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Abstract. Wederive from the age-structured model asystem of delay differential equations
to describe the interaction of spatial dispersal (over two patches) and time delay (arising
from the maturation period). Our model analysis showsthat varying theimmature death rate
can alter the behavior of the homogeneous equilibria, leading to transient oscillations around
an intermediate equilibrium and complicated dynamics (in the form of the coexistence of
possibly stable synchronized periodic oscillations and unstable phase-locked oscillations)
near the largest equilibrium.

1. Introduction
The purpose of this paper is two-fold:

I. To start the process of setting up a right model to describe the interaction of
spatial dispersal/diffusion and time delays;

[1. Toanayzetheresulting model and to illustrate the effect of the immature death

rate on the global dynamicsin structured populationsin a patchy environment.

Given the death rate d and a birth function b, the dynamics of a single species
population in a homogeneous environment is described by

dzy ) — _du(t) + b(u(e) (11)

or equivalently, in the form of logistic equations, by

du(t)
dt

=u@)[r — fu@))] 12
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for acertain constant r and afunction f. Considering variousfacts causing delayed
growth response, such asthe hatching period, duration of gestation, maturation and
slow replacement of food consumed, leads to the addition of atimedelay r > 0Oto
(1.1) and (1.2), resulting in the following delay differential equation

dzgt) — —du(t) + b(u(r — 1)) (13)
or

d

th) =u@®)[r — fu( - 1)) (1.4

Model eguations (1.3) and (1.4) have been widely studied in the literature, and
oscillations observed in laboratory experiments and in the real world have been
successfully attributed to del ayed rate response, see Cushing [1977], Kuang [1993],
MacDonald [1979], May [1974, 1981] and Freedman and Gopalsamy [1986].

Spatial heterogeneity isignored in model equations (1.1)—(1.4). Assuming the
single speciespopul ation isdistributed over atwo-patch environment, one naturally
introduces two variables u1 and u» to denote the population density in these two
patches and describes the growth dynamics by

d”;t(t) = —dyu (1) + by (us(t)) + Dauz(1) — Diua (1),
(15)
d”dZt(’) = —douz(t) + ba(u2(1)) + D1us(t) — Daua(1)

as amodification of (1.1), where d; and b; denote the death rates and birth func-
tions in the appropriate patch, and D; denotes the migration rate from one patch
to another, see Levin [1974, 1976, 1986]. It has also been a common practice to
modify equation (1.3) by adding the migration effect, as

d”;t(l) = —diu1(t) + b1(ua(r — 7)) + Dou2(t) — D1ua (1),
(L6)
d”dZt(t) = —daua(t) + ba(uz(t — 1) + Diua(t) — Doua(t)

or, in a continuous anal og, by the following reaction-diffusion equation with delay

du(t,x)  0%u(t, x)
ar  ox?

see Wu [1996] for some references. Unfortunately, thereisaserious problemin the
model equation (1.6) (or (1.7)). Namely, dueto the spatial dispersal, thegrowth rate
of the population at time in the i-th patch (or at the spatial point x) should depend
on the birth functions at time r — 7 in both patches (or at other spatial points).
Therefore, theterm b; (u; (t — 1)) (or b(u(r — 7, x))) should be replaced by a more
complicated function B; (u1(t — t), u2(t — t)) of ug(t — v) and u2(r — ) (or by
afunctiona b(u(t — t, -)) of u(t — 7, n) for al n in the spatial domain). Deriving
the concrete form of such afunction is one of the main purposes of this paper.

—du(t,x)+bu(t — 1, x)), @7
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Some progress has been made towards the above special “non-loca” problem
viaarandom walk argument by Britton [1990] and by Madras, Zou and Wu [1996].
See also Gourley and Britton [1993, 1996]. In this paper, we follow the idea of
Smith [1994] to derive a system of delay differential equations

du;t(t) — —d]_l/ll(t) + D2M2(Z) — Dlul(l‘) + g*(l — k)b]_(ul(l _ 'L'))
+ e*kbo(ua(t — 1)),
d”dZt(t) = —douz(t) + Diu1(t) — Douo(t) + e*kb1(u1(t — 1)) (1.8

+ " (L —k)ba(uz(t — 1))

for the mature population in both patches, from an age-structured popul ation model
(Metz and Diekmann [1986]) with spatial dispersal, where (¢*)~1 isafunction of
the immature death rate, and the term e*kb; (u ; (¢ — 7)) denotes the portion of the
mature popul ation which was born in the j-th patch at time+ — t but isin the i-th
patch at the current time ¢. Thisterm is usually ignored in the literature. See (2.9)
for amore elaborate explanation.

Our preliminary analysisin Section 3 of the model equation (1.7) for a specia
case where the two patches are identical (leading to d1 = d2, D1 = D2, b1 = b?)
shows that the immature death rate has a significant impact on the dynamics of the
mature population. For the case where the birth function accountsfor both the lack
of “group defense” at low level of population and the crowding at high level of
popul ation, we show that (i) the model has 3 non-negative homogeneous equilibria
Eo=(0,0), Eyy = (x*,x*)and Ep, = (x™*, x™) with0 < x* < x™**; (ii) varying
the immature death rate can change the locations of E; and E , lead to transient
oscillations around E); and to the coexistence of stable homogeneous periodic
solutions and unstable phase-locked oscillations near E;..

2. A two-patch model

The purpose of this section is to develop a model of a single species living in a
two-patch environment. Let u; (¢, a) denote the number of the species in patch i
i=12atimer(t > 0)andat agea (0 < a < 00). Then (see Diekmann and
Metz [1986])

fualt,a) | (@) 4 @us(r, a) + Dat@ua(t, a) — Dy@us(t, a),

ot da
3142;? & auza(;, 9 _ —da(a)uz(t, a) + Di(@)ui(t, a) — Da(a)uz(t, a).

(2.1)
Hered; (a) isthe death rate of theindividuals of agea in patchi and D (a)u (¢, a)
corresponds to the dispersal of the species at age a from patch j to patch i, where
1<i # j <2 Wehaveassumed that there is no loss during migration from patch
Jj topatch i, that is, all of those which leave patch j arrive at patch i safely.



40 J W.-H. Soetal.

Suppose that the population consists of two age-structured groups: immatures
and matures, and denote the maturation ageby » > 0. Fori = 1, 2, we assumethat

L )dii(@) =di(a), forO<a<r,
di(a) = { dim(a) = constant, fora > r (22)
and for 0
.+ _ ) Dii@=Dj@a), forO<a=<r,
Di(a) = { D;,, = constant, fora >r (23)

where I stands for infants/immature and m stands for mature/adults. Note that we
have assumed that the death rate of immatures is independent of the patch con-
sidered. This assumption is made just for the purpose of demonstrating the joint
effect of maturation and spatial diffusion on the heterogeneity of the systemin later
sections. At agiven time ¢, the number of adultsin patch i is given by

w; () = /OO u;(t,a)da, (2.9

and since only adults can give birth,
ui(t,0) = bi(w; (1)), (25)
where b; (w) is the birth rate of the species in the i-th patch. By integrating (2.1)

with respect to a from r to co, we have

d o 8u,- ©
—w;(t) = —/ —(t,a)da — / di(a)u;(t,a)da
dt r  da .

+/ Dj(a)uj(t,a)da—/ D;(a)u;(t,a)da
=u;t,r) —dimw;i() + Djuwa(t) — D; pw; (1),

where we have assumed u; (¢, o) = 0. Hence

d
—w1(t) = —dymw1(t) + D2, w2(t) — Dy pwa(t) +ua(t, r),
dt (2.6)

d
sz(t) = —dz qw1(t) + D1 mw1(t) — D2 w2(t) +u2(t, r).

We now derive the formulafor u; (¢, r). Fix s and consider the function
Vi) =ui(t,t—s), fors<tr<s+randi=12

Then

%Vf(t) = —di(t =)V} () + Dj(t —s)V; (1) — Di(t =)V (1),

fort >s,1<i#j<2

Sinced;(t —s) =d;(t —s)fori =1,2ands <t <s +r,wehave

d . . , , ,
= (Vi) + Vi) =—dit —s) [Vi(®) + Vs (0)].
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Solving this linear equation and using (2.5), we get
Vi) + V3(@0) = e B aC4 (i) 4 v3(s)]
— ¢ Jo I @A [ () + ba(wa(s)], fors <1 <s+r
Hence
d
Evf(t) =—d;(t —)V{ (1) + Dot — ) [Vi (1) + V5 (1)]
—[D1(t — 5) + Do(t — $)]V{ (1)
——D*(t — )V () +D2t — s)e Jo " 4@ [y (wyy (5))+bp(wiAs))],

where D*(a) = dj(a) + D1(a) + D2(a).
Solving the above for V(¢) yields

VE(t) = = s DTO=9dbys gy

4 1 % —s
+/ e~ J DO by 6 o= S5 @ da g [y (g (5)) + ba(wa(s))]

s

= ¢~ o " DM@dap) (4, (5))

! =S ry% E—s
+/ oS DT @da 6 e JoT i@ da g [ wa(s)) + ba(was))].

Let D(a) = D1(a) + D2(a). Then
u(t,r) = Vi~ ()
= =l D @da )y (1 — 1))
+/t e DM @dapy 6 gy o fo T di@ da g
x [lt71zw1(t — 1)) + ba(wa(t —1))]
= o PO by (uwy (s — 1)

elom@dw /0 i P@dap,0)do [by(wi(t—r))+ ba(wa(t—r))] .

Similarly,
ua(t,r) =e~Jo DM@ 4 py ot — 1))

e /or"’_ Ji D@da py) (9) g [by (wr (t —r)) + ba(wa(t—r))] .

Note that, using integration by parts, we have
/ " o~ [P1@+Dz@)da py, ) g6
0

_ fr o~ Ji D1(@) da [e—fe’ Dz(a)da]/ 4o
0



42 J W.-H. Soetal.

r

_ [e*fer Dl(a)daeffé; Dz(a)da] . /r eifé’r Dz(a)daeffé; Dl(a)daDl(e) de
0

0

—1—e" Jo[D1(@)+D2(a)l da _ /r e*fer[Dl(uHDz(a)] da D1(6) db.
0

Similarly,
r R ;o r ;oA
/ e i P@dap gy dg =1 — ¢~ Jo D@da _ / e~ Jo P@dap, ) dp.
0 0

Substituting these into u1 (7, r) and ux(z, r) leadsto

wr(t,r) = e Jo P @da byt — 1))
rer[1metitwan_ [ i e pyo)ao]
0
x [br(w1(t —r)) + bo(wa(t — r))]
= [1 - f el ’5“‘)”’“1)1(9)519} e br(wi(t —r))
0

+ e [1 — e Jo D@da _ /0 "o I D@dapy g de] bo(wa(t — 1))
- [1 - /O e i ﬁ(“)d“Dl(O)d9:| e by(wi(t — 1))
+ [ /0 oI D@ da ) de} e* ba(wa(t — 1)), (2.7)
where e* = e~ Jo di@da_gipjjarly,
ua(t,r) = [1 - for e i ’5<“>d“1)2(9)d9} " bo(wa(t — 1))
+ [ /0 "o Ji D@dapy oy de} ¢* ba(wi(t — r)). (2.8)

Summarizing the above and using (2.6)—2.8), we get the system of equations
for (w1(¢), wa(z)) asfollows

dwy(7)

Fra —d1 mw1(t) + D2 nw2(t) — D1 pwi(t)

e[ f5 eI D@daDy9) b | by(wa(r - r))
et [ fi e 5 D@ Do) db | ba(war — 1),
dwy(t) )
— = —d2 w2(t) + D1 pw1(t) — D2 wa(t)

et [1— fg e I PO Dy9) d0] ba(uwats — 1))

Jg eI P@de Dy ) do | bauwr(r — ).

(2.9)

+ e*




Structured population on two patches 43

Note that in the above system, the term e* | e Jo b@dap.(9)de denotes the
fraction of the mature population which wasborn at time — r inthe j-th patch and
isinthei-th patch at thecurrent timez. Thisfactor isusually ignoredintheliterature
where a delay differential equation is used to model the dynamics of interacting
species with time delay.

3. Two identical patches

In this section, we assume that the two patches are identical. Consequently, d; ,, =
dm, Dim = Dy, bi(w) = b(w)and D;(a) = Dy(a)fori =1,2andforO<a <r.
Then

dw1(t)

= —dnw1(t) + Dp[w2(t) — wi(?)]

+e*(A—r*) b(wi(t — 1)) + e*r* b(wa(t —r)), 3.1)
= —dnw2(t) + Dp[w1(t) — wa ()]

+e*r* b(wi(t —r)) + e* (L —r*) b(wa(t —r)),

dwz(t)
dt

where
.
r* =/ e~2Jo Pr@dap, gy ag
0
_ }/ri[672f(:Dl(a)da] 40
2 ), a0
} [e—zfg’ D,(a)da]’
2 0
1 -2 [y Di(a)da
E[1—e G ] (32)

Clearly 0 < r* < 3. The equilibrium equations are:

{ —dpw1 + Dy (w2 — wi1) + e* (1 —r*) b(w) + e*r* b(wp) = 0,

—dpw2 + Dy (w1 — w2) + e*r* b(wy) + e* (1 — r*) b(wp) = 0. (3.3)

Intheremainder of thispaper, we concentrate onthe structure and the stability of
homogeneous equilibria, and the associated Hopf bifurcation of homogeneous/het-
erogeneousperiodic orbits. Hereahomogeneous equilibrium (w1, w») isonewhere
w1 = w2 = w. The homogeneous equilibria are obtained from the solutions of the
scalar equation

dpw = e*b(w). (3.4

By the definition of e*, we see that the maturation time r and the death rate d; (a),
a € [0, r], for the immature population affect the structure of the homogeneous
equilibria. In particular, the solution structure of (3.4) is determined by the ratio
delo dr@da oyer ’% for w > 0. In what follows, we let

o = elodi@da (: i) . (3.5)

e*
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Clearly, this parameter measures the death rate of the immature population during
the maturation period.
A prototype of the birth function we are going to use is

b(w) = w?e ", with 8 > 0. (3.6)

This describes the situation where the birth rateis small at both low and high levels
of mature populationsand large at theintermediate level of mature population. This
occurs often due to lower mating rate and lack of “group defense” at low level of
mature population and due to crowding at high level of mature population.

For the above birth function (see Figure 1), we can easily verify that

(i) ifa > ﬂd—lme, then (3.4) has no positive solution;
(i) ifa = ﬂd—lc then (3.4) has exactly one positive solution; and
(iii) ifa < ﬂd—lme, then (3.4) has exactly two positive solutions.

Inwhat follows, wewill consider thecase(iii) when (3.4) hasthreenon-negative
solutions: 0 < w* < w** with

0< b (0)e* <d, <e*b'(w*) and b (w*™) <0. 3.7

Therefore, system (3.1) has three biol ogically meaningful homogeneous equilibria
Eo=(0,0), E* = (w*, w*) and E** = (w**, w**).

05

04

o

0.2 |

01{ |

0 5 a & 8 10
W

Fig. 1. Thegraph of b(w) = w?e™#* with 8 = 1.
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The stability of a homogeneous equilibrium (w, ) is determined by the roots
of the characteristic equation

0 = [MHdnt D) ) A S
- —D,, —e*r* b'(w) e ™ A+dy,+ D, —e*(L—r") b (W) e™

=[A+dp+Dp—e L= b @) e = [Dy +r* b (i) e ™ ]

_ [}»-i-dm _ e*b/(a)) e—kr] |:)\ +d, +2D,, — e*e*Z,fgrDl(a)da bl(lf)) e—kr]

s0 that
A+dy — b (@) e =0 (3.8)

or
A+ dy + 2Dy, — e*e 2l P1I@da bl () oM = (3.9)

The eigenvectors corresponding to the roots of (3.8) are homogeneous, whereas
those corresponding to (3.9) are heterogeneous but symmetric with respect to the
origin (i.e., v1 = —vy).

Notice that both (3.8) and (3.9) are of the form

A+u+ve =0 (3.10)

Necessary and sufficient conditionsfor all roots of (3.10) to have negativereal parts
areknown, seefor example, Haleand Verdyn Lunel [1993, Theorem A.5 on p. 416]
and Kuang [1993].

3.1. Trivial equilibrium Eq: stability

The equilibrium Eg = (0, 0) is dways asymptotically stable since 0 < ¢*b'(0) <
dy and 0 < ¢*b/(0) e 2Jo D1@da g g, 42D,

3.2. Intermediate equilibrium E*: transient oscillation

For the equilibrium (w1, w2) = (w*, w*) = E*, sinceequation (3.8) with i = w*
always has a positive real root, we conclude that this equilibrium is unstable.

In the limiting case when r = 0, equation (3.9) with w = w* has a negative
root if

1
Dm > z[b/(w*) - dm] (311)
and a positive root if
1
0<D, < E[b/(w*) —dy]. (3.12)

Consequently, the equilibrium E* iseither asaddle (if condition (3.11) holds) or is
an unstable node (if condition (3.12) holds). Asthe equilibrium E** = (w™**, w**)
is clearly stable due to b’ (w**) < 0, we have the following phase portraits on the
(w1, wp) plane (see Figures 2 and 3).

In particular, no oscillation near E* will be observed when r = 0.
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When r > 0, the situation is different. Assume that
b (w¥) e 2o Pi@da o 4 op (3.13)
Dj(a) = DmE forO<a<r. (3.149)
r
and
2w — arccos %

r> ( i )> (3.15)

VIed' (w)]? — d3

By using D,, asabifurcation parameter, astandard analysis on equation (3.9) with
w = w* showsthat at D,, = D,, = D,,(r), (3.9) has a pair of purely imaginary

roots +iw with

w= \/[e*b/(u)*)e‘*ﬁmr]2 — (dy + 2Dy)?. (3.16)
Here D, (r) isthe unique D,, such that
dm + 2D
—Um 2 — 2 _ f— u
r\/[e*b’(w*) e—D r] (dn + 2D, =21 ﬂCCOS(e*b/(w*) e—Dmr>
(3.17)
6 T T T T 7 T
5 i ,/I.I -
4 + /,—7':"“’ -
- -7 - ) "l r\.\A
3 I s S | i
21 ) U .
1t/ J .
1!\4; __,,_-—-_—.u-’*/':":
Il 4: = :.:A;.’ -
0 e 1 1 1 1 1
0 1 2 3 4 5 6

Fig. 2. Phaseportrait of (3.1) withr = 0and (3.10). Notethat r = Oimpliesr* = 0, e* = 1.
Choosew* = 2,d,, = 1sothat 8 = £ In2.RHSon (3.10)is 1[0/ (w*) —d,,] = 3[1-In2] =
0.1534264097. Choose D,, = 0.2. Theisoclines intersect 3 times and there are 3 homoge-

neous equilibria.
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Fig. 3. Phaseportrait of (3.1) with» = 0 and (3.11). Parametersarethe same asin Figure 2,
except D,, = 0.1. Theisoclines intersect 5 times leading to 3 homogeneous equilibria and
apair of heterogeneous equilibria.

is satisfied. By thinking of theroot A asafunction of D,,, one can easily check that
the transversality condition for Hopf bifurcation is satisfied, namely

[2+ 7(dn + 2Dp)][1 4 r(dp + 2Dy)] + wr?
[1+4 r(dp + 2Dp)]? + w?r2

Re\ (D) = — <0.

Thisimpliesthat when D,, iscloseto D,,, thereis aHopf bifurcation of heteroge-
neous periodic solutions near the homogeneous equilibrium E*. These bifurcated
periodic solutions are unstable because equation (3.8) with w = w* has a posi-
tive real root. However, the existence of such periodic solutions causes transient
oscillations for solutions near E*, which cannot be observed when r = 0 (see
Figure 4).

Summarizing the above discussions, we have

Theorem 3.1.

(i) Whenr = 0, theintermediate equilibrium E* iseither a saddle or an unstable
node and solutions of (3.1) near E* do not oscillate around E*.

(ii) Assume that (3.13) hold. Let the immature dispersal rate D;(a) be given by
(3.14) and assume the maturation age r is sufficiently large so that (3.15)
holds. For D,, closeto D,,, theintermediate equilibrium E* undergoes a Hopf
bifurcation. The bifurcated heterogeneous periodic solutions lead to transient
oscillations.
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3.3. Largest equilibrium E**: decreasing immature death leads to instability
and oscillations

To discuss the stabilizing role of the immature death rate, we will use « defined
in (3.5) as the bifurcation parameter in this section. We will see that there is a
bifurcation at E** as« decreases. Recall that ' (w**) < 0.

Let® = 6(u) € (5, ) bethe unique number such that

0
—— =tané.
ur

It comesfrom assuming A = iw, withw > 0, isaroot of (3.10) and separate (3.10)
into itsreal and imaginary parts. Define

b/ k%
o m D @19
d2 + [9(@)]

and

__ Y () 2l Pr@da (319)
2
\/(dm +2D,)? + [M]

Op

3.8 7 b

34 L I." -

32 ! i

28 i _

26 i 1

22 IR b

2
-50 0 50 100 150 200 250 300

Fig. 4. Transient oscillationsfor solutionsnear E* when r issufficiently large. Thisisaplot
of wo(¢) versest. Initial conditionis: w1 (¢) islinear with w1 (—r) = 2 and w1(0) = 2.2 and
wa(t) = 20n [—r, 0]. Parameters are: d,, = ¢* = 0.9, 7* = 0.1, f = In2, r = 10 and
D,, = 0.071. Note that, w* = 2 and w** = 4.
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Fig. 5. Hopf bifurcation of stable synchronized periodic solutionsfrom E**. Thisisaplot of
w1 (¢) versest. Initial conditionis: (w1 (), wz(¢)) = (12.0, 13.0) for ¢ € [—r, 0]. Parameters
are: d,, = 0.08, D,, =0.01,r =85,r*=0.1,¢* =09, 8= 3In2

Note that o (resp. «) is the first value of the parameter o for which (3.8) (resp.
(3.9)) has a pair of purely imaginary roots. The monotonicity of 6 implies that
0<ap < oa.

Applying theresultin Hale and Verduyn Lunel [1993, Theorem A.5 on p. 416],
it is easy to show that if « > «y, then al zeros of (3.8) and (3.9) have negative
real parts. Thus E** = (w**, w**) is asymptoticaly stable when o > «;. How-
ever, at o = ay, (3.8) has a pair of purely imaginary zeros and the standard Hopf
bifurcation theorem (see, Hassard, Kazarinoff and Yan [1981]) shows the exis-
tence of aHopf bifurcation of periodic solutions near E**. Such periodic solutions
must be homogeneous (synchronized) asthe homogeneous solutions (w1, wo) with
w = w1 = w> are described by the scalar equation

dw(t) 1
= —d,w() + —b(w(t —r))
dt o

which has a Hopf bifurcation at « = «;. Numerical simulations reported in Fig-
ure 5 shows that these homogeneous periodic solutions bifurcated from E** can be
stable.

On the other hand, one can also apply Theorem 2.1 in Wu [1998] to show
thet at @ = «p, system (3.1) has another branch of periodic solutions w(r) =
(w1(2), wa(2)) bifurcating from E**, and such periodic solutions must be phase-
locked in the sense that w1(r) = wa(t — %) for the minimal period T of w(z).
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These phase-locked periodic solutions must be unstable since (3.8) with w = w™**
has aroot with positive real part.
In summary, we have

Theorem 3.2. Let o and «, be defined asin (3.18) and (3.19). Then oy > ).

(i) The largest equilibrium E** isasymptotically stable for o > «.
(i) At o = ay, system (3.1) has a Hopf bifurcation of (possibly stable) homoge-
neous periodic solutions from E**.
(iii) At & = «ap, (3.1) has a Hopf bifurcation of unstable phase-locked periodic
solutions from E**.

4. Discussion

In this paper we developed a model for an age-structured population in a patchy
(two patches) environment. The model equation (2.9) contains aterm representing
the fraction of the mature popul ation which was born at time ¢ — r in one patch and
has moved to the other patch at time¢. Thistermisusually ignored in the literature.
Similar ideas can be used to develop a model for an age-structured population in
a continuous environment (cf. So, Wu and Zou [2000]). This leads to a reaction-
diffusion equation with time delays and non-local effects. It is our hope that these
equations will be useful in modeling real populations in future work.

The analysis carried out in Section 3 shows that periodic solutions are possi-
ble through Hopf bifurcation. Those periodic solutions that bifurcate from E*, the
intermediate equilibrium, will be unstable and heterogeneous. There are two Hopf
bifurcations at E**, the largest equilibrium. The first one leads to (possibly) stable
homogeneous periodic solutions whereas the second one |leads to unstable phase-
locked periodic solutions. The global dynamicsis far from completely understood
at this moment.
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