds =0, i=1,2,...,n.  (417)
j;ﬁi t—‘[,'j(t) 1 - Tl'j (Ez] (S))

Combining (4.12), (4.15)—(4.17), we have

n

. x; (1)
lim vi|In{ — =, (4.18)
t—00 P X; (t)
which yields
xi(t) = e OtV x*), forlarger, i=1,2,...,n. (4.19)

By (4.14), (4.18) and (4.19),

.. xi (1) - Vi %
= ; < B ——— ;
v 11tr£1)1ogfi:1 V; ln< *( ))‘ hrgéof; o, x*(t)} |x,(t) X; (t)|
W+D)/V 1500m 3 _
<e htrggéfz *()|x,(t) xF@)|
(+1)/v
< ¢ hmlan V; |xl ) — x; (t)| =

where m = min{x7(¢): t € [0, w], i =1,2,...,n}. Hence, it follows from (4.18) that
lim |x; (1) —x ()| =0, i=1,2,....n. (4.20)
11— 00

The proof is complete. O

Proof of Theorem 2.3. Let x(¢) = (x1(¢), x2(¢), ..., x,(¢)) be any positive solution of Eq. (1.1).
Set

) =v 'y, i=1,2,...,n 4.21)
Then we can rewrite (2.9) as

Z.i(l‘)z—[l)i_lai+Zi(t)]Zv]'L~lij(I)Zj(t—‘L’ij(t)), i=1,2,...,n. 4.22)
j=1
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Clearly, we only need to prove that
lim z;(t) =0, i=1,2,...,n. (4.23)
11— 00

In what follows, we divide into two cases to prove (4.23).

Case 1. z;(t), i = 1,2,...,n, are all nonoscillatory. In this case, z;(t), i = 1,2,...,n
are monotone eventually. By Lemma 3.3, we have z;(t) — ¢; as t — 00 and v, lai +
¢i 20 for i =1,2,...,n. For the sake of simplicity, it is harmless to assume that |ci| =
max{|c;|: i =1,2,...,n}. Choose T > 0 such that z;(¢) > 0, t > T or z1(¢) <0, t> T.If
cp=—v ]al, then zl(t) < 0 fort > T. Choose € > 0 such that (v a1 +eur <v; a1 — 2e.
For the given €, we can choose 77 > T such that

zi(t =) < —vl_lal +e and zj(r—11(0) < vl_lal +e, t=T). (424
Hence, from (2.22), (4.22) and (4.24), we have
n
—21(0) = [vi i +210] Y vjar 0z (t —71(1))
j=1
n
< [vl_lm +z21(0)] |:(—v1_1a1 + €)vidn (1) + (vl_lal +€) Zvjdlj(t)i|
J#1
<[vi'la + 2O ]vanO[-vilar + e+ (v ar + €) i

< —G[Vf]al +z1()]vian @) <0, t=T1.

This contradicts the fact that —z;(¢) > 0 for ¢t > T. If ¢y > —v la,, then, integrating (4.22)
from T to oo, we obtain

]< vl_lal—i—cl )’
=

v ay+z1(T)
o0

=/v1511(l)

T

o0 >

21(t — (@) + (4.25)

Zvjall(t)z,(t — tlj(t))

vidani (l)

Note that f;o a1 (t)dt = oo and

n

viay (t) JZ: vidi 0z (t - tlj(t))

liminf
t—>0o0

21t — () +

- 1 - .
> h,IEg,}f|:|Z1(t —m®)| - e ;vjalj(t)kj(t — rlj(t))|]
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, R
2 |C1|{1 — hmsup<m ZV}'(N}'U))] 2 (1 - Ml)|C1|.
1411 i1

—00

It follows from (4.25) that c; =0, and so ¢{ =c¢p = --- = ¢, = 0. Hence, (4.23) is true.

Case 2. 7;(¢) is oscillatory for some [ € {1, 2, ..., n}. Then there exists an infinity sequence {#;}
with #; 1 oo such that

n
> vjar oz (e — i (0)) =0, k=1.2,.... (4.26)
j=1
Set
Vi =liminfz;(¢) and U; =limsupz;(¢), i=1,2,...,n. 4.27)
t—00 t—00
In view of Lemma 3.4,
—a<V,<U <oo, i=1,2,...,n. (4.28)

Let
—V =min{V(, V,,...,V,} and U =max{Uy,U,,...,U,}.
Then from (4.26)—(4.28), we have
0<V<a, 0<U < o0. (4.29)

In what follows, we show that V and U satisfy the inequalities

l—p  (=w?*A+20) ,
a+ U< (a—i—,uV)exp|: p V- 621+ 10) \% ], and (4.30)
_ _ 2
a—V>@— ;w)exp[—l ry -4 6al;)(1(—1i——;)2m Uz]. 431)

For the sake of simplicity, we set

30 - (1 =)+ wi)
T 2a(1 + i) 2a(1 + p;)?

, i=1,2,...,n.

Without loss of generality, we may assume that U = U; and V = —V;. Let € > 0 be sufficiently
small such that vi = V + € < a. Choose T > 0 such that

—v<z®)<U+e=u, t>2T—1y4,k=1,2,...,n, (4.32)

where 7y = max{z;;(t): t € [0,w], i, j =1,2,...,n}. First, we prove that (4.30) holds. If
U < u;V, then (4.30) obviously holds. Therefore, we will prove (4.30) only in the case when
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U > u; V. For the sake of simplicity, it is harmless to assume U > p;v;. Set vo = (1 4+ p;)vy and
uz = (14 pj)u;. Then from (2.22) and (4.22), we have

zi (1)
vl + zi(t)

U,Cl”()

Z Vkazk(t)j|

< U,'Elj,'(l)[ Zi (t - Tu(t)) + szl] viaii(Hva, t2>T, (4.33)

< via;i (1) |:_Zz (t - Tll(t)

and

i@
V]-_laj+Zj(t)

tha]k(t)]

<vjaji[zi(t — ;) + pjur] <vjajj(Ouz, t>T. (4.34)

<vja”(t)|:zj(t—r”(t) " ()
JJ

Since U > p;vy, we cannot have z;(¢) < p;v; eventually. On the other hand, if z;(f) > u;v
eventually, then it follows from the fact that fooo a;ji (t) dt = oo and the second inequality in (4.33)
that z; (¢) is nonincreasing and U = lim;_, » z; (f) = w;v1. This is also impossible. Therefore, it
follows that z; (¢) oscillates about 1;vy.

Let {px} be an increasing sequence such that py > T + 1y, zi(px) =0, zi(pr) = pivy,
limg— 00 pk = 00 and limg— o0 zi(pr) = U. By (4.33), there exists & € [px — Tii(pr), pl
[gi (pr), px] such that z; (§x) = p;v; and z; (¢) > ujvg for & <t < pr. We claim that

&k
it — i) > —v a4+ (v e + Mivl)exp<_U2 / Viaii(s)ds)a § <t < pr. (4.35)
8i(1)

In fact, if ¢ € [&k, pr] and t — 7;; () < &, integrating (4.33) from t — t;; (¢) to & we get

& &k
1y —i—z t— 1 (t ~ ~
I v, ai i( ii ( )) < / vidii(s)ds < va / via;i(s)ds.
v e + zi (&)
1=1ii (1) &)

It follows that (4.35) holds. If ¢ € [&, px] and ¢ — 7;;(¢) > &, then z; (¢) > w;v1, which implies
that (4.35) also holds. Substituting (4.35) into the second inequality in (4.33), we obtain

&k
Zi (1) _ . .
— < (v +,uivl)viaii(t)|:1 - eXp(—Uz / Viaii(s)ds>j|y & <t < pr.

1
v a; +zi(t)
P g0

Combining this with (4.33), we have

&k
Zi (1) . , ' ~ B _
mévla”(t)mm{vz,(a+sz1)[1 exp( ) / v,a,,(s)ds>j|}’

8i (1)
& <t < pr. (4.36)
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From (2.20) and (4.36), using the same type of reasoning as in the proof of Theorem 2.1 in [45],
we can prove (4.30). Next, we will prove that (4.31) holds as well. If V =0, then (4.31) holds
naturally. In what follows, we assume that V > 0. Then from (4.30), we have

U<a(l+ e ™ —a<2a, nU <ap[(1+we' " —1] <a. 4.37)

Thus we may assume, without loss of generality, that V > p ;ju;. In view of this and (4.23), we
can show that neither z;(t) > —u ju; eventually nor z; () < —uju; eventually. Therefore, z;(¢)
oscillates about —pu ju;.

Let {gx} be an increasing sequence such that gy > T + T, 2j(qx) =0, zj(qr) < —pjuy,
limy_ 00 g = 00 and limg_ 00 2 (gx) = —V. By (4.23), there exists nx € [gx — T} (qr), gx] S
[gi(qk), qx] such that z;(nx) = —pjuy and z;(t) < —pjuy for g <t < gi. Similar to the above
proof, from (4.23), we have

Mk
2t =7 0) < [v;'a; - HJ“I]CXP<“2 /

vj&jj(s)ds> —vila;, m<t<aq
8j (@)

Substituting this into the second inequality in (4.23), we obtain

. Nk
J10) < [vj_laj — Mjul]vj&jj(t) |:exp<u2 / \)j&jj(s)ds) — 1:|,

S TN
v. ai+z;(t
i ]() gj(t)

Combining this with (4.23), we have

Nk
zj(t) ~ . .
mgvjajj(t)mlniuz,[a—Mjul][exp(ug / vjajj(s)ds>—1j|},

gj®)
Mk << gk (4.38)

The rest is the same as in the proof of Theorem 2.1 in [45]. In view of Lemma 3.1, it follows
from (4.30) and (4.31) that U = V = 0. Thus, (4.23) holds. The proof is complete. O

Proof of Theorem 2.4. Let x(r) = (x1(t), x2(¢), ..., x,(¢)) be any positive solution of Eq. (1.1).
Set y; () as in (2.6). We only need to prove that

lim y;(t) =0, i=1,2,...,n. (4.39)
11— o0
By Lemma 3.3, there exists 7 > 0 such that

ai + yi (1) < (@i +avip;) expl(a; + avipi)d; + e~ @G 1]
=D;, t>2T—ty,i=1,2,...,n. (4.40)
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Set
1. .
v; = — limsup|y; i=1,2,...,n. (4.41)
Vi t—o0
Then by Lemma 3.3,0 < v; < 00,i =1,2,...,n. To complete the proof, we only show that v; =
vy =--- = v, = 0. Without loss of generality, assume that v; = max{v;: j=1,2,...,n} > 0.

Then there are two possible cases.
Case 1. y((¢) is positive eventually or negative eventually. In this case, the limit c¢; :=

lim;— 0 ¥1(¢) exists and ¢; + a; > 0. Choose 71 > T such that y;(¢) > 0,7 > Ty or y1(¢) <0,
t > T1.If ¢; > —ay, then, integrating (2.9) from 7} to co, we obtain

()
Inf ———
ap + y1 (1)

=/ 1(1)
T

o

\

it =)+ ( 2 Zau(r)y, — 1 (0)|dt (4.42)

Note that

11m mf

yi(t—t@®)+ ()Zalj(t)yj le(t))‘

>1itlgggf|:|y1(t—m(t)) a '(t)|yj(t—flj(t))|:|

ap (¢
6111()1.7'él

> v [1 _limsuP<v1a1 B Zvjalj(t)>j| = (1= ppvvg.

1—00

It follows from (4.42) and the fact that fooo ap(t)dt = oo that vy = 0, which is a contradiction.

If ¢y = —ay, then y1(r) <O for¢t > T and v = —vl_lcl. Choose € > 0 such that (v +€)u; <
—2¢. For the given €, by (4.41) and vi =max{v;: j=1,2,...,n} > 0, we canchoose 71 > T
such that

yi(t —ti@®) <—vivi—e) and y;(t—11;()) <vj(vi+e€), t=T. (443)
Hence, from (2.22) and (4.43), we have
—y1(1) =[a1 + y1(1)] Zfllj(l)yj(l —115(1))
j=1

<[a +y1(t)][—v1(v1 —e)ar () + (v +€)Zvjélj(t)j|
J#1
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=[ai +y1(t)]V15111(t){—v1 +e+ s Zvjélj(f)}
#1

via () “
j

<[ar +yi@)]vian O[—vi + € + i (vr + )]
< —€lar +yi®]wan@) <0, t=>T.

This contradicts the fact that —y; (¢) > 0 for ¢ > T.

Case 2. y|(¢) is oscillatory. For any € € (0, (1 — n1)v1/(1 + p1)), there exist 7, > T1 + tp7 and
a sequence {tx} with #; 1 oo and #; > T3 such that

Iyi@)| = vivi ask—>o00, yim) =0,  |[yi@)|>vivi—€), k=12,..., (444)
and |y;(0)| <vji+e) fort>Tr—ty, j=1,2,....n, (4.45)
where 1y = max{z;;(¢): t € [0, w],i, j =1,2,...,n}. We only consider the case when |y ()| =

y1(tx) (the case when |y (fx)| = —y1(f) is similar by using —y;(¢) instead of y;(¢)). Then
from (2.9), (2.22), (4.44) and (4.45), we have

0=-— Zél,-(tk)yj(tk — 71 ()

j=1

< —an @)y (e — 111 (0)) + (v +€) Z vjay ()
J#1

—all(tk)[ yi(tx — (@) + FRYn ;wau(fk)]
Lan@)[—yi (i — ri1@)) + vipi(vi +€)],  or
yi(tk — T (@) < pavi(ur +e),

which, together with the fact y; (fx) > vi(v; — €) > p1v1 (v + €), implies that there exists & €

[t — 711 (%), ) S [g1(%k), tx] such that y; (&) = pivi(vy + €) and yi(¢) > pvi(vy + ¢€) for
& <t < tx. Hence from (2.9), (2.22), (4.40) and (4.45), we have

n

310 =—[ar + 1] Y @)y (t — 71 ®))

j=1
<an@ar +yiO][—yi(t = r11(0) + pivivr + €]
<vian@O(A+u)(i +€)Dy, 12T (4.46)

By (4.46) and the fact that y; (¢) > vy (vy + €) for & < t < ty, we have

&k
pivi (v +€) — yi(r — 111 () < vi(l + 1) (vy +€) Dy / an(wydu, & <t <t
81(1)
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Substituting this into the first inequality in (4.46) and using (4.40), we obtain

&k
O <n+ e+ oDin® [ aneds. & <r<n.

81(1)
Combining this and (4.46), we have
&
yi(@) <vi(l+ pi) (v +6)D1511(I)min{1, D, / én(S)dS}, G <t<h. (447
81(1)
Set
o {max{dlDl - % %}(1 +u1), p1< %
3+ u)(d D1)?, ni >3
Then by (2.25)
0<1—p. (4.48)
We will show that
y1(te) — y1 k) < v10(vy +€). (4.49)

To this end, we consider the following three subcases:

Case 2.1. 11 < 1/3 and D fgtkk a1 (s)ds < 1. In this case, by (2.24) and (4.47), we have

y1(te) — y1&)
1 &
<o+ pp) (v +e)D%/an<t> a (s)dsdt

&k 81(1)
174 t
<+ pn(v +e>D%/an(t><d1 —/511(8)618) dt
&k &k
173 Tk 2
=i (1 + vy +€)|:d1D%/511(S)dS—%(lean(s)ds> }
&k 53

1
<o+ p) (v —|—e)<max{d1D1, 1} - 5)

11
=v1(1 4+ )y +6)maX{d1D1 — 5 5} =v10(v1 +€).
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Case 2.2. py < 1/3 and Dy f;,f dari(s)ds > 1. In this case, there exists ny € (&, t) such that
Dy [* ayi(s)ds = 1. Then by (2.24) and (4.47), we have

Y1) — y16)

r Tk I 53
<vi(l+p)(vi +€)Dy /511(S)ds+01/5111(f) &11(S)d5dli|
—&k Nk 81 ()

~ I Nk 178 &k
=+ +opi| [anmar [anwds+ [anw 511(S)dsdf}

=Nk &k Ul3 g1(®)

Tk

Nk
— (4 ) +e>D%/au<t> dni(s)ds dt

Mk 81(1)
Ik ¢
< w4+ ) +6)D12/5111(t)<d1 —/au(sws) dr
Nk &k
1k 173 2
=v1(1+pn)(vy +€)|:d10f/5111(5)ds— %<D1/511(S)6“> :|
Nk Nk

1
=v1(1+ (v +€)<d1D1 - 5) <f(vy +e).

Case 2.3. ;11 > 1/3. In this case, fgt,]: ari(s)ds < dp, hence, by (2.24) and (4.47), we have

y1(t) — y1k)
Tk

&
<+ p) +e)D%/an<z> a1 (s) ds di

&k g1(t)
f t
<vil+ ) (v +€)D%/6~111(Z)<d1 —/511(S)ds> dt
&k &k
173 173 2
=v1(1+M1)(v1+€)|:dlDf/&11(S)dS—%(leﬁn(S)dS> ]
&k &k

1
<gu+un +€)(d1D1)? = 110(v; +e).

Cases 2.1-2.3 show (4.49) holds. Let € — 0 in (4.49). Then we conclude that v; < v;. This is
also a contradiction. The proof is complete. O
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