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Abstract

We consider a competitive system with nonlocal dispersals in a 1-dimensional environment that is wors-
ening with a constant speed, reflected by two shifting growth functions. By analyzing the spatial-temporal 
dynamics of the model system, we are able to identify certain ranges for the worsening speed c, respectively 
for (i) extinction of both species; (ii) extinction of one species but persistence of the other; (iii) persistence 
of both species. In the case of persistence of a species, it is achieved through spreading to the direction 
of favorable environment with certain speed(s), and some estimates of these speeds are also obtained. We 
also present some numeric simulation results which confirm our theoretical results, and in the mean time, 
motivate some challenging problems for future work.
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1. Introduction

In the real world, the habitat for a biological species is often temporally non-autonomous and 
spatially heterogeneous [39]. In addition to the seasonality and geographical differences, climate 
changes caused by global warming, industrialization and overdevelopment are also responsible 
for such a temporal-spatial heterogeneity. Climate changes naturally leads to changes of habitats 
for biological species. One may naturally wonder what impacts climate changes can have on the 
populations of various species, either when considering a single species, or when considering 
interacting species. There have been some field studies on such topics, for example, see [16,1,2,
34,40] and the references therein.

There have also been some recent quantitative studies by mathematical models on the popu-
lation dynamics of species, focusing on a special pattern of environment change, that is, shifting 
with constant speed. For example, to understand how species transfer their distribution over time 
and to predict whether the species can keep pace with the climate-induced range shifts in fu-
ture, [6,17,43,20,28] adopted a practical approach of characterizing the habitats “on the move” 
by considering the growth rate r(t, x) of population to be dependent on time t and location x in 
the special form r(t, x) = r(x − ct), reflecting the feature of environment shifting with constant 
speed c > 0 toward the right direction. To explore the issue of species’ range distribution and 
spread with the varying habitat in response to the climate change, Li et al. [27] incorporated 
the aforementioned shifting pattern into the diffusive logistic equation, leading to the following 
equation

∂tu(t, x) = d∂xxu(t, x) + u(t, x) [r(x − ct) − u(t, x)] , (t, x) ∈R+ ×R, (1)

where the growth function r(·) is assumed to satisfy

(A) r(·) is continuous, nondecreasing, piecewise continuously differentiable with r(±∞) finite 
and r(−∞) < 0 < r(∞).

Assumption (A) combined with c > 0 indicate that the region or habitat suitable for species 
growth is pushing to the right. The authors of [27] explored conditions for extinction and persis-
tence of the species and the rightward spreading speed of the model (1) in the case of persistence. 
In recent work Hu et al. [23] investigated the spatial-temporal dynamics of (1) under the criti-
cal no-sign-change situation for the growth function: 0 ≤ r(−∞) < r(∞). For slightly different 
content, Fang et al. [18] also derived a scalar equation of the form (1) from the classical SIS 
epidemic model to describe a pathogen’s population spread with the shifting host population.

For a model of the form (1), in addition to the species’ spreading speed in comparison with 
the speed of the environment shift, the feature of “shifting with given forced speed” represented 
by the moving frame allows one to explore the traveling wave solutions of the form u(t, x) =
U(x−ct) = U(ξ) governed by a second order non-autonomous ODE with the moving coordinate 
ξ = x − ct as the independent variable. For the topic of traveling waves to (1) with assumption 
(A), the recent work from Hu and Zou [22] established its existence of forced extinction waves. 
By allowing different signs of c, Fang et al. [18] considered two scenarios: the favorable habitat 
is contracting (c > 0) or expanding (c < 0), and established the forced traveling waves for any 
c ∈ R for the model (1). A more general version relative to (1) is the following reaction-diffusion 
equation



4892 C. Wu et al. / J. Differential Equations 267 (2019) 4890–4921
∂tu(t, x) = d∂xxu(t, x) + g
(
x − ct, u(t, x)

)
, (t, x) ∈R+ ×R. (2)

The much earlier work [6] studied the traveling waves of (2) for the nonlinearity term g having 
support only on a finite interval, meaning that the environment was unfavorable outside a com-
pact set and favorable inside. Later, Berestycki and Rossi [7] extended the results of [6] to higher 
dimensional space with more general type of g. Vo [35] removed the condition that the favorable 
zone has compact support in [6,7] and obtained similar results. More recently, Berestycki and 
Fang [9] have also investigated the forced waves of (2) when the nonlinearity reaction g(s, u)

was asymptotically KPP type as s → −∞. The KPP type assumption means that there is no 
Allee effect. For models that consider the joint influences of Allee effect and climate change, we 
refer the reader to [32,10] and the references therein.

When studying phenotypical traits, Alfaro et al. [3] extended (1) to a more general equation 
by incorporating a nonlocal intra-species competition term and adopting the two dimensional 
spatial domain, leading to the following equation

∂tu(t, x, y) = �u(t, x, y) +
⎡
⎣r(x − ct, y) −

∫
R

K(t, x, y, z)u(t, x, z)dz

⎤
⎦

× u(t, x, y), (t, x, y) ∈ R+ ×R2,

u(0, x, y) = u0(x, y), (x, y) ∈ R2.

(3)

The authors determined a critical climate change speed such that the population could survive, 
spread or go to extinction under three scenarios of the growth function.

On the other hand, there are often more than one biological species sharing the same habitat 
and they typically compete for resources in the habitat. When the habitat experiences a shift in 
quality (due to, e.g., climate change), one would naturally wonder how such a shift with constant 
speed would interplay with the diffusions of the species and the competition between species 
to affect the population dynamics. In this regard, Potapov and Lewis [31] considered a Lotka-
Volterra competition model in a domain with a moving range boundary, by which they obtained 
a critical patch size for each species to persist and spread. Later, Berestycki et al. [5] investigated 
the Lotka-Volterra competition model with both growth functions being “on the move” reflected 
by the form ri(t, x) = ri(x − ct), i = 1, 2, i.e., the following model system

{
∂tu1(t, x) = d1∂xxu1(t, x) + u1 [r1(x − ct) − u1 − a1u2] ,

∂tu2(t, x) = d2∂xxu2(t, x) + u2
[
r2(x − ct) − u2 − a2u1

]
.

(4)

They found that if the speed of the habitat edge exceeded the Fisher invasion speed of the ad-
vancing species, an expanding gap would occur. More recently, Zhang et al. [42] and Yuan et al. 
[41] also studied the spreading dynamics of such a Lotka-Volterra competition system with shift-
ing growth functions, from different motivations and viewpoints, under the assumption that the 
growth functions r1(·) and r2(·) satisfied (A). The former focused on the persistence and extinc-
tion for two species, while the latter aimed at comparing the effect of different dispersal rates 
on the spatial-temporal dynamics for the two species when the habitat worsened with a constant 
speed.
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As far as dispersion is concerned, in addition to random diffusion represented by the Lapla-
cian in (1), (2), (3) and (4), for some species and under some circumstances, nonlocal dispersion 
is more plausible [25]. Since a population’s vulnerability to climate change manifests an intricate 
relationship to its dispersal behavior, a nonlocal dispersal strategy can accommodate the intrinsic 
variability in individuals’ capacity throughout a long range dispersion. Thus, under the worsen-
ing environment induced by climate change or global warming, among the key factors are how 
far individual animals or plant seeds can move, and how a species would evolve with a nonlocal 
dispersion strategy [26]. The long-range dispersion or nonlocal internal interactions widely ex-
ist in ecology and numerous data currently available have demonstrated these phenomena (e.g., 
see [13,11,24,12,4,15,14,33,19,21,8] and the references therein). Under a shifting effect in the 
growth rate, the recent work of Li et al. [29], Wang and Zhao [36] studied the persistence crite-
rion and existence, uniqueness as well as stability of extinction wave for the following nonlocal 
dispersal population model in a shifting environment

∂tu(t, x) = d
[
(J ∗ u)(t, x) − u(t, x)

]+ u(t, x) [r(x − ct) − u(t, x)] , (5)

where r(·) was also assumed to satisfy (A) and (J ∗ u)(t, x) = ∫
R J (x − y)u(t, y)dy with the 

kernel J (·) satisfying the normative condition 
∫
R J (s)ds = 1. Hence (5) is a result of replacing 

the random diffusion term d∂xxu(t, x) in (1) by the nonlocal dispersion term d[(J ∗ u)(t, x) −
u(t, x)] with d being the jumping rate.

Motivated by the aforementioned works, in this paper, we are interested in the spreading 
population dynamics of two competing species that adopt nonlocal dispersion strategy and face 
a shifting habitat. More precisely, we will consider the following Lotka-Volterra competition 
system

{
∂tu1(t, x) = d1

[
(J1 ∗ u1)(t, x) − u1(t, x)

]+ u1 [r1(x − ct) − u1 − a1u2] ,

∂tu2(t, x) = d2
[
(J2 ∗ u2)(t, x) − u2(t, x)

]+ u2
[
r2(x − ct) − u2 − a2u1

]
,

(6)

where (Ji ∗ ui)(t, x) = ∫
R Ji(x − y)ui(t, y)dy and ai, di > 0, i = 1, 2. Keeping in the same line 

as in [27,42,41,29], we will assume, throughout the paper, the following conditions on the growth 
functions ri(·) and the kernel functions Ji(·) for i = 1, 2:

(A1) ri(x) is continuous and nondecreasing with −∞ < ri(−∞) < 0 < ri(∞) < ∞;
(A2) Ji ∈ C(R, R+) is even with 

∫
R Ji(y)dy = 1, and each 

∫∞
0 Ji(y)eμydy converges for 

μ > 0.

However, here we remove the common assumption that the nonlocal dispersal kernel is com-
pactly supported (e.g., see [29]), and the resulting difficulty can be tackled by introducing a 
proper truncation function later.

The rest of this paper is organized as follows. In Section 2, we study the well-posedness 
including the existence and uniqueness of solution of (6), and establish a comparison principle 
for (6). In Section 3, we investigate criteria for extinction, persistence and displacement for the 
two competing species. In Section 4, we present some simulations to illustrate analytical results. 
We conclude the paper by Section 5 where we summarize our main results and discuss some 
possible future relevant project.
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2. Existence, uniqueness and comparison principle

Consider the homogeneous kinetic system of the model system (6):

u′
1(t) = u1 [r1(∞) − u1 − a1u2] ,

u′
2(t) = u2

[
r2(∞) − u2 − a2u1

]
.

(7)

To ensure the existence of co-existence state to the system (7), we impose the following condition

r1(∞) > a1r2(∞) and r2(∞) > a2r1(∞), (8)

which implies a1a2 < 1. If (8) holds, then the co-existence equilibrium (u∗
1, u

∗
2) exists and is 

stable, where

u∗
1 = r1(∞) − a1r2(∞)

1 − a1a2
, u∗

2 = r2(∞) − a2r1(∞)

1 − a1a2
.

We now address the well-posedness of the Cauchy problem

⎧⎪⎨
⎪⎩

∂tu1(t, x) = d1
[
(J1 ∗ u1)(t, x) − u1(t, x)

]+ u1 [r1(x − ct) − u1 − a1u2] ,

∂tu2(t, x) = d2
[
(J2 ∗ u2)(t, x) − u2(t, x)

]+ u2
[
r2(x − ct) − u2 − a2u1

]
,

u(0, x) := (u1(0, x), u2(0, x)) = (u10(x), u20(x)) =: u0(x).

(9)

Let X = UC(R, R2) ∩ L∞(R, R2) be the set of all uniformly continuous and bounded vec-
tor functions from R to R2 equipped with the norm ‖φ‖X := ‖φ1‖ + ‖φ2‖, where ‖φi‖ :=
supx∈R |φi(x)|. Denote X+ = {φ = (φ1, φ2) ∈ X : (φ1, φ2)(x) ≥ (0, 0) in x ∈ R}. Then X+ is a 
closed cone of X and X is a Banach lattice under the partial ordering induced by X+.

Consider the following auxiliary linear system

∂tu(t, x) = D

∫
R

J (x − y)u(t, y)dy − Hu(t, x) (10)

subjected to the initial data u(0, x) = φ ∈ X, where D = diag(d1, d2), J = diag(J1, J2), H =
diag(h1, h2) and u = (u1, u2). Obviously, (10) is a generalization of the linear part of (6) in the 
sense that when H = D, it reduces to (6). Define Lφ = D

∫
R J (· − y)φ(y)dy − Hφ. Then the 

linear equations (10) with the initial data φ ∈X can be rewritten as the abstract Cauchy problem

du(t)

dt
= Lu(t), u(0) = φ ∈X.

Hence t �→ u(t) := eLtφ with eLt =∑∞
l=0

(tL)l

l! is the unique solution of (10). Since D and J are 
diagonal, the semigroup operator eLtφ := u(t, ·) is order preserving on each component. Note 
that the solution of (10) satisfies the following integral equation
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u(t, x) = e−Htφ(x) +
t∫

0

e−H(t−s)D

∫
R

J (x − y)u(s, y)dyds. (11)

Define J (0)(x) = δ(x), the classic Dirac delta function and hence J (0) ∗ φ = φ. Recursively 
define J (l) ∗ φ = J ∗ [J (l−1) ∗ φ] for l = 1, 2, · · · . Here J ∗ φ denotes the convolution defined by

[J ∗ φ](x) =
∫
R

J (x − y)φ(y)dy.

Then by iterating (11), the unique mild solution of (10) can be expressed as

u(t, x) =
[
eLtφ

]
(x) = e−Ht

∞∑
l=0

(tD)l

l!
[
J (l) ∗ φ

]
(x). (12)

Let

f1(x,u1, u2) = u1 [r1(x) − u1 − a1u2] ,

f2(x,u1, u2) = u2
[
r2(x) − u2 − a2u1

]
.

For any 0 ≤ u1, v1 ≤ r1(∞), 0 ≤ u2, v2 ≤ r2(∞) and x ∈ R, we have

|fi(x,u1, u2) − fi(x, v1, v2)| ≤ ρi

[|u1 − v1| + |u2 − v2|
]
, (13)

where ρi = 2ri(∞) − ri(−∞) + ai [r1(∞) + r2(∞)]. Inequality (13) implies that fi(x, u1, u2)

is Lipschitz continuous in (u1, u2) ∈ [0, r1(∞)] ×[0, r2(∞)] for any x ∈R with i = 1, 2. Define

Fi(x,u1, u2) = ρiui + fi(x,u1, u2), i = 1,2. (14)

Then Fi(x, u1, u2) is nondecreasing in ui ∈ [0, ri(∞)] for i = 1, 2. Let

Xr(∞) := {
(φ1, φ2) ∈ X : (0,0) ≤ (φ1, φ2)(x) ≤ (r1(∞), r2(∞)) in R

}
.

Rewrite the Cauchy problem (9) as

{
∂tu(t, x) = D(J ∗ u)(t, x) − (D + ρ)u(t, x) + F(x − ct, u(t, x)),

u(0, ·) = u0(·) ∈Xr(∞),
(15)

where ρ = diag(ρ1, ρ2) and F = (F1, F2). Choosing H = D + ρ in the definition of L, the 
solution of (15) satisfies the integral equation by the variation of parameters

u(t, x) = eLt u0(x) +
t∫

0

eL(t−s)F
(
x − cs,u(s, x)

)
ds

(16)
=: [Gu](t, x).
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It follows that any solution of (9) can be seen as a fixed-point of the operator G, i.e. Gu = u in 
C(R+, Xr(∞)).

To address the existence and uniqueness of solution of (16), we first give the definition of the 
ordered upper and lower solutions for (16).

Definition 2.1. A pair of vector functions ũ = (ũ1, ũ2), û = (û1, û2) ∈ C([0, τ), X+) with τ > 0
are called ordered upper and lower solutions of (16) if (ũ1, ũ2) ≥ (û1, û2) ≥ (0, 0) and further 
satisfy

ũ1(t, x) − [G(ũ1, û2)]1(t, x) ≥ 0 ≥ û1(t, x) − [G(û1, ũ2)]1(t, x),

ũ2(t, x) − [G(û1, ũ2)]2(t, x) ≥ 0 ≥ û2(t, x) − [G(ũ1, û2)]2(t, x).
(17)

Remark 2.1. If ũ, û ∈ C([0, τ) × R, R2) are C1 in t ∈ (0, τ) with ũ(t, ·), û(t, ·) ∈ X+, and for 
t ∈ (0, τ) they satisfy

∂t ũ1 − d1
[
(J1 ∗ ũ1)(t, x) − ũ1(t, x)

]− f1(x − ct, ũ1, û2)

≥ 0 ≥ ∂t û1 − d1
[
(J1 ∗ û1)(t, x) − û1(t, x)

]− f1(x − ct, û1, ũ2),

∂t ũ2 − d2
[
(J2 ∗ ũ2)(t, x) − ũ2(t, x)

]− f2(x − ct, û1, ũ2)

≥ 0 ≥ ∂t û2 − d2
[
(J2 ∗ û2)(t, x) − û2(t, x)

]− f2(x − ct, ũ1, û2),

ũi(0, x) ≥ ui(0, x) ≥ ûi (0, x), x ∈R, i = 1,2,

then (17) holds (since eLtX+ ⊂X+ for all t ≥ 0), and hence ũ, û are a pair of ordered upper and 
lower solutions of (9).

Theorem 2.1. If u0 ∈ Xr(∞), then the system (9) has a unique solution u(t, x) with u(0, x) =
u0(x) and u ∈ C(R+, Xr(∞)).

Proof. Let ũ ≡ (r1(∞), r2(∞)), û ≡ (0, 0), then ũ ≥ û and it is easy to show ũ, û are ordered 
upper and lower solutions of (16). Define

ū
(k)
1 (t, x) = eL1t u10(x) +

t∫
0

eL1(t−s)F1
(
x − cs, ū

(k−1)
1 (s, x), u

(k−1)
2 (s, x)

)
ds,

ū
(k)
2 (t, x) = eL2t u20(x) +

t∫
0

eL2(t−s)F2
(
x − cs,u

(k−1)
1 (s, x), ū

(k−1)
2 (s, x)

)
ds,

u
(k)
1 (t, x) = eL1t u10(x) +

t∫
0

eL1(t−s)F1
(
x − cs,u

(k−1)
1 (s, x), ū

(k−1)
2 (s, x)

)
ds,

u
(k)
2 (t, x) = eL2t u20(x) +

t∫
eL2(t−s)F2

(
x − cs, ū

(k−1)
1 (s, x), u

(k−1)
2 (s, x)

)
ds
0
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for k = 1, 2, · · · . Consider the corresponding sequences {ū(k)
1 , u(k)

2 } and {u(k)
1 , ū(k)

2 }, where 

(ū
(0)
1 , u(0)

2 ) = (ũ1, û2) and (u(0)
1 , ū(0)

2 ) = (û1, ũ2). We now show that

0 ≤ u
(k)
i ≤ u

(k+1)
i ≤ ū

(k+1)
i ≤ ū

(k)
i ≤ ri(∞), (18)

for k = 1, 2, · · · and i = 1, 2. By the iteration processes defined above and Definition 2.1, we 
obtain

ū
(1)
1 (t, x) ≤ eL1t ũ1(0, x) +

t∫
0

eL1(t−s)F1
(
x − cs, ũ1(s, x), û2(s, x)

)
ds

≤ ũ1(t, x) = ū
(0)
1 (t, x)

and

u
(1)
2 (t, x) ≥ eL2t û2(0, x) +

t∫
0

eL2(t−s)F2
(
x − cs, ũ1(s, x), û2(s, x)

)
ds

≥ û2(t, x) = u
(0)
2 (t, x).

A similar argument, using the property of (û1, ũ2), gives u(1)
1 ≥ u

(0)
1 and ū(1)

2 ≤ ū
(0)
2 . Note

ū
(1)
1 (t, x) − u

(1)
1 (t, x)

=
t∫

0

eL1(t−s)
[
F1
(
x − cs, ũ1, û2

)− F1
(
x − cs, û1, û2

)]
ds

+
t∫

0

eL1(t−s)
[
F1
(
x − cs, û1, û2

)− F1
(
x − cs, û1, ũ2

)]
ds ≥ 0.

Similarly, we can show that ū(1)
2 (t, x) ≥ u

(1)
2 (t, x). An induction argument further leads to (18). 

Hence, ui(t, x) = limk→∞ u
(k)
i (t, x) and ūi (t, x) = limk→∞ ū

(k)
i (t, x) both exist and satisfy 

0 ≤ ui(t, x) ≤ ūi (t, x) ≤ ri(∞), i = 1, 2. Moreover, both u = (u1, u2) and ū = (ū1, ū2) are in 
C(R+, Xr(∞)) and satisfy

ū1(t, x) = eL1t u10(x) +
t∫

0

eL1(t−s)F1
(
x − cs, ū1(s, x), u2(s, x)

)
ds,

ū2(t, x) = eL2t u20(x) +
t∫

eL2(t−s)F2
(
x − cs,u1(s, x), ū2(s, x)

)
ds,
0
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u1(t, x) = eL1t u10(x) +
t∫

0

eL1(t−s)F1
(
x − cs,u1(s, x), ū2(s, x)

)
ds,

u2(t, x) = eL2t u20(x) +
t∫

0

eL2(t−s)F2
(
x − cs, ū1(s, x), u2(s, x)

)
ds (19)

by the Lebesgue’s dominated convergence theorem. We next show that ū(t, x) = u(t, x) =
u(t, x) and hence (16) holds. Note that ‖J (1)

i ∗ pi‖ = ‖Ji ∗ J
(0)
i ∗ pi‖ = ‖Ji ∗ pi‖ =

‖ 
∫
R Ji(y)pi(· − y)dy‖ ≤ ‖pi‖. Induction yields ‖J (l)

i ∗ pi‖ ≤ ‖pi‖ for l = 0, 1, 2, · · · . By (12), 
we see that

‖eLi tpi‖ ≤ e−(di+ρi)t
∞∑
l=0

(di t)
l

l! ‖pi‖ = e−(di+ρi)t · edi t‖pi‖ = e−ρi t‖pi‖. (20)

It follows from (19), (13), (14) and (20) that

∣∣ū1(t, x) − u1(t, x)
∣∣

≤
t∫

0

eL1(t−s)2ρ1

[(
ū1(s, x) − u1(s, x)

)+ (
ū2(s, x) − u2(s, x)

)]
ds

≤2ρ1

t∫
0

e−ρ1(t−s)
[
‖ū1(s, ·) − u1(s, ·)‖ + ‖ū2(s, ·) − u2(s, ·)‖

]
ds

≤2ρ1

t∫
0

e−ρ(t−s)
∥∥ū(s, ·) − u(s, ·)∥∥Xds,

where ρ = min{ρ1, ρ2}. Similarly, we have

∣∣ū2(t, x) − u2(t, x)
∣∣≤ 2ρ2

t∫
0

e−ρ(t−s)
∥∥ū(s, ·) − u(s, ·)∥∥Xds.

Thus

eρt‖ū(t, ·) − u(t, ·)∥∥X ≤ 2(ρ1 + ρ2)

t∫
0

eρs
∥∥ū(s, ·) − u(s, ·)∥∥Xds.

By the Gronwall’s inequality, one must have ū(t, x) = u(t, x). Therefore, the Cauchy problem 
(9) has a unique solution u(t, x) = (u1(t, x), u2(t, x)) satisfying 0 ≤ ui(t, x) ≤ ri(∞) for t >

0, x ∈ R and i = 1, 2. The proof is complete. �
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Lemma 2.1 (Comparison principle). The following statements hold.

(i) Let v(t, x) and u(t, x) be a pair of upper and lower solutions of (9) and v(t, ·), u(t, ·) ∈
Xr(∞). If v(0, x) ≥ u(0, x), then v(t, x) ≥ u(t, x) for all t > 0 and x ∈R.

(ii) Let v(t, x), u(t, x) be two solutions of (9) with initial data v0, u0 ∈ Xr(∞). If v0(x) ≥ u0(x), 
then v(t, x) ≥ u(t, x) for all t > 0 and x ∈R.

Proof. To prove (i), we let T > 0 be fixed and define α = max{r1(∞)(1 + a1), r2(∞)(1 + a2)}. 
For ς > 0, denote w1(t, x) = v1(t, x) −u1(t, x) +ςeαt and w2(t, x) = v2(t, x) −u2(t, x) +ςeαt . 
We claim that (w1(t, ·), w2(t, ·)) � (0, 0) for t ∈ (0, T ]. Assuming the claim is not true, define

t∗ = inf{t : t ∈ [0, T ],w1(t, x) ≤ 0 or w2(t, x) ≤ 0 for some x ∈ R}.
Then t∗ > 0 and the continuity implies w1(t, x) > 0, w2(t, x) > 0 for t ∈ [0, t∗) and x ∈ R. Note 
for t ∈ (0, t∗],

∂tw1 = ∂tv1(t, x) − ∂tu1(t, x) + αςeαt

≥ d1
[
(J1 ∗ w1)(t, x) − w1(t, x)

]+ αςeαt − a1u1(u2 − v2)

+ [r1(x − ct) − (v1 + u1) − a1u2] (v1 − u1)

≥ d1
[
(J1 ∗ w1)(t, x) − w1(t, x)

]+ [r1(x − ct) − (v1 + u1) − a1u2]w1

+ ςeαt [α − r1(x − ct) + v1 + u1 + a1u2 − a1u1]

≥ d1
[
(J1 ∗ w1)(t, x) − w1(t, x)

]+ [r1(x − ct) − (v1 + u1) − a1u2]w1.

It then follows from [19, Proposition 2.1] that w1(t, x) > 0 for t ∈ [0, t∗] and x ∈ R. In a similar 
way, we can show that w2(t, x) > 0 for t ∈ [0, t∗] and x ∈ R. This is a contradiction, which 
implies that the claim holds. Hence, (w1(t, ·), w2(t, ·)) � (0, 0) for t ∈ (0, T ]. Let ς → 0, we 
have v(t, ·) ≥ u(t, ·) for t ∈ (0, T ]. Since T > 0 is arbitrariness, this proves (i).

(ii) is a special case of (i). The proof is complete. �
3. Extinction, persistence and displacement

For μ > 0, we define


̃i(x;μ) = di

[ ∫
R Ji(y)eμydy − 1

]+ ri(x) − airj (∞)

μ
, i �= j ∈ {1,2}.

Under (A1)-(A2) and (8), since ri(x) − airj (∞) > 0 for large x > 0, one can easily verify that

lim
μ→0+ 
̃i(x;μ) = ∞ and lim

μ→∞ 
̃i(x;μ) = ∞, for large x > 0.

This implies that for large x > 0, as function of μ > 0, 
̃i(x, μ) has at least one minimum. Note 
that

∂μ
̃i(x;μ) = 1 [
�i(μ) − 
̃i(x;μ)

]
, (21)
μ
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where

�i(μ) = ∂

∂μ

[
μ
̃i(x;μ)

]= di

∫
R

Ji(y)yeμydy > 0.

Also note that

∂μ

[
μ2∂μ
̃i(x;μ)

]= ∂μ

[
μ(�i(μ) − 
̃i(x;μ))

]= μ�′
i (μ) = μdi

∫
R

Ji(y)y2eμydy ≥ 0,

meaning for large x > 0, μ2∂μ
̃i(x; μ) is nondecreasing in μ > 0 and hence, ∂μ
̃i(x; μ) can 
have at most one positive zero for μ. Combining the above arguments, we have shown that for 
large x > 0, 
̃i(x; μ) admits exactly one (hence global) minimum c̃∗

i (x), assuming that it is 
attained at μ̃∗

i (x) > 0, that is,

c̃∗
i (x) = inf

μ>0

̃i(x;μ) = 
̃i

(
x; μ̃∗

i (x)
)= �i

(
μ̃∗

i (x)
)
, i = 1,2. (22)

Similarly (also see [29]), as for


i(x;μ) = di

[ ∫
R Ji(y)eμydy − 1

]+ ri(x)

μ
, i = 1,2,

for large x > 0, there exists exactly one μ∗
i (x) > 0 such that

c∗
i (x) = inf

μ>0

i(x;μ) = 
i

(
x;μ∗

i (x)
)

i = 1,2. (23)

In the sequel, we will see that the positive numbers c∗
i (∞) and c̃∗

i (∞) (i = 1, 2) will play 
important roles in determining the spreading dynamics of (9). We start by the following result 
on the extinction of both species, caused by the faster worsening speed of the environment (i.e., 
c > 0 is large).

Theorem 3.1. Assume c > max{c∗
1(∞), c∗

2(∞)} with c∗
i (∞) defined in (23) by replacing x as ∞. 

Let u(t, x, u0) be the unique solution of the Cauchy problem (9). If u0 ∈ Xr(∞) has a compact 
support and supx∈R ui0(x) < ri(∞), i = 1, 2, then for any ε > 0, there exists a T0 > 0 such that 
for all t ≥ T0, u(t, x, u0) ≤ (ε, ε) for all x ∈R.

Proof. According to Theorem 2.1, we see that 0 ≤ ui(t, x) ≤ ri(∞) for t ≥ 0 and x ∈ R. By [29, 
Theorem 4.5], the scaler equation

∂twi(t, x) = di

[
(Ji ∗ wi)(t, x) − wi(t, x)

]+ wi [ri(x − ct) − wi] (24)

has a traveling wave front ψi(x −ct) with the profile function ψi(·) nondecreasing and satisfying 
ψi(−∞) = 0 and ψi(∞) = ri(∞). Since ui0(x) has a compact support and ui0(x) < ri(∞) for 
all x ∈ R, there exists a large enough number x0 > 0 such that ψi(x +x0) > ui0(x) for all x ∈R. 
Denote ũi(t, x) = ψi(x − ct + x0) for all t ≥ 0 and x ∈R. We now show that (ũ1(t, x), ũ2(t, x))
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and (û1(t, x), û2(t, x)) = (0, 0) are a pair of ordered upper and lower solutions of (9). In fact, let
z = x − ct + x0 and note that

∂ũi(t, x)

∂t
= −cψ ′

i (z) = di

⎡
⎣∫
R

Ji(y)ψi(z − y)dy − ψi(z)

⎤
⎦

+ ψi(z)
[
ri(z) − ψi(z)

]
≥ di

[
(Ji ∗ ũi )(t, x) − ũi (t, x)

]+ ũi

[
ri(x − ct) − ũi

]
(25)

since ri(·) is nondecreasing. It follows from (25) that

∂t ũ1 − d1
[
(J1 ∗ ũ1)(t, x) − ũ1(t, x)

]− f1(x − ct, ũ1, û2)

=∂t ũ1 − d1
[
(J1 ∗ ũ1)(t, x) − ũ1(t, x)

]− ũ1
[
r1(x − ct) − ũ1

]
≥ 0 = ∂t û1 − d1

[
(J1 ∗ û1)(t, x) − û1(t, x)

]− f1(x − ct, û1, ũ2),

∂t ũ2 − d2
[
(J2 ∗ ũ2)(t, x) − ũ2(t, x)

]− f2(x − ct, û1, ũ2)

=∂t ũ2 − d2
[
(J2 ∗ ũ2)(t, x) − ũ2(t, x)

]− ũ2
[
r2(x − ct) − ũ2

]
≥ 0 = ∂t û2 − d2

[
(J2 ∗ û2)(t, x) − û2(t, x)

]− f2(x − ct, ũ1, û2).

Also ũi (0, x) = ψi(x + x0) > ui0(x) ≥ ûi (0, x) for all x ∈ R. Hence, by Remark 2.1, (ũ1, ũ2)

and (0, 0) are a pair of ordered upper and lower solutions of (9). In view of the comparison 
principle, we obtain

ui(t, x,u0) ≤ ũi (t, x) = ψi(x − ct + x0) for all t ≥ 0 and x ∈R.

For any ε > 0, since ψi(−∞) = 0, we can pick a sufficiently large number M > 0 such that 
ψi(−M + x0) < ε. Thus the monotonicity of ψi yields that

ui(t, x,u0) ≤ ψi(x − ct + x0) ≤ ψi(−M + x0) < ε, ∀ t ≥ 0, x ≤ −M + ct. (26)

Let vi(t, x, u0) be the unique solution of the following equation

∂tvi(t, x) = di

[
(Ji ∗ vi)(t, x) − vi(t, x)

]+ vi [ri(∞) − vi] (27)

with vi(0, x, u0) = ui0(x) for x ∈ R. By Lutscher et al. [30, Theorem 3.2], c∗
i (∞) is the spread-

ing speed for (27). Therefore for any fixed ci ∈ (c∗
i (∞), c), it must be limt→∞ supx≥ci t

vi(t, x,

u0) = 0. Using a similar argument to the above, we can prove (v1, v2) and (0, 0) are a pair of 
ordered upper and lower solutions of (9). Then, by the comparison principle again, we know that 
limt→∞ supx≥ci t

ui(t, x, u0) = 0. Thus there exists some T1 > 0 such that

ui(t, x,u0) < ε for all t ≥ T1 and x ≥ ci t. (28)

Let T0 = max{T1, M/(c − c1), M/(c − c2)}, then −M + ct ≥ ci t for all t ≥ T0. This, together 
with (26) and (28) result in ui(t, x, u0) ≤ ε for all t ≥ T0 and x ∈R, completing the proof. �
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Fig. 1. Illustration of the function η(μ; x) with parameters μ = γ = 0.01 in the left. The maximum of η(μ; x) is obtained 
at x = σ(μ) and 0 ≤ η ≤ 1. Illustration of the symmetric cutoff function C(x) with parameters μ = 0.05 and γ = 0.01
in the right.

Next, we show that if the environmental worsening speed is not so fast, then both two species 
can be persistent. To this end, we need some preparations. Denote

c̃∗(x) = min{c̃∗
1(x), c̃∗

2(x)}, (29)

where c̃∗
i (x) is defined in (22). We now introduce an auxiliary function which was first proposed 

by Weinberger [37]. For given μ, γ > 0, let

η(μ;x) =
{

e−μx sin(γ x), 0 ≤ x ≤ π
γ
,

0, elsewhere.
(30)

The function η(μ; x) is continuous for all x and is C2 in x when x �= 0, π/γ . The maximum of 
η(μ; x) is obtained at x = σ(μ) = 1

γ
arctan(

γ
μ
) and σ(μ) is strictly decreasing function of μ. To 

give the readers some idea about this function, we plot it in Fig. 1 (left) with μ = γ = 0.01. Let 
C(x) : R → [0, 1] be defined by

C(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, |x| ≤ π
4γ

,

e
μπ
4γ e−μ|x| sin(2γ |x|), π

4γ
≤ |x| ≤ π

2γ
,

0, |x| > π
2γ

.

(31)

Obviously, C(x) is a continuous and symmetric cutoff function, see Fig. 1 (right) for C(x) with 
μ = 0.05 and γ = 0.01.

For μ > 0 and γ > 0, we further define

�i(μ,γ ) = di

γ

∫
R

Ji(y)C(y)eμy sin (γy)dy

= di

γ

π
2γ∫

− π

Ji(y)C(y)eμy sin(γy)dy, i = 1,2.

(32)
2γ
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Since Ji and C are symmetric, �i(μ, γ ) can be further expressed as

�i(μ,γ ) = di

γ

π
2γ∫

0

Ji(y)C(y)
[
eμy − e−μy

]
sin(γy)dy.

Thus �i(μ, γ ) > 0 and �i(μ, γ ) is nondecreasing in μ. Let � be so large that r1(�) > a1r2(∞)

and r2(�) > a2r1(∞). Define

�i(γ ;�,μ) = di

[ ∫
R Ji(y)C(y)eμy cos(γy)dy − 1

]+ ri(�) − airj (∞)

μ
, (33)

for i �= j ∈ {1, 2} and c∗
iγ (�) = infμ>0 �i(γ ; �, μ). Clearly, �i(γ ; �, μ) < 
̃i(�; μ) and 

�i(γ ; �, μ) → 
̃i(�; μ) uniformly for μ > 0 in any bounded interval as γ → 0+. Furthermore, 
we have c∗

iγ (�) < c̃∗
i (�) and c∗

iγ (�) → c̃∗
i (�) as γ → 0+.

Under (8), c̃∗(∞) given by (29) is well-defined. Let c ∈ (0, c̃∗(∞)). Then for δ ∈ (0, [c̃∗(∞) −
c]/5), let �i > 0 be large enough such that c̃∗

i (�i) = c̃∗
i (∞) − δ, and let γ be sufficiently small so 

that c̃∗
i (�i) − c∗

iγ (�i) ≤ δ. We claim that there are μ̌i, μ̂i ∈ (0, μ̃∗
i (�i)) with μ̌i < μ̂i such that

�i(μ̌i , γ ) = c + δ and �i(μ̂i, γ ) = c∗
iγ (�i) − 2δ,

where �i is defined in (32). Indeed, we first note that

�i(0, γ ) = 0 < c + δ < c̃∗(∞) − 4δ ≤ c̃∗
i (∞) − 4δ

= c̃∗
i (�i) − 3δ ≤ c∗

iγ (�i) − 2δ ≤ c̃∗
i (�i) − 2δ < c̃∗

i (�i).
(34)

Since μ̃∗
i (�i) satisfies

c̃∗
i (�i) = 
̃i

(
�i; μ̃∗

i (�i)
)= inf

μ>0

̃i(�i;μ),

thus we know ∂μ
̃i(�i; μ)|μ=μ̃∗
i (�i ) = 0. By (21)

di

∫
R

yJi(y)eμ̃∗
i (�i )ydy = 
̃i

(
�i; μ̃∗

i (�i)
)= c̃∗

i (�i). (35)

It follows from (32) and (35) that

lim
γ→0+ �i

(
μ̃∗

i (�i), γ
)= lim

γ→0+ di

π
2γ∫

− π
2γ

yJi(y)C(y)eμ̃∗
i (�i )y

sin(γy)

γy
dy

= di

∞∫
yJi(y)eμ̃∗

i (�i )ydy = c̃∗
i (�i).

(36)
−∞
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Hence, for γ sufficiently small, based on the nondecreasing property of �i with respect to μi and 
(34)-(36), the claim holds.

Lemma 3.1. Assume (8) holds and c ∈ (0, c̃∗(∞)). For δ ∈ (0, [c̃∗(∞) −c]/5), let �i > 0 be large 
enough such that c̃∗

i (�i) = c̃∗
i (∞) − δ, and let γ be sufficiently small so that c̃∗

i (�i) − c∗
iγ (�i) ≤ δ. 

Let 0 < μ̌i < μ̂i < μ̃∗
i (�i) satisfy �i(μ̌i, γ ) = c + δ and �i(μ̂i , γ ) = c∗

iγ (�i) − 2δ. Then for any 
μi ∈ [μ̌i , μ̂i] and small βi > 0, (r1(∞), r2(∞)) and (W1(t, x), W2(t, x)) are a pair of ordered 
upper and lower solutions of (6), where Wi(t, x) := βiη

(
μi; x − �i − �i(μi, γ )t

)
with η given 

by (30). Moreover, if ui(0, x) ≥ Wi(0, x), then ui(t, x) ≥ Wi(t, x) for all t > 0 and x ∈R.

Proof. Indeed, we only need to show

∂tW1 − d1
[
(J1 ∗ W1) − W1

]− W1
[
r1(x − ct) − W1 − a1r2(∞)

]≤ 0,

∂tW2 − d2
[
(J2 ∗ W2) − W2

]− W2
[
r2(x − ct) − W2 − a2r1(∞)

]≤ 0.
(37)

First, for x < �i + �i(μi, γ )t or x > �i + �i(μi, γ )t + π/γ with t > 0, one trivially has 
Wi(t, x) ≡ 0. Thus we only need to verify the case �i +�i(μi, γ )t ≤ x ≤ �i +�i(μi, γ )t +π/γ

for t > 0. For this range, we have

Wi(t, x) = βie
−μi [x−�i−�i(μi ,γ )t] sin[γ (x − �i − �i(μi, γ )t)], (38)

∂tWi(t, x) = βi�i(μi, γ )e−μi [x−�i−�i(μi ,γ )t]

× {
μi sin[γ (x − �i − �i(μi, γ )t)] − γ cos[γ (x − �i − �i(μi, γ )t)]}. (39)

Thus, for |y| ≤ π/(2γ ), t > 0 and �i + �i(μi, γ )t ≤ x ≤ �i + �i(μi, γ )t + π/γ , there holds

Wi(t, x − y) ≥ βie
−μi [x−y−�i−�i(μi ,γ )t] sin[γ (x − y − �i − �i(μi, γ )t)], (40)

and by (38) and (40), this further leads to

∫
R

Ji(y)Wi(t, x − y)dy − Wi(t, x)

≥
π
2γ∫

− π
2γ

Ji(y)C(y)Wi(t, x − y)dy − Wi(t, x)

≥βie
−μi [x−�i−�i(μi ,γ )t]{

π
2γ∫

− π
2γ

Ji(y)C(y)eμiy sin[γ (x − y − �i − �i(μi, γ )t)]dy

− sin[γ (x − �i − �i(μi, γ )t)]
}
.

(41)

By using sin(a − b) = sina cosb − cosa sinb, we get
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π
2γ∫

− π
2γ

Ji(y)C(y)eμiy sin[γ (x − y − �i − �i(μi, γ )t)]dy

=
π
2γ∫

− π
2γ

Ji(y)C(y)eμiy
{

sin[γ (x − �i − �i(μi, γ )t)] cos(γy)

− cos[γ (x − �i − �i(μi, γ )t)] sin(γy)
}
dy

= sin[γ (x − �i − �i(μi, γ )t)]
π
2γ∫

− π
2γ

Ji(y)C(y)eμiy cos(γy)dy

− cos[γ (x − �i − �i(μi, γ )t)]
π
2γ∫

− π
2γ

Ji(y)C(y)eμiy sin(γy)dy.

(42)

To achieve (37), it is sufficient to verify

μi�i(μi, γ ) sin[γ (x − �i − �i(μi, γ )t)]

≤di sin[γ (x − �i − �i(μi, γ )t)]

⎡
⎢⎢⎣

π
2γ∫

− π
2γ

Ji(y)C(y)eμiy cos(γy)dy − 1

⎤
⎥⎥⎦

+ cos[γ (x − �i − �i(μi, γ )t)]

⎡
⎢⎢⎣γ�i(μi, γ ) − di

π
2γ∫

− π
2γ

Ji(y)C(y)eμiy sin(γy)dy

⎤
⎥⎥⎦

+ sin[γ (x − �i − �i(μi, γ )t)][ri(x − ct) − Wi(t, x) − airj (∞)]

(43)

because of (39), (41) and (42). According to (32),

γ�i(μi, γ ) − di

π
2γ∫

− π
2γ

Ji(y)C(y)eμiy sin(γy)dy = 0.

Hence, (43) reduces to

μi�i(μi, γ ) ≤ di

⎡
⎢⎢⎣

π
2γ∫

− π
2γ

Ji(y)C(y)eμiy cos(γy)dy − 1

⎤
⎥⎥⎦

+ r (x − ct) − W (t, x) − a r (∞),
i i i j
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due to the fact that sin[γ (x − �i − �i(μi, γ )t)] > 0 for �i + �i(μi, γ )t < x < �i + �i(μi, γ )t +
π/γ . For x = �i +�i(μi, γ )t or x = �i +�i(μi, γ )t +π/γ , inequality (43) holds trivially. Note 
ri(x − ct) ≥ ri(�i) and Wi(t, x) ≤ βi . Thus it is sufficient to prove

βi ≤ di

⎡
⎢⎢⎣

π
2γ∫

− π
2γ

Ji(y)C(y)eμiy cos(γy)dy − 1

⎤
⎥⎥⎦

+ ri(�i) − airj (∞) − μi�i(μi, γ ).

(44)

By (33) and (31), (44) is equivalent to

βi ≤ μi[�i(γ ;�i,μi) − �i(μi, γ )]. (45)

Note �i(μi, γ ) ≤ �i(μ̂i , γ ) = c∗
iγ (�i) − 2δ = infμi>0 �i(γ ; �i, μi) − 2δ and μi ≥ μ̌i . Hence, 

(45) holds if we choose βi ≤ 2δμ̌i . The proof is complete. �
Theorem 3.2. Assume (8) holds and suppose c ∈ (0, c̃∗(∞)). Let u(t, x, u0) be the unique solu-
tion of the Cauchy problem (9). If u0 ∈ Xr(∞) and ui0(x) > 0 on a closed interval, then for any 
0 < ε < (c̃∗(∞) − c)/2, we have

lim
t→∞,x∈Dt

(
u1(t, x), u2(t, x)

)= (u∗
1, u

∗
2),

where Dt = {
x ∈R : (c + ε)t ≤ x ≤ (c̃∗(∞) − ε)t

}
.

Proof. Since r1(∞) > a1r2(∞) and r2(∞) > a2r1(∞), for ρi > 0 (i = 1, 2) given in (14), we 
can choose δ, β1, β2, ν1, ν2 > 0 sufficiently small such that

δ < min

{
c̃∗(∞) − c

10
,
r1(∞) − a1r2(∞)

μ̃∗
1(∞)

,
r2(∞) − a2r1(∞)

μ̃∗
2(∞)

}
,

(1 − ν1)
[
ρ1 + r1(∞) − δμ̃∗

1(∞) − β1 − a1r2(∞)
]
> ρ1,

(1 − ν2)
[
ρ2 + r2(∞) − δμ̃∗

2(∞) − β2 − a2r1(∞)
]
> ρ2.

(46)

Since ui0(x) > 0 on a closed interval, it follows from the strong monotonicity in [19, Proposi-
tion 2.2] that ui(t, x) > 0 for all t > 0 and x ∈R. Choose 0 < t0 ≤ min{σ(μ̌1)/c, σ(μ̌2)/c} such 
that ui(t0, x) ≥ βi for x ∈ [�i, �i + 4π/γ ] and set

χi(0, x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

βiη
(
μ̌i ;x−�i

)
η(μ̌i ;σ(μ̌i ))

, �i ≤ x ≤ �i + σ(μ̌i),

βi, �i + σ(μ̌i) ≤ x ≤ �i + σ(μ̂i) + 3π
γ

,

βiη
(
μ̂i ;x−�i− 3π

γ

)
η(μ̂i ;σ(μ̂i ))

, �i + σ(μ̂i) + 3π
γ

≤ x ≤ �i + 4π
γ

,

0, elsewhere.
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It is easily seen that for 0 ≤ s ≤ 2π/γ ,

χi(0, x) ≥ βi

η
(
μ̌i;σ(μ̌i)

)η (μ̌i;x − �i − s
)

and

χi(0, x) ≥ βi

η(μ̂i;σ(μ̂i))
η
(
μ̂i;x − �i − 3π/γ + s

)
.

Since ui(t0, x) ≥ βi ≥ χi(0, x) for x ∈ [�i, �i + 4π/γ ], by Lemma 3.1, it follows that for 
t ≥ t0 and 0 ≤ s ≤ 2π/γ ,

ui(t, x) ≥ βi

η(μ̌i;σ(μ̌i))
η
(
μ̌i;x − �i − �i(μ̌i, γ )(t − t0) − s

)
and

ui(t, x) ≥ βi

η(μ̂i;σ(μ̂i))
η
(
μ̂i;x − �i − �i(μ̂i, γ )(t − t0) − 3π/γ + s

)
.

Let �̌�i

i (t, t0) = �i + �i(μ̌i, γ )(t − t0) + σ(μ̌i) and �̂�i

i (t, t0) = �i + �i(μ̂i , γ )(t − t0) + σ(μ̂i). 
By similar induction arguments to those in [27, Theorem 2.2 (iii)], we can show that

ui(t, x) ≥ χi(t − t0, x), for all t ≥ t0, (47)

where

χi(t − t0, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

βiη
(
μ̌i ;x−�i−�i(μ̌i ,γ )(t−t0)

)
η(μ̌i ;σ(μ̌i ))

, �̌
�i

i (t, t0) − σ(μ̌i) ≤ x ≤ �̌
�i

i (t, t0),

βi, �̌
�i

i (t, t0) ≤ x ≤ �̂
�i

i (t, t0) + 3π
γ

,

βiη
(
μ̂i ;x−�i−�i(μ̂i ,γ )(t−t0)− 3π

γ

)
η(μ̂i ;σ(μ̂i ))

, �̂
�i

i (t, t0) + 3π
γ

≤ x ≤
�̂

�i

i (t, t0) − σ(μ̂i) + 4π
γ

,

0, elsewhere.

(48)

Let t1 > t0 be sufficiently large. Then, for t > t1, the solution (u1(t, x), u2(t, x)) of (9) satisfies

u1(t, x) = [
eL1(t−t1)u1(t1, ·)

]
(x)

+
t∫

t1

[
eL1(t−θ)F1

( · −cθ,u1(θ, ·), u2(θ, ·))](x)dθ,

u2(t, x) = [
eL2(t−t1)u2(t1, ·)

]
(x)

+
t∫ [

eL2(t−θ)F2
( · −cθ,u1(θ, ·), u2(θ, ·))](x)dθ,
t1
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where Fi is defined in (14), i = 1, 2. According to (47), the positivity of eLi (t) and the nonde-
creasing property of Fi with respect to ui , we obtain for t > t1

u1(t, x) ≥ [
eL1(t−t1)χ1(t1 − t0, ·)

]
(x)

+
t∫

t1

[
eL1(t−θ)F1

( · −cθ,χ1(θ − t0, ·), u2(θ, ·))](x)dθ,

u2(t, x) ≤ [
eL2(t−t1)r2(∞)

]
(x)

+
t∫

t1

[
eL2(t−θ)F2

( · −cθ,u1(θ, ·), r2(∞)
)]

(x)dθ.

(49)

Let [t1] be the largest integer which is no more than t1. For t ≥ t1 and x satisfying

�̌
�1
1 (t, t0) + [t1]π/(2γ ) ≤ x ≤ �̂

�1
1 (t, t0) + 3π/γ − [t1]π/(2γ ), (50)

we have{
χ1(t − t0, x) = β1,

χ1
(
t − t0, x − �N

i=1xi

)= β1, xi ∈ [−π/(2γ ),π/(2γ )
]

for N ∈ {1, · · · , [t1]}.
(51)

In view of (12) and (51), we then further have

[
eL1(t−t1)χ1(t1 − t0, ·)

]
(x)

≥e−(ρ1+d1)(t−t1)

[t1]∑
l=0

[d1(t − t1)]l
l!

[
J

(l)
1 ∗ χ1

]
(t1 − t0, x)

≥e−(ρ1+d1)(t−t1)

⎡
⎢⎢⎣χ1(t1 − t0, x) + d1(t − t1)

1!

π
2γ∫

− π
2γ

J1(x1)χ1(t1 − t0, x − x1)dx1+

· · · + (d1(t − t1))
[t1]

[t1]!

π
2γ∫

− π
2γ

· · ·
π
2γ∫

− π
2γ

[t1]∏
i=1

J1(xi)χ1
(
t1 − t0, x − x̄[t1]

)
dx1 · · ·dx[t1]

⎤
⎥⎥⎦ (52)

=e−(ρ1+d1)(t−t1)β1

⎡
⎢⎢⎣1 + d1(t − t1)

1!

π
2γ∫

− π
2γ

J1(x1)dx1 + · · ·

+ (d1(t − t1))
[t1]

[t1]!

π
2γ∫

− π

J1(x1)dx1

π
2γ∫

− π

J1(x2)dx2 · · ·
π
2γ∫

− π

J1(x[t1])dx[t1]

⎤
⎥⎥⎦
2γ 2γ 2γ
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→e−ρ1(t−t1)β1

⎧⎨
⎩1 − e−d1(t−t1)

∞∑
i=[t1]+1

[d1(t − t1)]i
i!

⎫⎬
⎭ , as γ → 0+

where x̄[t1] = x1 + x2 + · · · + x[t1]. Hence, for small ν1 chosen as above, if t1 is sufficiently large 
and then γ := 1/t1 is so small, (52) implies

[
eL1(t−t1)χ1(t1 − t0, ·)

]
(x) ≥ e−ρ1(t−t1)β1(1 − ν1). (53)

Furthermore, for any θ ∈ (t1, t), similar to (52), we get

[
eL1(t−θ)F1

( · −cθ,χ1(θ − t0, ·), u2(θ, ·))](x)

≥
[
eL1(t−θ)F1

( · −cθ,χ1(θ − t0, ·), r2(∞)
)]

(x)

≥e−(ρ1+d1)(t−θ)

[t1]∑
l=0

[d1(t − θ)]l
l!

[
J

(l)
1 ∗ F1

] (
x − cθ,χ1(θ − t0, x), r2(∞)

)

≥e−(ρ1+d1)(t−θ)

[
F1
(
x − cθ,χ1(θ − t0, x), r2(∞)

)+ d1(t − θ)

1!

×
π
2γ∫

− π
2γ

J1(x1)F1
(
x − x1 − cθ,χ1(θ − t0, x − x1), r2(∞)

)
dx1 + · · ·

+ (d1(t − θ))[t1]

[t1]!

π
2γ∫

− π
2γ

· · ·
π
2γ∫

− π
2γ

[t1]∏
i=1

J1(xi)F1

(
x − x̄[t1] − cθ,

χ1
(
θ − t0, x − x̄[t1]

)
, r2(∞)

)
dx1 · · ·dx[t1]

]
.

(54)

Also for any t ≥ t1 > t0 and x satisfying (50), there holds

x − �N
i=1xi − ct ≥ �1 + �1(μ̌1, γ )(t − t0) + σ(μ̌1) − ct

= �1 + (c + δ)(t − t0) + σ(μ̌1) − ct

≥ �1 − ct0 + σ(μ̌1) ≥ �1,

(55)

where we have used the fact that �1(μ̌1, γ ) = c + δ and the choice of t0. Besides, since c̃∗
1(�1) =

c̃∗
1(∞) − δ, we have

d1

[ ∫
R J1(y)eμ̃∗

1(∞)ydy − 1
]
+ r1(∞) − a1r2(∞)

μ̃∗
1(∞)

− δ

≤
̃1
(
�1; μ̃∗

1(∞)
)=

d1

[∫
R J1(y)eμ̃∗

1(∞)ydy − 1
]
+ r1(�1) − a1r2(∞)

∗ .

μ̃1(∞)
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Hence r1(�1) ≥ r1(∞) − δμ̃∗
1(∞). It immediately follows from the nondecreasing property of r1

and (55) that

r1

(
x − �N

i=1xi − cθ
)

≥ r1(�1) ≥ r1(∞) − δμ̃∗
1(∞) (56)

for θ ≥ t1 and N ∈ {1, · · · , [t1]}. From (48), (50) to (56) and with ν1 chosen above, for any 
t ≥ θ ≥ t1 and x satisfying (50), we have

[
eL1(t−θ)F1

( · −cθ,χ1(θ − t0, ·), u2(θ, ·))](x)

≥e−ρ1(t−θ)β1
[
ρ1 + r1(∞) − δμ̃∗

1(∞) − β1 − a1r2(∞)
]
(1 − ν1).

(57)

From (49) to (57), we obtain u1(t, x) ≥ ũ
(1)
1 (t) and u2(t, x) ≤ ũ

(1)
2 (t), where

ũ
(1)
1 (t) = (1 − ν1)β1e−ρ1(t−t1) + (1 − ν1)

×
t∫

t1

e−ρ1(t−θ)β1
[
ρ1 + r1(∞) − δμ̃∗

1(∞) − β1 − a1r2(∞)
]
dθ,

ũ
(1)
2 (t) = r2(∞)e−ρ2(t−t1) +

t∫
t1

e−ρ2(t−θ)r2(∞)
[
ρ2 − a2β1

]
dθ.

(58)

For m ≥ 2, we consider the following iterations scheme:

ũ
(m)
1 (t) = (1 − ν1)β1e−ρ1(t−t1) + (1 − ν1)

t∫
t1

e−ρ1(t−θ)E1

(
ũ

(m−1)
1 (θ), ũ

(m−1)
2 (θ)

)
dθ,

ũ
(m)
2 (t) = r2(∞)e−ρ2(t−t1) +

t∫
t1

e−ρ2(t−θ)E2

(
ũ

(m−1)
1 (θ), ũ

(m−1)
2 (θ)

)
dθ,

(59)

where

E1

(
ũ

(m−1)
1 (t), ũ

(m−1)
2 (t)

)
=ũ

(m−1)
1 (t)

[
ρ1 + r1(∞) − δμ̃∗

1(∞) − ũ
(m−1)
1 (t) − a1ũ

(m−1)
2 (t)

]
,

E2

(
ũ

(m−1)
1 (t), ũ

(m−1)
2 (t)

)
=ũ

(m−1)
2 (t)

[
ρ2 + r2(∞) − ũ

(m−1)
2 (t) − a2ũ

(m−1)
1 (t)

]
.

(60)

By induction, we can further derive that for t ≥ t1 large enough and x satisfying

�̌
�1(t, t0) + m[t1]π/(2γ ) ≤ x ≤ �̂

�1(t, t0) + 3π/γ − m[t1]π/(2γ ), (61)
1 1
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there holds

u1(t, x) ≥ ũ
(m)
1 (t) and u2(t, x) ≤ ũ

(m)
2 (t), m ≥ 1. (62)

We next explore the asymptotic behavior of (ũ
(m)
1 (t), ũ(m)

2 (t)) as t → ∞. We begin 

with (ũ
(1)
1 (t), ũ(1)

2 (t)). Applying the L’Hospital’s rule to (58), we know that ũ
(1)
1 (∞) :=

limt→∞ ũ
(1)
1 (t) and ũ(1)

2 (∞) := limt→∞ ũ
(1)
2 (t) exist and are given by

ũ
(1)
1 (∞) = 1

ρ1
(1 − ν1)β1

[
ρ1 + r1(∞) − δμ̃∗

1(∞) − β1 − a1r2(∞)
]
,

ũ
(1)
2 (∞) = 1

ρ2
r2(∞)[ρ2 − a2β1].

(63)

Applying the L’Hospital’s rule to (59), we inductively conclude that for m ≥ 2, ũ(m)
1 (∞) and 

ũ
(m)
2 (∞) also exist and they satisfy the recursive relation:

ũ
(m)
1 (∞) = 1

ρ1
(1 − ν1)E1

(
ũ

(m−1)
1 (∞), ũ

(m−1)
2 (∞)

)
,

ũ
(m)
2 (∞) = 1

ρ2
E2

(
ũ

(m−1)
1 (∞), ũ

(m−1)
2 (∞)

)
.

(64)

We next show that ũ(m)
1 (∞) is increasing and ũ(m)

2 (∞) is decreasing with respect to m. Firstly, 

(46) leads to ũ(1)
1 (∞) > β1. Obviously ũ(1)

2 (∞) < r2(∞). From (64) and (63), we then have

ρ1

[
ũ

(2)
1 (∞) − ũ

(1)
1 (∞)

]
(1 − ν1)

=ũ
(1)
1 (∞)

[
ρ1 + r1(∞) − δμ̃∗

1(∞) − ũ
(1)
1 (∞) − a1ũ

(1)
2 (∞)

]
− β1

[
ρ1 + r1(∞) − δμ̃∗

1(∞) − β1 − a1r2(∞)
]

≥ũ
(1)
1 (∞)

[
ρ1 + r1(∞) − δμ̃∗

1(∞) − ũ
(1)
1 (∞) − a1r2(∞)

]
− β1

[
ρ1 + r1(∞) − δμ̃∗

1(∞) − β1 − a1r2(∞)
]≥ 0,

since u1
[
ρ1 + r1(∞) − δμ̃∗

1(∞) − u1 − a1r2(∞)
]

is nondecreasing in u1 ∈ [0, r1(∞)) (by 

(13)). Thus, ũ(2)
1 (∞) ≥ ũ

(1)
1 (∞), and by induction, ũ(m)

1 (∞) is increasing in m. Also

ρ2

[
ũ

(2)
2 (∞) − ũ

(1)
2 (∞)

]
=ũ

(1)
2 (∞)

[
ρ2 + r2(∞) − ũ

(1)
2 (∞) − a2ũ

(1)
1 (∞)

]
− r2(∞)[ρ2 − a2β1]

≤r (∞)[ρ + r (∞) − r (∞) − a β ] − r (∞)[ρ − a β ] = 0,
2 2 2 2 2 1 2 2 2 1
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which implies ũ(2)
2 (∞) ≤ ũ

(1)
2 (∞); and by induction, ũ(m)

2 (∞) is decreasing in m.

The monotonicity of ũ(m)
1 (∞) and ũ(m)

2 (∞) implies the limits of ũ(m)
1 (∞) and ũ(m)

2 (∞)

as m → ∞ both exist. Letting m → ∞ in (64), and setting limm→∞ ũ
(m)
1 (∞) = u

�
1 and 

limm→∞ ũ
(m)
2 (∞) = u

�
2 , we get

u
�
1 = u∗

1 − δμ̃∗
1(∞)

1 − a1a2
− ν1ρ1

(1 − ν1)(1 − a1a2)
,

u
�
2 = u∗

2 + a2δμ̃
∗
1(∞)

1 − a1a2
+ a2ν1ρ1

(1 − ν1)(1 − a1a2)
,

since it is easy to verify u�
i > 0 (i = 1, 2). Thus, for an arbitrary small ς > 0, there exists some 

positive number m1 large enough such that

ũ
(m1)
1 (∞) ≥ u∗

1 − δμ̃∗
1(∞)

1 − a1a2
− ν1ρ1

(1 − ν1)(1 − a1a2)
− ς,

ũ
(m1)
2 (∞) ≤ u∗

2 + a2δμ̃
∗
1(∞)

1 − a1a2
+ a2ν1ρ1

(1 − ν1)(1 − a1a2)
+ ς.

(65)

Let m in (61) and (62) be replaced by this fixed m1. Note that for any given 0 < ε < (c̃∗(∞) −
c)/2, we can select δ small enough with δ < ε/4. Then, by Lemma 3.1, we have �i(μ̌i, γ ) =
c + δ < c + ε/4 and �i(μ̂i, γ ) = c∗

iγ (�i) − 2δ ≥ c̃∗
i (�i) − 3δ = c̃∗

i (∞) − 4δ > c̃∗
i (∞) − ε. Thus, 

for the above fixed m1 and below m2, we can choose t ≥ t1 sufficiently large such that for t ≥ t1, 
there holds

�̌
�i

i (t, t0) + mi[t1]π/(2γ ) = �i + �i(μ̌i , γ )(t − t0) + σ(μ̌i) + mi[t1]π/(2γ )

≤ (c + ε)t < (c̃∗(∞) − ε)t ≤ (c̃∗
i (∞) − ε)t

≤ �i + �i(μ̂i , γ )(t − t0) + σ(μ̂i) + 3π/γ − mi[t1]π/(2γ )

= �̂
�i

i (t, t0) + 3π/γ − mi[t1]π/(2γ ).

(66)

This implies for t ≥ t1, the spatial interval

Ht =
[
�̌

�1
1 (t, t0) + m1[t1]π/(2γ ), �̂

�1
1 (t, t0) + 3π/γ − m1[t1]π/(2γ )

]

is non-empty and it indeed contains Dt = {
x ∈R : (c + ε)t ≤ x ≤ (c̃∗(∞) − ε)t

}
as its subinter-

val. It follows from (62) and (65) that

lim inf
t→∞,x∈Dt

u1(t, x) ≥ u∗
1 − δμ̃∗

1(∞)

1 − a1a2
− ν1ρ1

(1 − ν1)(1 − a1a2)
− ς,

lim sup u2(t, x) ≤ u∗
2 + a2δμ̃

∗
1(∞)

1 − a a
+ a2ν1ρ1

(1 − ν )(1 − a a )
+ ς.

(67)
t→∞,x∈Dt 1 2 1 1 2
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Similarly, with ν2, β2, ρ1, ρ2, δ chosen above, we can consider another iteration scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

û
(m)
1 (t) = r1(∞)e−ρ1(t−t1) +

t∫
t1

e−ρ1(t−θ)û
(m−1)
1 (θ)

×
[
ρ1 + r1(∞) − û

(m−1)
1 (θ) − a1û

(m−1)
2 (θ)

]
dθ, m ≥ 2,

û
(m)
2 (t) = (1 − ν2)β2e−ρ2(t−t1) + (1 − ν2)

t∫
t1

e−ρ2(t−θ)û
(m−1)
2 (θ)

×
[
ρ2 + r2(∞) − δμ̃∗

2(∞) − û
(m−1)
2 (θ) − a2û

(m−1)
1 (θ)

]
dθ, m ≥ 2;

û
(1)
1 (t) = r1(∞)e−ρ1(t−t1) +

t∫
t1

e−ρ1(t−θ)r1(∞)[ρ1 − a1β2]dθ,

û
(1)
2 (t) = (1 − ν2)β2e−ρ2(t−t1) + (1 − ν2)

t∫
t1

e−ρ2(t−θ)β2

× [
ρ2 + r2(∞) − δμ̃∗

2(∞) − β2 − a2r1(∞)
]
dθ.

By the same argument, we can show that when t1 is sufficiently large, there holds

u1(t, x) ≤ û
(m)
1 (t) and u2(t, x) ≥ û

(m)
2 (t),

for t ≥ t1 and x satisfying

�̌
�2
2 (t, t0) + m[t1]π/(2γ ) ≤ x ≤ �̂

�2
2 (t, t0) + 3π/γ − m[t1]π/(2γ ). (68)

We can also show that û(m)
1 (∞) and û(m)

2 (∞) exist and for arbitrary small ς > 0, there exists 
m2 > 0 such that

û
(m2)
1 (∞) ≤ u∗

1 + a1δμ̃
∗
2(∞)

1 − a1a2
+ a1ν2ρ2

(1 − ν2)(1 − a1a2)
+ ς,

û
(m2)
2 (∞) ≥ u∗

2 − δμ̃∗
2(∞)

1 − a1a2
− ν2ρ2

(1 − ν2)(1 − a1a2)
− ς.

Moreover, in view of (66), the spatial interval defined by (68) is non-empty and contains Dt as 
its subinterval when m is replaced by this fixed m2. Hence, it leads to

lim sup
t→∞,x∈Dt

u1(t, x) ≤ u∗
1 + a1δμ̃

∗
2(∞)

1 − a1a2
+ a1ν2ρ2

(1 − ν2)(1 − a1a2)
+ ς,

lim sup u2(t, x) ≥ u∗
2 − δμ̃∗

2(∞)

1 − a a
− ν2ρ2

(1 − ν )(1 − a a )
− ς.

(69)
t→∞,x∈Dt 1 2 2 1 2
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Finally, because δ, ν1, ν2, ς can be arbitrarily small, (67) and (69) actually imply

u∗
1 ≤ lim inf

t→∞,x∈Dt

u1(t, x) ≤ lim sup
t→∞,x∈Dt

u1(t, x) ≤ u∗
1,

u∗
2 ≤ lim inf

t→∞,x∈Dt

u2(t, x) ≤ lim sup
t→∞,x∈Dt

u2(t, x) ≤ u∗
2,

and this completes the proof of the theorem. �
The next theorem identifies condition on the initial distributions and a traveling observer’s 

speed (slower than c or faster than c∗
i (∞)) under which the species’ population will eventually 

not seeable by the observer.

Theorem 3.3. Let 0 < c < min{c∗
1(∞), c∗

2(∞)}. Then we have the following conclusions.

(i) If u0 ∈ Xr(∞) satisfies supx∈R ui0(x) < ri(∞), i = 1, 2 and u0(x) ≡ 0 for sufficiently large 
negative x, then for any small κ > 0,

lim
t→∞ sup

x≤(c−κ)t

(
u1(t, x), u2(t, x)

)= (0,0).

(ii) If u0 ∈Xr(∞) and u0(x) ≡ 0 for sufficiently large positive x, then for any small ε > 0,

lim
t→∞ sup

x≥(c∗
i (∞)+ε)t

(
u1(t, x), u2(t, x)

)= (0,0).

Proof. (i) According to [29, Theorem 4.5], for any c > 0, the equation (24) has a nondecreasing 
positive traveling wave solution ψi(x − ct) with ψi(−∞) = 0 and ψi(∞) = ri(∞). Following 
the proofs of Theorem 3.1, we see that for any small ε > 0, there exists a large number M such 
that (26) holds. Notice that for any given κ > 0, there exists some T2 > 0 such that (c − κ)t ≤
ct − M for all t ≥ T2. Thus, the conclusion follows from (26).

(ii) For any small ε > 0, let μi
ε be the smallest positive root of 
i(∞; μ) = c∗

i (∞) + ε
2 . Let 

ūi (t, x) = qie−μi
ε

[
x−
i

(∞;μi
ε

)
t
]

with qi > 0, then it is a solution of the following linear equation

∂tvi(t, x) = di

[
(Ji ∗ vi)(t, x) − vi(t, x)

]+ ri(∞)vi(t, x).

Choose qi so large that ui0(x) ≤ ūi (0, x) = qie−μi
εx for all x since u0(x) ≡ 0 for sufficiently 

large positive x. By Remark 2.1, it is easy to see that (ū1(t, x), ū2(t, x)) and (0, 0) are a pair of 
ordered upper and lower solutions of (9) for all t ≥ 0 and x ∈ R. Hence, for x ≥ (c∗

i (∞) + ε)t =[

i

(∞;μi
ε

)+ ε
2

]
t , there holds ui(t, x) ≤ qie−μi

ε · ε
2 t , leading to the conclusion, and the proof is 

completed. �
The following two theorems illustrate that replacement (or one species is invaded by the other) 

will happen if the environment worsening speed is medium.

Theorem 3.4. Assume c∗
1(∞) < c < c∗

2(∞). Let u(t, x, u0) be the unique solution of the Cauchy 
problem (9) with u0 ∈ Xr(∞). If u10(·) has a compact support, supx∈R u10(x) < r1(∞), and 



C. Wu et al. / J. Differential Equations 267 (2019) 4890–4921 4915
u20(x) > 0 on a closed interval, then for each 0 < ε < [c∗
2(∞) − c]/2, there exists a T∗ > 0 such 

that u1(t, x) ≤ ε for all t ≥ T∗ and x ∈ R, and moreover limt→∞,x∈Et
u2(t, x) = r2(∞), where 

Et = {
x ∈R : (c + ε)t ≤ x ≤ (c∗

2(∞) − ε)t
}
.

Proof. By a similar argument to that in Theorem 3.1, we see that for any 0 < σ < ε there exists 
a T∗ > 0 such that u1(t, x) ≤ σ for all t ≥ T∗ and x ∈ R. Thus, for all t ≥ T∗ and x ∈ R, we have

∂tu2(t, x) ≥ d2
[
(J2 ∗ u2)(t, x) − u2(t, x)

]+ u2
[
r2(x − ct) − u2 − a2σ ]

and

∂tu2(t, x) ≤ d2
[
(J2 ∗ u2)(t, x) − u2(t, x)

]+ u2
[
r2(x − ct) − u2

]
.

Hence, the comparison principle implies that

v2(t, x) ≤ u2(t, x,u0) ≤ w2(t, x) for all t ≥ T∗ and x ∈R,

where v2(t, x) and w2(t, x) is, respectively, solution of

∂tv2(t, x) = d2
[
(J2 ∗ v2)(t, x) − v2(t, x)

]+ v2
[
r2(x − ct) − a2σ − v2

]
, t > T∗,

v2(T∗, x) = u2(T∗, x,u0) > 0,

and

∂tw2(t, x) = d2
[
(J2 ∗ w2)(t, x) − w2(t, x)

]+ w2
[
r2(x − ct) − w2

]
, t > T∗,

w2(T∗, x) = u2(T∗, x,u0) > 0.

From [29, Theorem 3.3] it follows that limt→∞,x∈Et
w2(t, x) = r2(∞). Denote

c∗
2σ (∞) = inf

μ>0

d2
[ ∫

R J2(y)eμydy − 1
]+ r2(∞) − a2σ

μ
.

Applying [29, Theorem 3.3] to the equation for v2 defined above, then we have

lim
t→∞,x∈Et (σ )

v2(t, x) = r2(∞) − aσ,

where Et (σ ) = {
x ∈ R : (c + ε)t ≤ x ≤ (c∗

2σ (∞) − ε)t
}
. Combining the above with the facts 

that c∗
2σ (∞) < c∗

2(∞), c∗
2σ (∞) → c∗

2(∞), Et (σ ) → Et as σ → 0+, and noting that σ > 0 can be 
arbitrary small, we are led to the conclusion. The proof is completed. �

In a parallel manner, we also have the following result.

Theorem 3.5. Assume c∗
2(∞) < c < c∗

1(∞). Let u(t, x, u0) be the unique solution of the Cauchy 
problem (9) with u0 ∈ Xr(∞). If u20(·) has a compact support, supx∈R u20(x) < r2(∞), and 
u10(x) > 0 on a closed interval, then for each 0 < ε < [c∗

1(∞) − c]/2, there exists a T ∗ > 0 such 
that u2(t, x) ≤ ε for all t ≥ T ∗ and x ∈ R, and moreover limt→∞,x∈Ft

u1(t, x) = r1(∞), where 
Ft = {

x ∈ R : (c + ε)t ≤ x ≤ (c∗
1(∞) − ε)t

}
.
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4. Numeric simulations

In this section, we present some numeric simulation results for the system (6) to demonstrate 
our analytic results. To be computable, we choose the following particular kernel function for 
both J1 and J2:

J2(x) = J1(x) =
{

0.1
2(1−e−1)

e− |x|
10 , −10 ≤ x ≤ 10,

0, elsewhere.

Also, in the sequel we will use the following initial data:

u1(0, x) =
{

0.4 sin(x − 20), 20 ≤ x ≤ 20 + π,

0, elsewhere,

u2(0, x) =
{

0.8 sin(x − 10), 10 ≤ x ≤ 10 + π,

0, elsewhere.

For the two growth functions r1 and r2, we first choose r1(x − ct) = 0.2
π

arctan(x − ct) and 
r2(x − ct) = 0.14

π
arctan(x − ct). Then r1(∞) = 0.1 and r2(∞) = 0.07. Now for a1 = 0.12, 

a2 = 0.14, d1 = 1.3, d2 = 1.15, we can calculate to obtain

c∗
1(∞) = 1.3

[ ∫
R J1(y)eμydy − 1

]+ 0.1

μ

∣∣∣
μ≈0.07493

≈ 2.6041,

c∗
2(∞) = 1.15

[ ∫
R J1(y)eμydy − 1

]+ 0.07

μ

∣∣∣
μ≈0.06714

≈ 2.0438.

Now, if c = 2.8, then c > max{c∗
1(∞), c∗

2(∞)}, a scenario that the environment worsens too fast 
and too severe (ri(−∞) < 0), the numeric results presented in Fig. 2 (top left) show that both 
species will eventually go to extinction, agreeing with Theorem 3.1. However, if c = 2.2, then 
c∗

2(∞) < c < c∗
1(∞). Then by Theorem 3.5, u1-species will survive by spread toward the right 

at speed c∗
1(∞) approaching the level r1(∞) = 0.1, while the u2-species will eventually die out. 

See Fig. 2 (top right and bottom).
Next choose r1(x − ct) = 0.24

π
arctan(x − ct), r2(x − ct) = 0.16

π
arctan(x − ct) and a1 = 0.28, 

a2 = 0.18, d1 = 1.3, d2 = 1.6. Then, r1(∞) − a1r2(∞) = 0.0976, r2(∞) − a2r1(∞) = 0.0584
and calculations give (u∗

1, u
∗
2) ≈ (0.103, 0.061) and

c̃∗
1(∞) = 1.3

[ ∫
R J1(y)eμydy − 1

]+ 0.0976

μ

∣∣∣
μ≈0.07408

≈ 2.5719,

c̃∗
2(∞) = 1.6

[ ∫
R J1(y)eμydy − 1

]+ 0.0584

μ

∣∣∣
μ≈0.05260

≈ 2.1929,

c∗
1(∞) = 1.3

[ ∫
R J1(y)eμydy − 1

]+ 0.12

μ

∣∣∣
μ≈0.08153

≈ 2.8597,

c∗
2(∞) = 1.6

[ ∫
R J1(y)eμydy − 1

]+ 0.08 ∣∣∣ ≈ 2.5725.

μ μ≈0.06117
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Fig. 2. In the top left, as c > max{c∗
1(∞), c∗

2(∞)}, both two species become extinction eventually. In the top right, as 
c∗

2(∞) < c < c∗
1(∞), u1-species will persist by spreading to the right with speed c∗

1(∞), while u2-species will go to 
extinction. In the bottom, 3-D portrait shows that u1-species persists by spreading to the right with the speed c∗

1 (∞) ≈ 2.6
and with the density approaching r1(∞) = 0.1.

Thus c̃∗(∞) = min{c̃∗
1(∞), c̃∗

2(∞)} ≈ 2.19 and c∗(∞) = min{c∗
1(∞), c∗

2(∞)} ≈ 2.57. Now, if 
c = 1.8 < c̃∗(∞), Theorem 3.2 concludes that both species will persist through spreading to the 
right, and the numeric results confirm this conclusion, as shown in Fig. 3 (left).

5. Conclusion and discussion

We have analyzed the competitive system (6) with nonlocal dispersion and in a shifting en-
vironment reflected by the grow functions r1(x − ct) and r2(x − ct). Our theoretical results 
show that under the “worsening” condition (A1) for these two growth functions and the stan-
dard condition (A2) for the two nonlocal dispersion kernels, the four composite parameters 
c∗
i (∞) and c̃∗

i (∞) (i = 1, 2) play a crucial role in determining the spatial-temporal dynamics 
of the populations of two competing species. That is, (i) if the environment worsening speed c
is very fast (c > max{c∗

1(∞), c∗
2(∞)}), then both species cannot survive in such a shifting of 

disastrous environment (noting that ri(−∞) < 0, i = 1, 2); (ii) if the worsening speed is small 
(c < c̃∗(∞) := min{c̃∗

1(∞), c̃∗
2(∞)}), then both species will persist by spreading toward the right 

with a speed between c and ci(∞) for species i (see Theorems 3.2 and 3.3); (iii) when the wors-
ening speed is medium-high, e.g., c ∈ (c∗

1(∞), c∗
2(∞)), then species 1 will go to extinction while 

the species 2 will persist through spreading to the right (Theorem 3.4).
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Fig. 3. In the left, as 0 < c < c̃∗(∞), both species persist through spreading to the right. In the right, as c̃∗(∞) < c <

c∗(∞), both species can still persist through spreading to the right.

We point out that even under homogeneous environment, the results on spreading speed for 
a competitive Lotka-Volterra system with nonlocal dispersal are very limited. Hu et al. [21]
considered a general multi-species system with nonlocal dispersal in homogeneous environment 
and obtained some abstract results, which can be applied to the following nonlocal dispersal 
Lotka-Volterra competition system with constant growth rates r1, r2 > 0 that is pertinent to our 
model system (6):

{
∂tp(t, x) = d1

[
(J1 ∗ p)(t, x) − p(t, x)

]+ p [r1 − p − a1q] ,

∂tq(t, x) = d2
[
(J2 ∗ q)(t, x) − q(t, x)

]+ q
[
r2 − q − a2p

]
.

(70)

Letting u1 = p, u2 = r2 − q , the system (70) is transformed into the cooperative system

{
∂tu1(t, x) = d1

[
(J1 ∗ u1)(t, x) − u1(t, x)

]+ u1 [(r1 − a1r2) − u1 + a1u2] ,

∂tu2(t, x) = d2
[
(J2 ∗ u2)(t, x) − u2(t, x)

]+ (r2 − u2)[a2u1 − u2],
(71)

when confined to ui ∈ [0, ri] with i = 1, 2, with the equilibrium (0, r2) of (70) being transformed 
to the trivial equilibrium (0, 0) for (71). The linearization of (71) at (0, 0) is

{
∂tu1(t, x) = d1

[
(J1 ∗ u1)(t, x) − u1(t, x)

]+ (r1 − a1r2)u1,

∂tu2(t, x) = d2
[
(J2 ∗ u2)(t, x) − u2(t, x)

]+ a2r2u1 − r2u2.
(72)

The moment generating matrix of the time one solution map corresponding to (72) is given by 
eCμ where

Cμ =
[
d1[

∫
R J1(y)eμydy − 1] + r1 − a1r2 0

a2r2 d2[
∫
R J2(y)eμydy − 1] − r2

]
.

Let γ1(μ) = d1[
∫
R J1(y)eμydy − 1] + r1 − a1r2 and γ2(μ) = d2[

∫
R J2(y)eμydy − 1] − r2. By 

[21], the spreading speed of (72) is
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c̄1 = inf
μ>0

γ1(μ)

μ
= inf

μ>0

d1
[ ∫

R J1(y)eμydy − 1
]+ r1 − a1r2

μ
. (73)

The first part of [21, Theorem 4.1] has established the following

Proposition 5.1. Let r1 > a1r2 and μ∗ be the smallest positive number at which the infimum in 
(73) is attained. Assume that either

(i) μ∗ is finite and 
∫
R J2(y)eμ∗ydy is convergent, and

d1

⎡
⎣∫
R

J1(y)eμ∗ydy − 1

⎤
⎦+ r1 − a1r2

≥ d2

⎡
⎣∫
R

J2(y)eμ∗ydy − 1

⎤
⎦+ r2[max{a1a2,1} − 1]

(74)

or
(ii) μ∗ = ∞, 

∫
R Ji(y)eμydy is convergent for all μ > 0, and there exists a sequence μσ → ∞

such that for each σ

d1

⎡
⎣∫
R

J1(y)eμσ ydy − 1

⎤
⎦+ r1 − a1r2

≥ d2

⎡
⎣∫
R

J2(y)eμσ ydy − 1

⎤
⎦+ r2[max{a1a2,1} − 1]

(75)

Then, the u1 component in system (70) will spread with speed c̄1 given by (73).

Symmetrically, if r2 > a2r1, a c̄2 corresponding to (73) can be obtained and statements paral-
lel to those in the above proposition can be obtained for the spreading speed of the u2 component 
in (70), although this is not mentioned in [21]. If both r1 > a1r2 and r2 > a2r1 hold, then the 
last terms on the right sides of (74) and (75) disappear. We remark that verifying conditions 
in (74)-(75) is not trivial at all; comparing the magnitudes of c̄1 and c̄2 also remains an is-
sue. There have been reports that different species even in a cooperative system can spread at 
different speeds (see [38]). Thus, even under homogeneous environment, spreading speed of a 
Lotka-Volterra competition system with nonlocal dispersal has not been completely understood. 
If ri(x) ≡ ri(∞) =: ri in (6), then the spreading speeds c̄i of model system (70) are indeed 
c̃∗
i (∞), i = 1, 2. As we have seen, for (70), because of the shifting nature, the shifting speed also 

comes into interplay, making problem more complicated.

Note that the competition coefficients a1 and a2 only affect c̃∗
i (∞) but have no impact on 

c∗
i (∞), i = 1, 2; also note that c̃∗

i (∞) ≤ c∗
i (∞), i = 1, 2. Thus, this is an obvious gap for c

for which we are unable to obtain analytic results on the spatial-temporal dynamics of (6). How-
ever, numerical simulations suggest that when c̃∗(∞) < c < c∗(∞) := min{c∗(∞), c∗(∞)}, both 
1 2
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species can still persist through spreading to the right. For example, using the same parameter 
values as in the simulations for producing Fig. 3 (left) except for c, which is set to 2.3 (rather 
than 1.8), we obtain the numerical results given in Fig. 3 (right). It clearly shows that both species 
persist through spreading to the right. Analytically exploring the spatial-temporal dynamics of 
(6) when the worsening speed c falls into that gap (c̃∗(∞), c∗(∞)) remains an interesting but 
challenging mathematical problem, and we leave it as a future work.
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