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Abstract In this paper, we derive and analyze an infectious disease model con-
taining a fixed latency and non-local infection caused by the mobility of the latent
individuals in a continuous bounded domain. The model is given by a spatially non-
local reaction–diffusion system carrying a discrete delay associated with the zero-flux
condition on the boundary. By applying some existing abstract results in dynamical
systems theory, we prove the existence of a global attractor for the model system. By
appealing to the theory of monotone dynamical systems and uniform persistence, we
show that the model has the global threshold dynamics which can be described either
by the principal eigenvalue of a linear non-local scalar reaction diffusion equation
or equivalently by the basic reproduction number R0 for the model. Such threshold
dynamics predicts whether the disease will die out or persist. We identify the next
generation operator, the spectral radius of which defines basic reproduction number.
When all model parameters are constants, we are able to find explicitly the principal
eigenvalue and R0. In addition to computing the spectral radius of the next generation
operator, we also discuss an alternative way to compute R0.
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1388 Z. Guo et al.

1 Introduction and derivation of the model

When studying the transmission of an infectious disease that has a latency, the mobil-
ity of the individuals in the latent period will result in non-local infection. This is
because an individual infected by the disease in one location can be at any location in
the domain when this individual becomes infectious. To address such non-local infec-
tions, Li and Zou (2010, 2009a) derived and analyzed some mathematical models
for spatially discrete environments (patch models), and Li and Zou (2009b) derived a
non-local model for a spatially continuous domain. The model in Li and Zou (2009b)
is in the form of reaction diffusion equations in the one dimensional whole space R,
and the main concern is the existence of traveling wave fronts accounting for spatial
spread of the disease.

In the real world, a domain in which a host population habitats is bounded, and
this raises the issue of modeling the dynamics of a disease with latency that is trans-
mitted in a host population living in spatially bounded domain. This work intends to
address this issue and thus, can be considered as a continuation of the work (Li and
Zou 2009b). Because of this, it will be natural and convenient to adopt those notations
and concepts used in Li and Zou (2009b), as proceeded below.

Assume that a population lives in an environment that is spatially heterogeneous yet
continuous. Let� denote this spatial habitat with smooth boundary ∂�. Suppose that
an infectious disease with a latency τ is brought into this population, resulting in divi-
sion of the full population into four sub-populations: susceptible, latent, infectious and
recovered classes, denoted by S = S(x, t), L = L(x, t), I = I (x, t), R = R(x, t)
respectively.

To incorporate the latency into the model properly, we introduce the notion of infec-
tion age denoted by the variable a. Let E(x, t, a) be the density (with respect to the
infection age a) of infected population at location x and time t with infection age a. A
standard argument on structured population and spatial diffusion (see e.g. Metz and
Diekmann 1986) leads to

∂E(x, t, a)

∂t
+ ∂E(x, t, a)

∂a
= ∇ · [D(x, a)∇E(x, t, a)]

−(σ (x, a)+ γ (x, a)+ d(x))E(x, t, a), (1.1)

where a ≥ 0, ∇E(x, t, a) is the gradient of E(x, t, a) with respect to the spatial
variable x and hence ∇ · [D(x, a)∇E(x, t, a)] represents the divergence of
D(x, a)∇E(x, t, a). Here D(x, a), σ (x, a) and γ (x, a) are the diffusion rate, the
disease-induced mortality rate and the recovery rate at location x and age a, respec-
tively; d(x) is the natural death rate which is independent of the infection age. Unlike
in Li and Zou (2009b) where all model parameters are assumed to be independent of
the spatial variable x , here we allow spatial heterogeneity for the model parameters. In
the real world, spatial heterogeneity is ubiquitous due to the variance in environmental
conditions such as temperature, humidity and availability of resources etc. Therefore,
considering such a more general setting is meaningful and important, although it may
bring in new challenges and difficulties when analysing the model as will be seen in
later sections.
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Threshold dynamics of an infective disease model 1389

We consider a closed environment in the sense that the fluxes for each of these four
sub-populations are zero. Corresponding to this, we propose the following no flux
condition for E(x, t, a) on the boundary:

[D(x, a)∇E(x, t, a)] · ν = 0, x ∈ ∂�, t > 0, (1.2)

where ν is the outward normal to ∂�.
By the meaning of τ and the density, it is easy to see that

L(x, t) =
τ∫

0

E(x, t, a)da, I (x, t) =
∞∫

τ

E(x, t, a)da. (1.3)

To make the model mathematically tractable yet without losing the main features, we
make the following assumptions on those rate functions:

D(x, a) =
{

DL(x), for x ∈ �, a ∈ [0, τ ],
DI (x), for x ∈ �, a ∈ [τ,∞),

(1.4)

σ(x, a) =
{
σL(x), for x ∈ �, a ∈ [0, τ ],
σI (x), for x ∈ �, a ∈ [τ,∞),

(1.5)

γ (x, a) =
{
γL(x), for x ∈ �, a ∈ [0, τ ],
γI (x), for x ∈ �, a ∈ [τ,∞).

(1.6)

Differentiating (1.3) with respect to t and making use of (1.1), we obtain

∂ I (x, t)

∂t
= ∇ · [DI (x)∇ I (x, t)] − (σI (x)+ γI (x)+ d(x))I (x, t)

+E(x, t, τ )− E(x, t,∞). (1.7)
∂L(x, t)

∂t
= ∇ · [DL(x)∇L(x, t)] − (σL(x)+ γL(x)+ d(x))L(x, t)

−E(x, t, τ )+ E(x, t, 0). (1.8)

For biological reasons, we assume that E(x, t,∞) = 0, which can be implied by
(1.1) and the assumption d(x) > 0, x ∈ �. Also, note that the new infections are due
to the contacts of infectious and susceptible individuals. Thus, adopting mass action
infection mechanism leads to the following condition:

E(x, t, 0) = r(x)I (x, t)S(x, t). (1.9)

We further assume that in the absence of disease, the population would settle in
a steady state. Since our emphasis it not on demography, we will use the following
simplest demographic equation for a population N (x, t) that supports such a dynamics
of global convergence to an equilibrium:

∂N (x, t)

∂t
= μ(x)+ ∇ · [DN (x)∇N (x, t)] − d(x)N (x, t), (1.10)
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1390 Z. Guo et al.

where μ(x) is the recruiting rate, DN (x) is the diffusion rate and d(x) is the natural
death rate.

With all these assumptions, the disease dynamics can be described by the following
system of differential equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S(x,t)
∂t = ∇ · [DS(x)∇S(x, t)] + μ(x)− d(x)S(x, t)− r(x)I (x, t)S(x, t),

∂L(x,t)
∂t = ∇ · [DL(x)∇L(x, t)] − [σL(x)+ γL(x)+ d(x)]L(x, t)

+ r(x)I (x, t)S(x, t)− E(x, t, τ ), x ∈ �, t ≥ 0.
∂ I (x,t)
∂t = ∇ · [DI (x)∇ I (x, t)] − [(σI (x)+ γI (x)+ d(x))I (x, t)] + E(x, t, τ ),

∂R(x,t)
∂t = ∇ · [DR(x)∇ R(x, t)] + ∫ τ

0 γ (x, a)E(x, t, a)da

+ γI (x)I (x, t)− d(x)R(x, t).

(1.11)

In this paper, we always assume that all space dependent parameters in (1.11) are
continuous and strictly positive.

In the following, we shall determine E(x, t, τ ) by the method of characteristics.
For any ξ ≥ 0, consider solutions of (1.1) along the characteristic line t = a + ξ by
letting v(x, ξ, a) = E(x, a + ξ, a). Then, for a ∈ [0, τ ], we have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂v(x,ξ,a)
∂a =

[
∂E(x,t,a)

∂t + ∂E(x,t,a)
∂a

]
t=a+ξ

= ∇ · [D(x, a)∇E(x, a + ξ, a)] − (σ (x, a)+ γ (x, a)+ d(x))E(x, a + ξ, a)

= ∇ · [DL(x)∇v(x, ξ, a)] − (σL(x)+ γL(x)+ d(x))v(x, ξ, a),

v(x, ξ, 0) = r(x)I (x, ξ)S(x, ξ).

(1.12)

Regarding ξ as a parameter and solving the above equation, we obtain

v(x, ξ, a) =
∫

�

	(x, y, a)[r(y)I (y, ξ)S(y, ξ)]dy,

where 	 is the Green function of the operator ∇ ·[DL(·)∇]−βL(·) associated with the
zero flux boundary condition (see e.g. Friedman 1964) and βL(·) = σL(·)+ γL(·)+
d(·). Evaluating the above at a = τ (hence ξ = t − τ ) gives

E(x, t, τ ) = v(x, t − τ, τ ) =
∫

�

	(x, y, τ )r(y)S(y, t − τ)I (y, t − τ)dy. (1.13)

Plugging (1.13) into the second and third equations of (1.11) respectively, and drop-
ping the L(x, t) and R(x, t) equations from (1.11) (as they are decoupled from the
S(x, t) and I (x, t) equations) results in the following system containing S(x, t) and
I (x, t) only:
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Threshold dynamics of an infective disease model 1391

⎧⎪⎨
⎪⎩

∂S(x,t)
∂t = ∇ · [DS(x)∇S(x, t)] + μ(x)− d(x)S(x, t)− r(x)I (x, t)S(x, t),

∂ I (x,t)
∂t = ∇ · [DI (x)∇ I (x, t)] − βI (x)I (x, t)

+ ∫
�
	(x, y, τ )r(y)S(y, t − τ)I (y, t − τ)dy, x ∈ �, t > 0,

(1.14)

where βI (x) = σI (x)+γI (x)+ d(x). Corresponding to (1.2), there are the following
boundary conditions:

[DS(x)∇S(x, t)] · ν = 0 = [DI (x)∇ I (x, t)] · ν. (1.15)

For convenience, we let (u1, u2) = (S, I ), (D1(·), D2(·)) = (DS(·), DI (·)) and
β = βI . Then, (1.14) and(1.15) lead to the following model system with time delay
and spatially non-locality

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u1(x,t)
∂t = ∇ · [D1(x)∇u1(x, t)] + μ(x)− d(x)u1(x, t)− r(x)u1(x, t)u2(x, t),

∂u2(x,t)
∂t = ∇ · [D2(x)∇u2(x, t)] − β(x)u2(x, t)

+ ∫
�
	(x, y, τ )r(y)u1(y, t − τ)u2(y, t − τ)dy, x ∈ �, t > 0,

[Di (x)∇ui (x, t)] · ν = 0, i = 1, 2, x ∈ ∂�, t > 0.

(1.16)

In Sect. 2, we explore the dynamics of (1.16). As is well known, for a disease model,
the basic reproduction number is a biologically and clinically important quantity. For
an ODE model, identification of this number done by calculating the spectral radius
of the next generation matrix. For a PDE model, finding this number becomes a chal-
lenging job, and we will investigate this topic in Sect. 3. In Sect. 4, we illustrate our
general results obtained in Sects. 2 and 3 to a special case when all model parameters
are positive constants. In Sect. 5, in addition to a summary and some remarks, we also
provide an alternative approach, which is motivated by the recent work (Krkosek and
Lewis 2010), to calculate the basic reproduction number.

2 Threshold dynamics of (1.16)

Let X := C(�̄,R2) be the Banach space with the supremum norm ‖ · ‖X. Let τ ≥ 0
and Cτ := C([−τ, 0],X) with the norm ‖φ‖ := maxθ∈[−τ,0] ‖φ(θ)‖X,∀ φ ∈ Cτ .
Define X

+ := C(�̄,R2+) and C+
τ := C([−τ, 0],X+), then (X,X+) and (Cτ ,C+

τ )

are strongly ordered spaces (for detailed definition, see, e.g., Smith 1995). For σ > 0
and a given function u(t) : [−τ, σ ) → X, we define ut ∈ Cτ by

ut (θ) = u(t + θ), ∀ θ ∈ [−τ, 0].

Suppose that T1(t), T2(t) : C(�̄,R) → C(�̄,R) are the C0 semigroups associated
with ∇ · [D1(·)∇] − d(·) and ∇ · [D2(·)∇] − β(·) subject to the zero flux boundary
condition, respectively. It then follows that for any ϕ ∈ C(�̄,R), t ≥ 0,
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1392 Z. Guo et al.

(Ti (t)ϕ)(x) =
∫

�

	i (x, y, t)ϕ(y)dy, i = 1, 2, (2.1)

where 	1 and 	2 are the Green functions associated with ∇ · [D1(·)∇] − d(·) and
∇ · [D2(·)∇] − β(·) respectively, subject to the zero flux boundary condition. From
Smith (1995, Section 7.1 and Corollary 7.2.3), it follows that Ti (t) : C(�̄,R) →
C(�̄,R) is compact and strongly positive, ∀ t > 0 and i = 1, 2. Furthermore, T (t) :=
(T1(t), T2(t)) : X → X, t ≥ 0, is a C0 semigroup (see, e.g., Pazy 1983).

Let Ai : D(Ai ) → C(�̄,R) be the generator of Ti (t), i = 1, 2. Then T (t) :
X → X is a C0 semigroup generated by the operator A := (A1, A2) defined on
D(A) := D(A1)× D(A2). Define F = (F1, F2) : C+

τ → X by

F1(φ)(x) = μ(x)− r(x)φ1(x, 0)φ2(x, 0),

F2(φ)(x) =
∫

�

	(x, y, τ )r(y)φ1(y,−τ)φ2(y,−τ)dy,

for x ∈ �̄ and φ = (φ1, φ2) ∈ C+
τ . Then (1.16) can be rewritten as the following

abstract differential equation

{
du
dt = Au + F(ut ), t > 0,
u0 = φ ∈ C+

τ ,
(2.2)

or it can be rewritten as the following integral equation

u(t) = T (t)φ +
t∫

0

T (t − s)F(us)ds, (2.3)

where u := (u1, u2).

Lemma 2.1 For every initial value function φ ∈ C+
τ , system (1.16) has a unique mild

solution u(·, t, φ) on its maximal interval of existence [0, t̃φ) with u0 = φ, where
t̃φ ≤ ∞. Furthermore, u(·, t, φ) ∈ C+

τ ,∀ t ∈ [0, t̃φ) and u(x, t, φ) is a classical
solution of (1.16), ∀ t > τ.

Proof It is obvious that F(φ) is locally Lipschitz. By Martin and Smith (1990, Corol-
lary 4) or Smith (1995, Theorem 7.3.1), it suffices to show that

lim
h→0+ dist (φ(0)+ hF(φ),C+

τ ) = 0, ∀ φ ∈ C+
τ . (2.4)

For any φ ∈ C+
τ and h ≥ 0, we have

φ(x, 0)+ hF(φ)(x) =
(

φ1(x, 0)+ h[μ(x)− r(x)φ1(x, 0)φ2(x, 0)]
φ2(x, 0)+ h[∫

�
	(x, y, τ )r(y)φ1(y,−τ)φ2(y,−τ)dy]

)

≥
(
φ1(x, 0)[1 − hr̄φ2(x, 0)]

φ2(x, 0)

)
, for x ∈ �,
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Threshold dynamics of an infective disease model 1393

where r̄ := maxx∈�̄ r(x). The above inequalities imply that φ + hF(φ) ∈ C+
τ when

h is sufficiently small, confirming (2.4). 
�

To proceed further, we need some information on the following scalar reaction–
diffusion equation:

{
∂w
∂t = ∇ · [D(x)∇w] + g(x)− d(x)w, x ∈ �, t > 0,

(D(x)∇w) · ν = 0, x ∈ ∂�, t > 0,
(2.5)

where D(x), d(x) and g(x) are continuous and positive functions on �̄.

Lemma 2.2 System (2.5) admits a unique positive steady statew∗(x)which is globally
attractive in C(�̄,R+). Furthermore, if D(x) ≡ D, d(x) ≡ d and g(x) ≡ g,∀ x ∈ �,
then w∗(x) ≡ g/d,∀ x ∈ �.

The proof is similar to that of Lou and Zhao (2011, Lemma 1) with some minor
modifications, and is given in the appendix for readers’ convenience.

We are now in the position to address the well-posedness of system (1.16) in the
sense of the following theorem.

Theorem 2.1 For every initial function φ ∈ C+
τ , system (1.16) has a unique solution

u(·, t, φ) on [0,∞) with u0 = φ. Moreover, the semiflow �(t) = ut (·) : C+
τ → C+

τ

generated by (1.16), i.e.,

(�(t)φ)(x, θ) = u(x, t + θ, φ), ∀ x ∈ �̄, t ≥ 0, θ ∈ [−τ, 0].

has a global compact attractor in C+
τ ,∀ t ≥ 0.

Proof It is easy to see that the u1 equation of (1.16) is dominated by the following
scalar equation:

{
∂w(x,t)
∂t = ∇ · [D1(x)∇w(x, t)] + μ(x)− d(x)w(x, t), x ∈ �, t > 0,

(D1(x)∇w(x, t)) · ν = 0, x ∈ ∂�, t > 0.
(2.6)

From Lemma 2.2, it follows that the system (2.6) admits a unique positive steady state
u∗

1(x) which is globally asymptotically stable in C(�̄,R). This implies that there is
B1 > 0 such that for any φ ∈ C+

τ , there exists a t1 = t1(φ) > 0 with u1(·, t, φ) ≤ B1
for all t ≥ t1.

Making use of the boundedness of u1(x, t) and the property of 	(·, ·, ·) in the u2
equation in (1.16), we know that

∂u2(x, t)

∂t
≤ ∇ · [D2(x)∇u2(x, t)] − β(x)u2(x, t)+ cū2(t − τ), (2.7)
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1394 Z. Guo et al.

for some constant c > 0, where ū2(t) = ∫
�

u2(x, t)dx . We now show that ū2(t) is
bounded. To this end, we integrate the first equation in (1.16) to obtain

dū1(t)

dt
=

∫

�

μ(x)dx −
∫

�

d(x)u1(x, t)dx −
∫

�

r(x)u1(x, t)u2(x, t)dx,

≤ μ0 − d0ū1(t)−
∫

�

r(x)u1(x, t)u2(x, t)dx, t ≥ 0,

where ū1(t) = ∫
�

u1(x, t)dx, μ0 = ∫
�
μ(x)dx and d0 = minx∈� d(x). Thus,

∫

�

r(x)u1(x, t)u2(x, t)dx ≤ μ0 − d0ū1(t)− dū1(t)

dt
, t > 0. (2.8)

Similarly, integrating the second equation of (1.16) with respect to x ∈ � and making
use of (2.8), we obtain

dū2(t)

dt
≤ −β0ū2(t)− k1ū1(t − τ)− k2

dū1(t − τ)

dt
+ k3, ∀ t ≥ τ, (2.9)

where β0 = minx∈�̄ β(x) and k1, k2 and k3 are some positive numbers independent
of φ. We can choose k1 ≤ β0k2 in (2.9), so that

d

dt
[ū2(t)+ k2ū1(t − τ)] ≤ −β0ū2(t)− k1ū1(t − τ)+ k3

≤ −k1

k2
ū2(t)− k1ū1(t − τ)+ k3

= −k1

k2
[ū2(t)+ k2ū1(t − τ)] + k3, ∀ t ≥ τ. (2.10)

This implies that there are a positive constant k4 depending onφ and a positive constant
independent of φ, such that

ū2(t) ≤ ū2(t)+ k2ū1(t − τ) ≤ k4(φ)e
−(k1/k2)t + k5, ∀ t ≥ τ, (2.11)

confirming the boundedness of ū2(t). Now combining this with (2.7) and by com-
parison theorem for delayed parabolic equation (see, e.g., Smith 1995; Wu 1996), we
conclude that there exists a positive number B2, independent of φ, and t2 = t2(φ) >
t1(φ)+ τ such that u2(·, t, φ) ≤ B2, ∀ t ≥ t2. Therefore, the existence of the solution
u(·, t, φ) claimed in Lemma 2.1 is indeed global (i.e., t̃∞ = ∞), and the solution
semiflow�(t) : C+

τ → C+
τ is point dissipative. Moreover,�(t) : C+

τ → C+
τ is com-

pact for each t > τ by Wu (1996, Theorem 2.1.8). By Hale (1988, Theorem 3.4.8),
�(t) : C+

τ → C+
τ , t ≥ 0 has a global compact attractor. 
�

The following results will play an important role in establishing the persistence of
(1.16).
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Threshold dynamics of an infective disease model 1395

Lemma 2.3 Suppose u(x, t, φ) is the solution of system (1.16) with u0(φ) = φ ∈ C+
τ .

(i) If there exists some t0 ≥ 0 such that u2(·, t0, φ) ≡/ 0, then

u2(·, t, φ) > 0, ∀ t > t0;

(ii) For any φ ∈ C+
τ , we always have u1(·, t, φ) > 0, ∀ t > 0 and

lim inf
t→∞ u1(x, t, φ) ≥ Q uniformly for x ∈ �̄,

where Q is a positive constant.

Proof By Lemma 2.1 and the second equation of (1.16), it follows that

{
∇ · [D2(x)∇u2(x, t)] − ∂u2(x,t)

∂t − β(x)u2(x, t) ≤ 0, x ∈ �, t > 0,

[D2(x)∇u2(x, t)] · ν = 0, x ∈ ∂�, t > 0.
(2.12)

Thus, Part (i) follows from the strong maximum principle (see, e.g., Protter and Wein-
berger 1984, p. 172, Theorem 4) and the Hopf boundary lemma (see, e.g., Protter and
Weinberger 1984, p. 170, Theorem 3), with the initial time at t = t0 instead of t = 0.

By the proof of Theorem 2.1, there is a B2 > 0, such that u2(x, t) ≤ B2 for
t > t2 = t2(φ). From the first equation of (1.16), it follows that

{
∂u1(x,t)
∂t ≥∇ · [D1(x)∇u1(x, t)]+μ(x)−[d(x)+B2r(x)]u1(x, t), x ∈�, t ≥ t2,

[D1(x)∇u1(x, t)] · ν=0, x ∈ ∂�, t ≥ t2.

(2.13)

From Lemma 2.2, the following system

{
∂v(x,t)
∂t = ∇ · [D1(x)∇v(x, t)] + μ(x)− [d(x)+ B2r(x)]v(x, t), x ∈ �, t ≥ t2,

[D1(x)∇v(x, t)] · ν = 0, x ∈ ∂�, t ≥ t2,

admits a unique positive steady state v∗(x) which is globally asymptotically stable
in C(�̄,R). By the standard parabolic comparison theorem, it follows that
lim inf t→∞ u1(·, t, φ) ≥ v∗(·). Thus, part (ii) is proved. 
�

In order to find the disease free steady state, we set u2 = 0 in (1.16), leading to
(2.6) for the density of susceptible host population. From Lemma 2.2, it follows that
the system (2.6) admits a unique positive steady state u∗

1(x) which is globally asymp-
totically stable in C(�̄,R). Linearizing system (1.16) at the disease-free equilibrium
(u∗

1, 0), we get the following system for the infectious component u2:

⎧⎪⎨
⎪⎩

∂u2(x,t)
∂t = ∇ · [D2(x)∇u2(x, t)] − β(x)u2(x, t)

+ ∫
�
	(x, y, τ )r(y)u∗

1(y)u2(y, t − τ)dy, x ∈ �, t > 0,

[D2(x)∇u2(x, t)] · ν = 0, x ∈ ∂�, t > 0.

(2.14)

123

Author's personal copy



1396 Z. Guo et al.

We first consider the following generalized version of system (2.14):

⎧⎪⎨
⎪⎩

∂u2(x,t)
∂t = ∇ · [D2(x)∇u2(x, t)] − β(x)u2(x, t)

+ ∫
�
	(x, y, τ )r(y)m(y)u2(y, t − τ)dy, x ∈ �, t > 0,

[D2(x)∇u2(x, t)] · ν = 0, x ∈ ∂�, t > 0,

(2.15)

where m(x) > 0, ∀ x ∈ �̄. Substituting u2(x, t) = eλtψ(x) into (2.15) results in the
following eigenvalue problem:

⎧⎪⎨
⎪⎩
λψ(x) = ∇ · [D2(x)∇ψ(x)] − β(x)ψ(x)

+ e−λτ ∫
�
	(x, y, τ )r(y)m(y)ψ(y)dy, x ∈ �, t > 0,

[D2(x)∇ψ(x)] · ν = 0, x ∈ ∂�, t > 0.

(2.16)

Note that (2.16) is nonlinear in terms of λ, and the nonlinearity is caused by the
presence of the delay τ in u2(y, t − τ) in (2.15). Noticing that the linear delay equa-
tion (2.15) is monotone, the general results on monotone delay equations suggest that
the delay τ play no role in determining the stability of the trivial solution of (2.15).
This motivates us to consider the following associated linear nonlocal system resulting
from dropping τ in (2.15):

⎧⎪⎨
⎪⎩

∂u2(x,t)
∂t = ∇ · [D2(x)∇u2(x, t)] − β(x)u2(x, t)

+ ∫
�
	(x, y, τ )r(y)m(y)u2(y, t)dy, x ∈ �, t > 0,

[D2(x)∇u2(x, t)] · ν = 0, x ∈ ∂�, t > 0.

(2.17)

Substituting u2(x, t) = eλtψ(x) into (2.22) leads to the following eigenvalue problem:

⎧⎪⎨
⎪⎩
λψ(x) = ∇ · [D2(x)∇ψ(x)] − β(x)ψ(x)

+ ∫
�
	(x, y, τ )r(y)m(y)ψ(y)dy, x ∈ �, t > 0,

[D2(x)∇ψ(x)] · ν = 0, x ∈ ∂�, t > 0.

(2.18)

The following lemma gives some useful information eigenvalue problems (2.16)
and (2.18),

Lemma 2.4 Let m(x) > 0, ∀ x ∈ �̄ be given. Then,

(i) the eigenvalue problem (2.16) has a principal eigenvalue λ̄(m), corresponding
to which, there is a unique strongly positive eigenfunction;

(ii) the eigenvalue problem (2.18) has a principal eigenvalue λ(m), corresponding
to which, there is a unique strongly positive eigenfunction;

(iii) λ(m) and λ̄(m) have the same sign.

The proof is similar to that of Thieme and Zhao (2001, Theorem 2.2) with some
minor modifications corresponding to the more general second order partial differ-
ential operator in (2.15)–(2.18). For readers’ convenience, we give the proof in the
appendix.
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The following theorem indicates that λ̄(u∗
1) is a threshold index for disease extinc-

tion/persistence.

Theorem 2.2 Let u∗
1(x) be the positive steady state of (2.6). Then, the following

statements hold.

(i) If λ̄(u∗
1) < 0, then the disease free equilibrium (u∗

1(x), 0) is globally attractive in
C+
τ ;

(ii) If λ̄(u∗
1) > 0, then (u∗

1(x), 0) is unstable; moreover, system (1.16) admits at least
one endemic steady state û(x) and there exists an η > 0 such that for any φ ∈ C+

τ

with φ2(·, 0) ≡/ 0, we have

lim inf
t→∞ ui (x, t) ≥ η, ∀ i = 1, 2,

uniformly for all x ∈ �̄.

Proof We first assume that λ̄(u∗
1) < 0. Since λ̄(m) is continuous in m, it follows from

λ̄(u∗
1) < 0 that there is a ρ0 > 0 such that λ̄(u∗

1 + ρ0) < 0. From the first equation of
(1.16), it follows that

{
∂u1(x,t)
∂t ≤ ∇ · [D1(x)∇u1(x, t)] + μ(x)− d(x)u1(x, t), x ∈ �, t > 0,

[D1(x)∇u1(x, t)] · ν = 0, x ∈ ∂�, t > 0.
(2.19)

From Lemma 2.2, (2.19) and the comparison principle, it follows that there is a t0 =
t0(φ) such that

u1(x, t, φ) ≤ u∗
1(x)+ ρ0, ∀ t ≥ t0, x ∈ �̄.

Thus,

⎧⎪⎨
⎪⎩

∂u2(x,t)
∂t ≤ ∇ · [D2(x)∇u2(x, t)] − β(x)u2(x, t)

+ ∫
�
	(x, y, τ )r(y)(u∗

1(y)+ ρ0)u2(y, t − τ)dy, x ∈ �, t ≥ t0,

[D2(x)∇u2(x, t)] · ν = 0, x ∈ ∂�, t ≥ t0.

(2.20)

Let ψ̂ be the strongly positive eigenfunction ψ̂ corresponding to λ̄(u∗
1 +ρ0) for (2.16)

with m(x) = u∗
1(x)+ ρ0 (see Lemma 2.4). Then, for any given φ ∈ C+

τ , there exists

some α > 0 such that u2(x, t, φ) ≤ αeλ̄(u
∗
1+ρ0)t ψ̂(x), ∀ x ∈ �̄, t ∈ [t0 − τ, t0]. Note

that the following linear system

⎧⎪⎨
⎪⎩

∂ ū2(x,t)
∂t = ∇ · [D2(x)∇ū2(x, t)] − β(x)ū2(x, t)

+ ∫
�
	(x, y, τ )r(y)(u∗

1(y)+ ρ0)ū2(y, t − τ)dy, x ∈ �, t ≥ t0,

[D2(x)∇ū2(x, t)] · ν = 0, x ∈ ∂�, t ≥ t0,

(2.21)
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admits a solution αeλ̄(u
∗
1+ρ0)t ψ̂(x), ∀ t ≥ t0. The comparison principle implies

u2(x, t, φ) ≤ αeλ̄(u
∗
1+ρ0)t ψ̂(x), ∀ t ≥ t0,

leading to limt→∞ u2(x, t, φ) = 0 uniformly for x ∈ �̄. Then, the equation for u1
in (1.16) is asymptotic to the reaction–diffusion equation (2.6). Hence, by the theory
for asymptotically autonomous semiflows (see, e.g., Thieme 1992, Corollary 4.3), we
conclude that limt→∞ u1(x, t, φ) = u∗

1(x) uniformly for x ∈ �̄, completing the proof
of Part (i).

We now consider the case λ̄(u∗
1) > 0. Let

W0 = {φ ∈ C+
τ : φ2(·, 0) ≡/ 0},

and

∂W0 = C+
τ \W0 = {φ ∈ C+

τ : φ2(·, 0) ≡ 0}.
By Lemma 2.3, it follows that for any φ ∈ W0, we have u2(x, t, φ) > 0, ∀ x ∈
�̄, t > 0. In other words, �(t)W0 ⊆ W0, ∀ t ≥ 0. Let

M∂ := {φ ∈ ∂W0 : �(t)φ ∈ ∂W0,∀ t ≥ 0},
and ω(φ) be the omega limit set of the orbit O+(φ) := {�(t)φ : t ≥ 0}.
Claim 1 ω(ψ) = {(u∗

1, 0)}, ∀ ψ ∈ M∂ .
Sinceψ ∈ M∂ , we have�(t)ψ ∈ M∂ , ∀ t ≥ 0. Thus u2(·, t, ψ) ≡ 0, ∀ t ≥ 0. Then u1
satisfies the reaction–diffusion equation (2.6) and hence we get limt→∞ u1(x, t, φ) =
u∗

1(x) uniformly for x ∈ �̄. Hence, ω(ψ) = {(u∗
1, 0)}, ∀ ψ ∈ M∂ .

Since λ̄(u∗
1) > 0, by the continuity of λ̄(m) on m, there exists a sufficiently small

positive number ζ0 such that λ̄(u∗
1 − ζ0) > 0.

Claim 2 (u∗
1, 0) is a uniform weak repeller for W0 in the sense that

lim sup
t→∞

‖�(t)φ − (u∗
1, 0)‖ ≥ ζ0, ∀ φ ∈ W0.

Suppose, by contradiction, there exists φ0 ∈ W0 such that

lim sup
t→∞

‖�(t)φ0 − (u∗
1, 0)‖ < ζ0.

Then, there exists t1 > 0 such that u1(x, t, φ0) > u∗
1(x)− ζ0,∀ t ≥ t1, x ∈ �̄. Thus

u2(x, t, φ0) satisfies

⎧⎪⎨
⎪⎩

∂u2(x,t)
∂t ≥ ∇ · [D2(x)∇u2(x, t)] − β(x)u2(x, t)

+ ∫
�
	(x, y, τ )r(y)(u∗

1(y)− ζ0)u2(y, t − τ)dy, x ∈ �, t ≥ t1,

[D2(x)∇u2(x, t)] · ν = 0, x ∈ ∂�, t ≥ t1.

(2.22)
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By Lemma 2.4, we can let ψ̃ be the strongly positive eigenfunction corresponding
to λ̄(u∗

1 − ζ0). Since u2(x, t, φ0) > 0, ∀ x ∈ �̄, t > 0, there exists ε0 > 0 such that

u2(x, t, φ0) ≥ ε0eλ̄(u
∗
1−ζ0)t ψ̃, ∀ x ∈ �̄, t ∈ [t1 − τ, t1]. Note that ε0eλ̄(u

∗
1−ζ0)t ψ̃ is a

solution of the following linear system:

⎧⎪⎨
⎪⎩

∂v(x,t)
∂t = ∇ · [D2(x)∇v(x, t)] − β(x)v(x, t)

+ ∫
�
	(x, y, τ )r(y)(u∗

1(y)− ζ0)v(y, t − τ)dy, x ∈ �, t ≥ t1,

[D2(x)∇v(x, t)] · ν = 0, x ∈ ∂�, t ≥ t1.

(2.23)

The comparison principle implies that

u2(x, t, φ0) ≥ ε0eλ̄(u
∗
1−ζ0)t ψ̃, ∀ t > t1, x ∈ �̄.

Since λ̄(u∗
1−ζ0) > 0, it follows that u2(x, t, φ0) is unbounded, contradicting Theorem

2.2. This contradiction proves Claim 2.
Define a continuous function p : C+

τ → [0,∞) by

p(φ) := min
x∈�̄

φ2(x, 0), ∀φ ∈ C+
τ .

By Lemma 2.3, it follows that p−1(0,∞) ⊆ W0 and p has the property that if
p(φ) > 0 or φ ∈ W0 with p(φ) = 0, then p(�(t)φ) > 0, ∀ t > 0. That is, p is
a generalized distance function for the semiflow �(t) : C+

τ → C+
τ (see, e.g., Smith

and Zhao 2001). From the above claims, it follows that any forward orbit of �(t) in
M∂ converges to (u∗

1, 0) which is isolated in C+
τ and W S(u∗

1, 0) ∩ W0 = ∅, where
W S(u∗

1, 0) is the stable set of (u∗
1, 0) (see Smith and Zhao 2001). It is obvious that

there is no cycle in M∂ from (u∗
1, 0) to (u∗

1, 0). By Smith and Zhao (2001, Theorem
3), it follows that there exists an η̃ > 0 such that

min
ψ∈ω(φ) p(ψ) > η̃, ∀φ ∈ W0.

Hence, lim inf t→∞ u2(·, t, φ) ≥ η̃, ∀ φ ∈ W0. From Lemma 2.3, there exists an
0 < η ≤ η̃ such that

lim inf
t→∞ ui (·, t, φ) ≥ η, ∀φ ∈ W0, i = 1, 2.

Hence, the uniform persistence stated in the conclusion (ii) are valid. By Magal and
Zhao (2005, Theorem 3.7 and Remark 3.10), it follows that �(t) : W0 → W0 has
a global attractor A0. It then follows from Magal and Zhao (2005, Theorem 4.7) that
�(t) has an equilibrium ũ(·) ∈ W0 which, by Lemma 2.3, is a positive steady state of
(1.16). The proof is completed. 
�
Corollary 2.1 Let u∗

1(x) be the positive steady state of (2.6). Then, the following
statements hold.
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(i) If λ(u∗
1) < 0, then the disease free equilibrium (u∗

1(x), 0) is globally attractive in
C+
τ ;

(ii) If λ(u∗
1) > 0, then (u∗

1(x), 0) is unstable; moreover, system (1.16) admits at least
one endemic steady state û(x) and there exists an η > 0 such that for any φ ∈ C+

τ

with φ2(·, 0) ≡/ 0, we have

lim inf
t→∞ ui (x, t) ≥ η, ∀ i = 1, 2,

uniformly for all x ∈ �̄.

3 The basic reproduction number of the model

In Sect. 2, we have seen that the principal eigenvalue λ̄(u∗
1) is a threshold index for the

model in determining whether the disease will die out or remain endemic. In epidemi-
ology, there is another index, called basic reproduction number and usually denoted
by R0, which also plays a similar threshold role: if R0 < 1 then the disease will die
out; if R0 < 1 then the disease will remain endemic. Considering the fact the basic
reproduction number is more commonly used in the communities of health sciences
and clinics, identifying the right formula of R0 for an epidemic model is necessary and
important. For models described by ordinary differential equations (finite dimensions),
van den Driessche and Watmough (2002) provides a standard procedure for defining
and computing R0 by using the next generation matrix. For infinite dimensional mod-
els, including the models with age and spatial structures, the works Diekmann et al.
(1990) and Thieme (2009) contribute fundamental and useful recipe for defining R0,
which is based on the idea of next generation operator. In this section, we mainly fol-
low notions and procedure (Thieme 2009) to identify the basic reproduction number
R0 for (1.16).

Assume that host population is near the disease free equilibrium (u∗
1, 0) with

u2(θ) = 0 for θ ∈ [−τ, 0), before some infectious individuals with a spatial dis-
tribution ϕ(x) are brought into the population at t = 0 (i.e., u2(x, 0) = ϕ(x)). Let V
be the positive linear operator on C(�̄,R) defined by

V (ϕ)(x) :=
∫

�

	(x, y, τ )r(y)u∗
1(y)ϕ(y)dy, ∀ ϕ ∈ C(�̄,R), x ∈ �̄. (3.1)

Note that if ϕ(x) is a spatial distribution of infectious individuals, then r(y)u∗
1(y)ϕ(y)

accounts for new infections at location y. By the meaning of the Green function
	(x, y, τ ), V (ϕ)(x) sums up the new infections in the whole domain � that can sur-
vive the latent period, and thus, gives the distributions of new infectious individuals
caused by the distribution ϕ(x). Combining this explanation and the meaning of the
semigroup T2(t)with (2.14), we know that there will be no new infectious individuals
available at any time t ∈ [0, τ ); and for t ≥ τ , the new infectious individuals become
available with the spatial distribution given by V ((T2(t − τ)φ)(x). Thus, the distribu-
tion of the total new infectious individuals caused by the initial distribution ϕ(x) of
infectious individuals is
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∞∫

τ

V ((T2(t − τ)φ)(x)dt =
∞∫

0

V ((T2(t)φ)(x)dt. (3.2)

Therefore, (3.2) defines the next generation operator:

L(ϕ) :=
∞∫

0

V (T2(t)ϕ)dt = V (

∞∫

0

T2(t)ϕ dt). (3.3)

By Diekmann et al. (1990) and Thieme (2009), the spectral radius of L is the basic
reproduction number for the model (1.16), that is,

R0 := r(L). (3.4)

Then, we have the following result. By the general results in Thieme (2009) and the
same arguments as in Wang and Zhao (2011, Lemma 2.2), we have the following
result.

Lemma 3.1 R0 − 1 and λ(u∗
1) have the same sign.

The proof by a general results in Thieme (2009) and a similar argument to that
in the proof of Wang and Zhao (2011, Lemma 2.2), and is given in the appendix for
readers’ convenience.

By Lemma 3.1 and Corollary 2.1, we have the following natural results which are
expected in light of the biological meaning of the basic reproduction number R0.

Theorem 3.1 Suppose u(x, t, φ) is the solution of system (1.16) with u0 = φ ∈ C+
τ .

Then the following statements hold.

(i) If R0 < 1, then the disease free equilibrium (u∗
1(x), 0) is globally attractive in

C+
τ ;

(ii) If R0 > 1, then system (1.16) admits at least one positive steady state û(x) and
there exists an η > 0 such that for any φ ∈ C+

τ with φ2(·, 0) ≡/ 0, we have

lim inf
t→∞ ui (x, t) ≥ η, ∀ i = 1, 2,

uniformly for all x ∈ �̄.

4 A special case

In general, calculating the principal eigenvalue λ(u∗
1) and spectral radius of the oper-

ator L is very difficult and challenging, if not impossible. Below, we shall discuss a
special case where all the coefficients in (1.16) are independent of the spatial variable
x , that is,

D1(x) ≡ D1, D2(x) ≡ D2, DL(x) ≡ DL ,

μ(x) ≡ μ, d(x) ≡ d, r(x) ≡ r, β(x) ≡ β, βL(x) ≡ βL ,
for x ∈ �. (4.1)
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By Lemma 2.2, it follows that

u∗
1(x) ≡ μ

d
, ∀ x ∈ �.

Then λ(u∗
1) ≡ λ(

μ
d ) satisfies

{
λψ(x) = D2�ψ(x)− βψ(x)+ rμ

d

∫
�
	(x, y, τ )ψ(y)dy, x ∈ �, t > 0,

∂ψ(x)
∂ν

= 0, x ∈ ∂�, t > 0.
(4.2)

Substituting ψ(x) ≡ 1 > 0 into (4.2) and using the equality:
∫
�
	(x, y, τ )dy =

e−βLτ , one obtains the principal eigenvalue of (4.1)

λ
(μ

d

)
= −β + rμ

d
e−βLτ , (4.3)

corresponding to which there is the unique (up to constant multiple) positive eigen-
function ψ(x) ≡ 1 > 0. Thus, in such a special case, the threshold dynamics can be
described explicitly in terms of the model parameters as below.

Corollary 4.1 Assume (4.1) for the model system (1.16). Then,

(i) if βd > rμe−βLτ , then the disease free equilibrium (
μ
d , 0) is globally attractive

for the model system (1.16);
(ii) if βd < rμe−βLτ , the system (1.16) is uniformly persistent (hence the disease

remains endemic), admits at least one positive steady state (endemic steady state).

Next, we identify the basic reproduction number R0 by computing the spectral
radius of L under (4.1). To avoid the main feature being hidden by the complexity in
the Green functions caused by higher dimension, we only consider one dimensional
spatial space. Without loss of generality, we take � = (0, π). In such a special case,
T2(t)ϕ represents the solution of the following system:

⎧⎪⎨
⎪⎩
∂u
∂t = D2�u(x, t)− βu(x, t), x ∈ (0, π), t > 0,
∂u(0,t)
∂x = ∂u(π,t)

∂x = 0, t > 0,

u(x, 0) = ϕ(x), x ∈ (0, π).

Thus T2(t)ϕ may be given by

(T2(t)ϕ)(x) = e−βt

π∫

0

K2(x, z, t)ϕ(z)dz,

where

K2(x, y, t) = 1

π
+ 2

π

∞∑
n=1

e−n2 D2t cos nx cos ny (4.4)
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is the Green function associated with D2� subject to the homogeneous Neumann
boundary condition.

Also in this case, (3.1) becomes

V (ϕ)(x) := e−βLτ
rμ

d

π∫

0

K (x, y, τ )ϕ(y)dy, ∀ ϕ ∈ C([0, π ],R), x ∈ [0, π ],

where

K (x, y, t) = 1

π
+ 2

π

∞∑
n=1

e−n2 DL t cos nx cos ny (4.5)

is the Green functions associated with DL� subject to the Neumann boundary condi-
tions. Thus

V (T2(t)ϕ)(x) :=e−βL τ
rμ

d

π∫

0

K (x, y, τ )(T2(t)ϕ)(y)dy, ∀ ϕ∈C([0, π ],R), x ∈[0, π ].

Hence,

V (T2(t)ϕ)(x) := e−βt e−βLτ
rμ

d

π∫

0

π∫

0

K (x, y, τ )K2(y, z, t)ϕ(z)dydz.

By (3.3), it follows that

L(ϕ)(x) = e−βLτ
rμ

d

∞∫

0

e−βt

π∫

0

π∫

0

K (x, y, τ )K2(y, z, t)ϕ(z)dydzdt. (4.6)

Substituting (4.4) and (4.5) into (4.6) and after doing some routine computations,
we obtain

L(ϕ))(x) = e−βLτ
rμ

d

⎡
⎣ 1

πβ

π∫

0

ϕ(z)dz + 2

π

∞∑
n=1

e−n2 D2τ

β + n2 DL
cos nx

π∫

0

cos nzϕ(z)dz

⎤
⎦.

For any k ∈ N , iterating this operator k times results in

Lk(ϕ)(x) =
[

e−βLτ
rμ

βd

]k
⎡
⎣ 1

π

π∫

0

ϕ(z)dz

⎤
⎦ + Hk(x),
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where Hk(x) satisfies
∫ π

0 Hk(x)dx = 0, ∀ k ∈ N . Hence,

‖Lk‖ = sup

∫ π
0 Lk(ϕ)(x)dx∫ π

0 ϕ(x)dx
=

[
e−βLτ

rμ

βd

]k

.

Note that L is a bounded operator and it is well-known that

r(L) = lim
k→∞ ‖Lk‖1/k = rμ

βd
e−βLτ .

This together with (3.4) leads to

R0 = rμ

βd
e−βLτ . (4.7)

Obviously, the two formulas (4.3) and (4.7) agree with Theorem 3.1 and Corollary 4.1.
From (4.3) and Theorem 3.1, or (4.7) and Corollary 4.1, the threshold dynamics

of the model under (4.1) can be explicitly determined by the model parameters and is
independent of all constant diffusion rates. This is reasonable since in an homogeneous
environment with homogeneous Neumann boundary conditions, solutions generically
tend to be homogenized.

5 Discussion

We have derived a model, given by (1.16), to describe the dynamics of a disease that
has a latent period τ and spreads in a host population that habitats in a continuous
bounded domain �. We have shown that the model has a threshold dynamics which
can be expressed either in terms of the principal eigenvalue λ(u∗

1) of the linear scalar
equation (2.22) (Corollary 2.1), or in terms of the basic reproduction number R0 (Cor-
ollary 4.1) which is identified as the spectral radius of the next generation operator L
given by (3.3).

For the special case when all model parameters are positive constants, we are able
to compute λ(u∗

1) and L analytically, as is done in Sect. 3. However, in general situa-
tions, computations of λ(u∗

1) and R0 are mathematically difficult and challenging, if
not impossible. In such a case, as in Wang and Zhao (2011), numeric computations
becomes a natural alternative. Here we will not explore numeric computations in this
paper. Instead, we shall investigate the possibility of calculating R0 by using the idea
in Krkosek and Lewis (2010), that is, combining the biological meanings of R0 and L.
To this end, we consider a case which is a slightly more general than (4.1) by assuming
the following:

D1(x) ≡ D1, D2(x) ≡ D2, DL(x) ≡ DL ,

μ(x) ≡ μ, d(x) ≡ d, β(x) ≡ β, βL(x) ≡ βL ,
for x ∈ �, (5.1)
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but allowing r(x) to be space dependent. Then, similar to (4.5), we can obtain the
following formula for the next generation operator

L(ϕ)(x) = e−βLτ
μ

d

∞∫

0

e−βt
∫

�

∫

�

K (x, y, τ )K2(y, z, t)r(y)ϕ(z)dydzdt,

(5.2)

where K (x, y, t) and K2(x, y, t) are the Green functions associated to the Laplacian
operators DL� and D2�, respectively, with the homogeneous Neumann boundary
condition.

Now, assume that a single infectious individual is brought into the the domain, with
the probability of landing at the location x being ϕ(x). Then ϕ(x) is a non-negative
function defined on � satisfying

∫
�
ϕ(x) dx = 1. By the meaning of L, the total

number of infectious individuals caused by this single infectious individual with the
probability distribution ϕ(x) for his/her initial location is then given by

∫

�

(Lϕ)(x) dx

= e−βLτ
μ

d

∞∫

0

e−βt
∫

�

∫

�

∫

�

K (x, y, τ )K2(y, z, t)r(y)ϕ(z) dy dz dt dx . (5.3)

Noting that
∫
�

K (x, y, τ )dx = 1 for all y ∈ � and τ ≥ 0, we can further compute
the above as

∫

�

(Lϕ)(x) dx = e−βLτ
μ

d

∞∫

0

e−βt
∫

�

∫

�

K2(y, z, t)r(y)ϕ(z) dy dz dt

= e−βLτ
μ

d

∞∫

0

e−βt
∫

�

g(z, t)ϕ(z) dz dt, (5.4)

where

g(z, t) =
∫

�

K2(y, z, t)r(y) dy. (5.5)

Note that the total number give by (5.4) depends on the initial distribution ϕ(x).
Taking the worst scenario, the maximal number that a single infectious individual can
cause, which should be nothing but the basic production number of the model by its
biological definition, is given by
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R0 = sup
ϕ≥0,

∫
� φ(x)dx=1

∫

�

(Lϕ)(x) dx = e−βLτ
μ

d

∞∫

0

e−βt sup
ϕ≥0,

∫
� φ(x)dx=1

∫

�

g(z, t)ϕ(z) dz dt

= e−βLτ
μ

d

∞∫

0

e−βt max
z∈�̄,t≥0

g(z, t) dt. (5.6)

Now, g(x, t) can be considered as the solution to the following initial-boundary value
problem:

⎧⎪⎪⎨
⎪⎪⎩

∂u
∂t = D2�u(x, t)− βu(x, t), x ∈ �, t > 0,
∂u(x,t)
∂ν

∣∣∣
∂�

= 0, t > 0,

u(x, 0) = r(x), x ∈ �.

By the maximal principle for this problem, one concludes that

max
x∈�̄,t≥0

g(z, t) = max
x∈�̄

r(x) := r̂

and hence,

R0 = sup
ϕ≥0,

∫
� ϕ(x)dx=1

∫

�

(Lϕ)(x) dx = e−βLτ
μr̂

d

∞∫

0

e−βt dt = μr̂

βd
e−βLτ . (5.7)

It is obvious that the formula (4.6) is a direct result of (5.7) when r(x) is also constant.
We point out that the results obtained under (4.1) or (5.1) show that the magnitudes

of the positive constant diffusion rates have no impact on the threshold dynamics of
the disease. This is in contrast to the results in Li and Zou (2010) where a similar
model but on the one dimensional whole spatial space R was considered and traveling
wave fronts were investigated; and it was seen in Li and Zou (2010) that the constant
diffusion rates can affect the speed of traveling wave front and the spatial spread speed
of the disease. However, a reader should not be misled by this conclusion for these
two very special cases. Indeed, as can be seen from the definition of λ(u∗

1) and R0,
they both depend on the diffusion coefficients in general case, although such depen-
dence is not easy to analyze. For a similar model, Wang and Zhao (2011) numerically
explored the impact of diffusion rates on the basic reproduction number R0 when the
spatially periodic transmission functions are adopted, and the results show that R0 is
a deceasing function of the diffusion rate for susceptible host population. Rigorous
study of the impact of the space dependent parameters on λ(u∗

1) and R0 seems to be
meaningful and worthwhile project and we will have to leave it as a future work.

Finally, when R0 > 1 or equivalently λ(u∗
1) > 0, the model allows an endemic

steady state û(x) = (û1(x), û2(x)). The stability of û(x) is an important but very
difficult problem. When the demographic function in (1.11) is replace by the logistic
function with constant coefficients: S(x, t)[c0 − c1S(x, t)], the mass action infection
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incidence function is replaced by r SI/(b0 + b2 I ) with b0 > 0 and b2 > 0 and all
other model parameters are also constants, the stability of û(x) (constant in this case)
can be obtained by employing Theorem 4.1-(i) in Thieme and Zhao (2001) under
some conditions on the constant parameters. But these conditions will not hold when
b2 = 0 and thus Theorem 4.1-(i) does not apply to our model (1.16). Whether or not
the method used in proving Theorem 4.1-(i) can be extended to (1.16) with location
dependent parameters remains an open problem worthy of exploring.

We conclude the paper by remarking that infectivity of a disease usually depends
on the infection age. Since our focus here is on spatial issues, we choose not to include
this factor in this work.
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6 Appendix

In this Appendix we give the detailed proofs of Lemmas 2.2, 2.4, and 3.1.

Proof of Lemma 2.2 By standard theory of parabolic equations (see, e.g., Pao 1992;
Pazy 1983), we know that for any φ ∈ C(�̄,R+), the linear equation (2.5) has a
unique solutionw(x, t, φ) defined for t ∈ [0,∞)withw(·, 0, φ) = φ(·), implying that
(2.5) generate a semiflow (solution semiflow), denoting it by�(t), i.e., (�(t)φ)(·) =
w(·, t, φ). Let ḡ = max{g(x) : x ∈ �̄}, g = min{g(x) : x ∈ �̄}, d̄ = max{d(x) :
x ∈ �̄}, d = min{d(x) : x ∈ �̄}. It follows from the standard comparison theorem
and maximal principle (see, e.g., Pao 1992; Protter and Weinberger 1984) that for any
φ ∈ C(�̄,R+)with φ ≡/ 0, its omega limit setω(φ) satisfiesω(φ) ⊂ {ψ : g/d̄ ≤ ψ ≤
ḡ/d} =: M0. This implies that�(t) has a global compact attractor M contained in M0.
From Hirsch (1984, Theorems 3.2) (also see Martin and Smith 1991, Theorem 4.1), it
follows that M contains a steady state of (2.5), which is of course positive. Assume that
there are two steady states, w1(x) and w2(x) for (2.5). Then u(x) = w2(x)− w1(x)
satisfies ∇ · [D(x)∇u] − d(x)u = 0 for x ∈ � and (D(x)∇u) · ν = 0, x ∈ ∂�.
The strong maximal principle (see, e.g.,Protter and Weinberger 1984) would lead to
u(x) = 0 for x ∈ �. Thus, (2.5) has exactly one steady state, denoting it byw∗(x). By
Hirsch (1984, Theorems 3.3) (also see Martin and Smith 1991, Theorem 4.1), w∗(x)
attracts every solutionw(x, t, φ)with φ ∈ C(�̄,R+) and φ ≡/ 0, completing the proof.

Proof of Lemma 2.4 Let Y = C(�̄,R),Y+ = C(�̄,R+),E = C([−τ, 0],Y),E+ =
C([−τ, 0],Y+) and B = A2 : D(A2) → Y be the generator of T(t) := T2(t), where
T2 is defined in (2.1). Clearly, Y is a Banach lattice. Define L : E → Y by

Lφ(x) =
∫

�

	(x, y, τ )r(y)m(y)φ(y,−τ)dy, x ∈ �, φ ∈ E.
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It is easy to see that L is positive, that is, L(E+) ⊂ Y
+. For each λ ∈ R, we define

Lλ : Y → Y by

Lλ(ϕ) = L(eλ·ϕ), ϕ ∈ Y,

where eλ·ϕ ∈ E is defined by

(eλ·ϕ)(θ, x) = eλθϕ(x), θ ∈ [−τ, 0], x ∈ �̄, ϕ ∈ Y.

Then the system (2.15) is equivalent to

{ dv(t)
dt = Bv(t)+ Lvt , t > 0,
v0 = φ ∈ E,

(6.1)

and the system (2.17) is equivalent to

{ dv(t)
dt = Bv(t)+ L0v(t) = (B + L0)v(t), t > 0,
v(0) ∈ Y,

(6.2)

Let U (t) : E → E, t ≥ 0 be the solution semiflow associated with the abstract delay
equation (6.1) and let AU : D(AU ) → E be its generator (see, e.g., Wu 1996). Then
U (t) : E → E is positive (see, e.g., Kerscher and Nagel 1984, Section 4). Let σ(AU )

be the spectral set and s(AU ) = {Reλ : λ ∈ σ(AU )} (i.e., the spectral bound of AU ).
By Kerscher and Nagel (1984, Section 4), we indeed have s(AU ) ∈ σ(AU ).

We now prove that s(AU ) is a point spectral value of AU and s(AU ) has a strongly
positive eigenvector ψ ∈ int (E+). To this end, we first show that the operators
U (t) are eventually strongly positive. For any φ = φ(θ, x) ∈ E

+ with φ ≡/ 0, let
v(x, t) = v(x, t, φ), x ∈ �, t ≥ 0 be the solution of (6.1) (i.e. (2.15)), that is,
U (t)φ = v(·, t, φ).

Claim v(x, t) > 0, ∀x ∈ �̄, t > τ .
To prove this claim, we only need consider two cases: Case(I). φ(0, ·) ≡/ 0. In this
case, the strong maximum principle (see, e.g., Protter and Weinberger 1984, p. 172,
Theorem 4) and the Hopf boundary lemma (see, e.g., Protter and Weinberger 1984,
p. 170, Theorem 3) imply that v(x, t) > 0, ∀x ∈ �̄, t > 0. Case(II). There is a
θ0 ∈ (0, τ ) such that φ(−θ0, ·) ≡/ 0. In this case, we first show that v(·, τ − θ0) ≡/ 0,
by contradiction. If v(·, τ − θ0) ≡ 0, it follows from (6.1) (or (2.15)) that

∂v(x, τ − θ0)

∂t
= Bv(x, τ − θ0)+

∫

�

	(x, y, τ )r(y)m(y)v(y,−θ0)dy

= 0 + T2(τ )(r(·)m(·)v(·,−θ0))(x) > 0, x ∈ �,

where T2 is defined in (2.1) and we have used the strong positivity of T2(t) > 0
for t > 0. On the other hand, since v(·, t) ≥ 0, ∀ t ≥ 0 and v(·, τ − θ0) ≡ 0,
it follows that ∂v(x,τ−θ0)

∂t ≤ 0, which is a contradiction. Thus, v(·, τ − θ0) ≡/ 0.
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It then follows from the strong maximum principle and the Hopf boundary lemma that
v(x, t) > 0, ∀x ∈ �̄, t > τ − θ0. Combining Case (I) and Case (II), we have proved
that v(x, t) > 0, ∀x ∈ �̄ and t > τ , and hence, v(x, t + θ) > 0, ∀x ∈ �̄, t > 2τ .
This implies that U (t) : E → E is strongly positive for each t > 2τ .

Moreover, U (t) : E → E is compact for each t > τ . Thus, for any t > 2τ , by
Krein–Rutman theorem (see, e.g., Smith 1995, Theorem 2.4.1), the spectral radius
r(U (t)) := sup{| λ |: λ ∈ σ(U (t))} is a positive eigenvalue of U (t) and its corre-
sponding eigenvector is strongly positive. By the point spectral mapping theorem (Pazy
1983, Theorem 2.2.4), there is a point spectral value λ̄ of AU such that r(U (t)) = eλ̄t .
Clearly, λ̄ is also real and λ̄ ≤ s(AU ). Moreover, by the fact that s(AU ) ∈ σ(AU ) and
the spectral mapping theorem (Pazy 1983, Theorem 2.2.3), it follows that ets(AU ) ∈
σ(U (t)). Thus, ets(AU ) ≤ r(U (t)) = eλ̄t . This implies that s(AU ) ≤ λ̄. Therefore,
λ̄ = s(AU ) (also denoting it by λ̄(m) to indicate that it depends on m(x)), is a point
spectral value (or eigenvalue) of AU . Let ψ ∈ E be a nonzero eigenvector of AU

associated with s(AU ). Then U (t)ψ = ets(AU )ψ = r(U (t))ψ and hence, again by
the Krein–Rutman theorem, it follows thatψ ∈ int (E+). Therefore s(AU ) is the prin-
cipal eigenvalue of AU corresponding to which, there is an eigenvector ψ ∈ int (E+),
proving (i).

The proof of (ii) is included in the proof of (i), as a special case indeed, confirming
the existence of the principal eigenvelue λ = λ(m). Finally, by Kerscher and Nagel
(1984, Section 4) again, s(AU ) has the same sign as s(B + L0) = λ(m) does, that is
λ̄(m) and λ(m) have the same sign, completing the proof. 
�
Proof of Lemma 3.1 Recall that B = A2 : D(A2) → Y is the generator of T(t) :=
T2(t), where T2 is defined in (2.1). Since T(t) is a positive semigroup in the sense
that T(t)Y+ ⊂ Y

+, ∀ t ≥ 0, Thieme 2009, Theorem 3.12 implies that B is resolvent
positive, and

(λI − B)−1ϕ =
∞∫

0

eλt
T(t)ϕ, ∀ λ > s(B), ϕ ∈ Y. (6.3)

By (2.1) and the fact that T(t) := T2(t), it is easy to see that there exists some
ε0 > 0 such that

lim
t→∞ eε0t

T(t)ϕ = 0, ∀ ϕ ∈ D(B).

By Thieme (2009, Theorem 3.13) (see also Engel and Nagel 2000, section V.1), it
follows that s(B) < 0.

Letting λ = 0 in (6.3), we obtain −B
−1ϕ = ∫ ∞

0 T(t)ϕ, ∀ ϕ ∈ Y. Thus, we
have L = −CB

−1, where L and C := V are defined in (3.3) and (3.1), respectively.
From the linear system (2.22) with m(·) = u∗

1(·), we further see that the linear operator
A := B+C generates a positive C0-semigroup, and hence A is also resolvent positive.
Clearly, λ(u∗

1) = s(A). It then follows from Thieme (2009, Theorem 3.5) that s(A)
has the same sign as r(−CB

−1)− 1 = r(L)− 1 = R0 − 1.
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