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Abstract A recent fieldmanipulation on a terrestrial vertebrate showed that the fear of
predators alone altered anti-predator defences to such an extent that it greatly reduced
the reproduction of prey. Because fear can evidently affect the populations of terres-
trial vertebrates, we proposed a predator–prey model incorporating the cost of fear
into prey reproduction. Our mathematical analyses show that high levels of fear (or
equivalently strong anti-predator responses) can stabilize the predator–prey system
by excluding the existence of periodic solutions. However, relatively low levels of
fear can induce multiple limit cycles via subcritical Hopf bifurcations, leading to a
bi-stability phenomenon. Compared to classic predator–prey models which ignore the
cost of fear where Hopf bifurcations are typically supercritical, Hopf bifurcations in
our model can be both supercritical and subcritical by choosing different sets of para-
meters. We conducted numerical simulations to explore the relationships between fear
effects and other biologically related parameters (e.g. birth/death rate of adult prey),
which further demonstrate the impact that fear can have in predator–prey interactions.
For example, we found that under the conditions of a Hopf bifurcation, an increase
in the level of fear may alter the direction of Hopf bifurcation from supercritical to
subcritical when the birth rate of prey increases accordingly. Our simulations also
show that the prey is less sensitive in perceiving predation risk with increasing birth
rate of prey or increasing death rate of predators, but demonstrate that animals will
mount stronger anti-predator defences as the attack rate of predators increases.
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1 Introduction

Studying the mechanisms driving predator–prey systems is a central topic in ecology
and evolutionary biology. The long-standing view, is that predators can impact prey
populations only through direct killing. Predation events are relatively easy to observe
in the field and by removing individuals from the population, it stands to reason that
direct killing would be involved (Creel and Christianson 2008; Lima 1998, 2009;
Cresswell 2011). An emerging view, however, is that the mere presence of a predator
may alter the behaviour and physiology of prey to such an extent that it can exert
an effect on prey populations even more powerful than direct predation (Creel and
Christianson 2008; Lima 1998, 2009; Cresswell 2011).

All animals in every taxa respond to perceived predation risk and show a variety
of anti-predator responses including changes in habitat usage, foraging behaviours,
vigilance and physiological changes (Cresswell 2011; Svennungsen et al. 2011; Peacor
et al. 2013; Preisser and Bolnick 2008; Pettorelli et al. 2011). For example, when
prey assess predation risk, they may choose to abandon the original high-risk habitat
and relocate to low-risk habitats, which can carry an energetic cost especially if the
low-risk habitats are of suboptimal quality (Cresswell 2011). Similarly, scared prey
are well-known to forage less, which could reduce the birth rate and survival through
mechanisms like starvation (Creel andChristianson2008;Cresswell 2011).High levels
of acute predation risk can cause prey to leave habitats or foraging sites temporarily,
returning onlywhen the acute risk has passed and the prey are relatively safe (Cresswell
2011). Moreover, fear may affect the physiological condition of juvenile prey and
leave harmful impacts on their survival as adults (Clinchy et al. 2013; Creel and
Christianson 2008). Birds, for example, respond to the sounds of predators with anti-
predator defences (Creel and Christianson 2008; Cresswell 2011), and when nesting,
will flee from their nests at the first sign of danger (Cresswell 2011). Such an anti-
predator behaviour may be beneficial in increasing the probability of survival, but
can carry some long-term costs on reproduction that may affect population numbers
(Cresswell 2011).

Although some theoretical ecologists and evolutionary biologists have realized
that the interactions between prey and predators should not be simply described by
direct predation alone and that the cost of fear should be considered (Preisser and
Bolnick 2008; Peacor et al. 2013; Pettorelli et al. 2011), no mathematical models have
been proposed to quantitatively investigate whether or the extent to which fear can
affect prey populations. This is mainly due to lack of direct experimental evidence
demonstrating that fear can affect the populations of terrestrial vertebrates.

Recently, however, Zanette et al. (2011) conducted amanipulation on song sparrows
during an entire breeding season to determine whether perceived predation risk could
affect reproduction even in the absence of direct killing. The authors manipulated
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predation risk by broadcasting predator sounds to some populations of song sparrows
while others heard non-predator sounds. At the same time, all nests in themanipulation
were protected from direct killing ensuring that any effects on reproduction could only
be ascribed to fear. Zanette et al. (2011) found that the fear of predators alone led to a
40% reduction in the number of offspring of the song sparrows parents could produce.
The reason this effect was so dramatic, is because predation risk had effects on both
the birth rate and survival of offspring because song sparrow females laid fewer eggs
(the birth rate), fewer of those eggs hatched (survival) and more nestlings died in the
nest (survival). Moreover, the authors showed that a variety of anti-predator responses
led to these effects on demography. For example, scared parents fed their nestlings
less, their nestlings were lighter and much more likely to die. Correlational evidence
in birds (Eggers et al. 2005, 2006; Ghalambor et al. 2013; Hua et al. 2013, 2014;
Fontaine andMartin 2006; Orrock and Fletcher 2014; Ibáñez-Álamo and Soler 2012),
elk (Creel et al. 2007), snowshoe hares (Sheriff et al. 2009) and dugongs (Wirsing and
Ripple 2011) also provide some evidence that fear can affect populations.

Predator–prey models have been studied extensively, but no models to date have
incorporated the plastic anti-predator behaviour of prey in addition to the behaviour of
the predator. Following the classic Lotka–Volterra model, Holling (1965) proposed the
well-known Holling type II functional response of predators. The population dynam-
ics of predator–prey systems with the Holling type II functional response have been
studied by many scholars and the existence of a unique stable limit cycle for such
a model has been confirmed (Kooij and Zegeling 1997; Kuang and Freedman 1988;
Sugie et al. 1997). There have been many other predator–prey systems that have mod-
elled more complicated functional responses. For example, within the prey dependent
functional responses, May (1972), Seo and DeAngelis (2011) and Huang et al. (2014)
considered some monotone response functions and Zhu et al. (2003), Ruan and Xiao
(2001), Freedman and Wolkowicz (1986) and Wolkowicz (1988) studied some non-
monotone response functions. In addition to functional responses dependent on prey
numbers only, there are also studies considering functional responses dependent on
both prey and predators numbers, among which are the Beddington–DeAngelis func-
tional responses (Cantrell and Cosner 2001; Beddington 1975; DeAngelis et al. 1975;
Hwang 2003, 2004) and ratio dependent functional response (Song and Zou 2014a, b).

No matter how sophisticated functional responses may be when incorporated into
predator-prey models, they still only reflect what can happen regarding direct killing.
In this paper, we propose and analyze a predator-prey model incorporating the cost of
fear (indirect effects) to explore the impact that fear can have on population dynamics
in predator–prey systems. In Sect. 2, we formulate the model incorporating the cost
of fear generated by anti-predator behaviors. In Sect. 3, we analyze the model for
the case when the functional response is a linear function of the prey population.
In Sect. 4, we consider the Holling type II functional response for the model, and
present some results on the stability of equilibria, existence of Hopf bifurcation and
direction of Hopf bifurcation. Our mathematical results show that while incorporating
fear (i.e. predation risk) effects into predator–prey models do not affect the structure of
the equilibria, it may change the stability of the equilibria. Moreover, the existence of
Hopf bifurcation and its direction in our model will be different from the classic model
ignoring fear effects. In Sect. 5, we provide some numerical simulation results which
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reveal some potential roles that the fear effect may play in predator–prey interactions.
We end the paper by Sect. 6, consisting of some conclusions and we also, discuss the
biological implications of our mathematical results and possible future projects.

2 Model formulation

Assume that the prey obey a logistic growth in the absence of predation and the cost
of fear. The logistic growth of prey can be separated into three parts: a birth rate, a
natural death rate and a density dependent death rate due to intra-species competition.
This leads to the following ODE

du

dt
= r0u − d u − a u2, (2.1)

where u represents the population of the prey, r0 is the birth rate of prey, d is the
natural death rate of prey, a represents the death rate due to intra-species competition.

Let v represent the population of the predator. Since fields experiments show that the
fear effect will reduce the production, we modify (2.1) by multiplying the production
term by a factor f (k, v) which accounts for the cost of anti-predator defence due to
fear, leading to

du

dt
= [ f (k, v) r0] u − d u − a u2. (2.2)

Here, the parameter k reflects the level of fear which drives anti-predator behaviours
of the prey. By the biological meanings of k, v and f (k, v), it is reasonable to assume
that

⎧
⎪⎨

⎪⎩

f (0, v) = 1, f (k, 0) = 1, lim
k→∞ f (k, v) = 0, lim

v→∞ f (k, v) = 0,

∂ f (k, v)

∂k
< 0,

∂ f (k, v)

∂v
< 0.

(2.3)

Although there are arguments and beliefs (e.g., Clinchy et al. 2013) that fear may
lead to lower survival rate of adults due to physiological impacts when they are young,
by far there are no direct experimental evidences showing such an impact. As such,
we do not incorporate this factor into modelling in this work, meaning that we regard
d and a as constants.

Next, we incorporate a predation term g(u)v into (2.2) to obtain the following
general prey–predator model with cost of fear reflected:

⎧
⎪⎨

⎪⎩

du

dt
= u r0 f (k, v) − d u − a u2 − g(u) v,

dv

dt
= v (−m + c g(u)).

(2.4)
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Here g : R+ → R+ is the functional response of predators, v represents the density
of predators, c is the conversion rate of prey’s biomass to predators’ biomass, m is
the death rate of predators. Typically, g(u) is of the form up(u) with p : R+ → R+.
When p(u) = p is a constant, g(u) gives a linear functional response, and when
p(u) = p/(1 + qu), g(u) represents the Holling type II functional response.

By the standard basic theory ofODE systems, one can easily show that for any initial
value (u0, v0) ∈ R

2+, (2.4) has a unique solution, and with the form g(u) = p(u)u,
it is easily seen that the solution remains positive and bounded, and hence it exists
globally.

From the first equation in (2.4), we have u′(t) ≤ (r0−d)u which establishes a linear
comparison equation from the above for the first equation. By a comparison argument,
we conclude that if r0 < d, then u(t) → 0 as t → ∞, and applying the theory of
asymptotically autonomous systems (see, e.g. Castillo-Chavez and Thieme 1995) to
the second equation in (2.4), we also obtain v(t) → 0 as t → ∞. This means that
when r0 < d, both prey and predator species will go to extinction, regardless of the
fear effect and particular predation mechanism. Therefore, we only need to consider
the case when r0 > d which will be assumed in the rest of the paper.

3 Model with the linear functional response

For the case of linear functional response g(u) = pu, we consider general function
f (k, v) that satisfies conditions (2.3), reducing the model (2.4) to

⎧
⎪⎨

⎪⎩

du

dt
= r0 u f (k, v) − d u − a u2 − p u v,

dv

dt
= c p u v − m v.

(3.1)

In addition to the trivial equilibrium E0 = (0, 0), this system also has a boundary
equilibrium E1 = ((r0 −d)/a, 0) under the condition r0 > d. In addition, there exists
a unique positive (co-existence) equilibrium for system (3.1) given by E2 = (u, v) if

r0 > d + am

cp
(3.2)

holds, where u = m/(c p) and v satisfies

r0 f (k, v) − d − a u − p v = 0. (3.3)

If (3.2) is reversed, (3.3) has no positive solution and hence system (3.1) has no
positive (coexistence) equilibrium.

The following theorem describes the local stability of all three equilibria.

Theorem 3.1 The following statements hold:

(i) The semi-trivial equilibrium E1 is locally asymptotically stable if (3.2) is reversed
and is unstable if (3.2) holds.
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(ii) The positive equilibrium E2, as long as it exists (i.e., when (3.2) is satisfied), is
locally asymptotically stable.

Proof We only show the proof of the local stability of E2 because the proof for the
local stability of E1 is similar. The Jacobian matrix of system (3.1) at E2 is

J =
[
J11 J12
J21 J22

]

, (3.4)

where

J11 = r0 f (k, v) − d − 2 a u − p v = −aū < 0, J12 = r0 u
∂ f (k, v)

∂v

∣
∣
∣
∣
v=v

− p u < 0,

J21 = c p v > 0, J22 = c p u − m = 0. (3.5)

Obviously, tr(J ) = −aū < 0, and by (2.3), det(J ) = −J12 J21 > 0. Thus, E2 is
locally asymptotically stable. ��

The above theorem shows that, as the parameter r0 increases, themodel experiences
two bifurcations of equilibrium: when r0 ∈ (0, d), E0 is the only equilibrium which is
globally asymptotically stable; when r0 passes d to enter the interval (d, d + am/cp),
E0 loses its stability to a new equilibrium E1; and when r0 further passes d + am/cp,
E1 loses its stability to another new equilibrium E2. The next theorem further confirms
that the stability claimed in Theorem 3.1 is actually global for both E1 and E2.

Theorem 3.2 The boundary equilibrium E1 is globally asymptotically stable if r0 ∈
(d, d + am/cp), and the unique positive equilibrium E2 is globally asymptotically
stable if r0 > d + am/cp.

Proof Assume r0 > d + am/cp and let P(u, v), Q(u, v) represent the two functions
on the right hand side of system (3.1). Choose the Dulac function B(u, v) = 1/(u v).

After calculations, we obtain

D = ∂(P B)

∂u
+ ∂(Q B)

∂v
= −a

v
< 0 (3.6)

for (u, v) ∈ (0,∞) × (0,∞). Therefore, by the Dulac–Bendixson theorem (Perko
1996, Theorem 2, p 265), there is no periodic orbit in (0,∞)×(0,∞) for system (3.1).
Moreover, E2 is the unique positive equilibrium in (0,∞) × (0,∞) if (3.2) holds;
hence, every positive solution will tend to E2. This together with the local stability
confirmed in Theorem 3.1 implies that E2 is indeed globally asymptotically stable, if
(3.2) holds.

When r0 ∈ (d, d + am/cp), there is no other equilibrium other than E0 and E1 in
R
2+, and hence, there can not be any periodic orbit inR2+, implying that every positive

solution will either approach E0 or E1. It can be easily seen that E0 is repelling (under
r0 > d), and thus, every positive solution actually approaches E1. This together
with Theorem 3.1 again implies that E1 is indeed globally asymptotically stable if
r0 ∈ (d, d + am/cp). ��
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4 Model with the Holling type II functional response

In this section, we consider the Holling type II functional response g(u) = pu/(1 +
qu), and in the mean time, for convenience of analysis, we adopt the following par-
ticular form for the fear effect term f (k, v):

f (k, v) = 1

1 + k v
. (4.1)

With g(u) and f (k, v) specified as above, the model (2.4) becomes

du

dt
= r0 u

1 + k v
− d u − a u2 − p u v

1 + q u
,

dv

dt
= c p u v

1 + q u
− m v.

(4.2)

4.1 Existence of equilibria and dynamical behaviours in boundary

In addition to the trivial equilibrium E0 = (0, 0), system (4.2) has one semi-trivial
equilibrium E1 = ((r0 −d)/a, 0) if r0 > d, which is assumed in the rest of the paper.
We address the local stability of E1 in the following theorem.

Theorem 4.1 Semi-trivial equilibrium E1 is locally asymptotically stable if

(r0 − d)(c p − m q) < a m (4.3)

is satisfied and is unstable if

(r0 − d)(c p − m q) > a m (4.4)

holds.

The proof for Theorem4.1 is similar to the proof in Theorem3.1 and is thus omitted.
We will see later that under (4.4), the model (4.2) actually has a positive equilibrium.

Note that E0 is unstable, E1 is locally asymptotically stable and there is no other
equilibrium provided that

c p ≤ m q. (4.5)

Then this implies that E1 is indeed globally asymptotically stable if (4.5) holds.
Thus, we have the following theorem.

Theorem 4.2 The boundary equilibrium E1 is globally asymptotically stable if (4.5)
is satisfied.
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By Theorem 4.2, the dynamical behaviour of system (4.2) is clear when (4.5) holds.
In the sequel, we only need to study the case when

c p > m q. (4.6)

In order to simplify the analysis, we make the following transformations for system
(4.2) by

dt = (1 + q u)(1 + k v)

m
dt,

u = c p − m q

m
u, v = k v. (4.7)

Dropping the bars system (4.2) is transformed to the following equivalent system

du

dt
= u(a1 + a2 u − a3 v − a4 u v − a5 u

2 − a6 v2 − a5 u
2 v),

dv

dt
= v (u − 1)(1 + v), (4.8)

where

a1 = r0 − d

m
, a2 = (r0 − d) q − a

c p − m q
, a3 = d k + p

m k
,

a4 = d q + a

c p − m q
, a5 = a m q

(c p − m q)2
, a6 = p

m k
. (4.9)

By (4.6), we have ai > 0 where i = 1, 3, 4, 5, 6. Thus, there exists a positive
equilibrium E2 = (1, v2) for system (4.8) if

a1 + a2 > a5 (⇐⇒ a5 − a1 < a2), (4.10)

where v2 is the positive root of the following quadratic equation under (4.10):

a6 v22 + (a3 + a4 + a5) v2 − (a1 + a2 − a5) = 0. (4.11)

By (4.11), we actually obtain

v2 = −(a3 + a4 + a5) + √
(a3 + a4 + a5)2 + 4 a6(a1 + a2 − a5)

2 a6
. (4.12)

We point out that straightforward calculation shows that (4.10) is equivalent to the
condition (4.4), implying that E1 loses its stability to the occurrence of the positive
equilibrium E2 when inequality (4.3) is reversed to (4.4). The local stability of E2 is
addressed in the following theorem.
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Theorem 4.3 The positive equilibrium E2 is locally asymptotically stable if

a5 − a1 < a2 ≤ 2 a5, (4.13)

or

a2 > 2 a5 and v2 >
a2 − 2 a5
a4 + 2 a5

; (4.14)

it is unstable if

a2 > 2 a5 and v2 <
a2 − 2 a5
a4 + 2 a5

. (4.15)

Proof Jacobian matrix of system (4.8) at E2(1, v2) is

J ∗ =
[
J11 J12
J21 J22

]

, (4.16)

where

J11 = a1 + 2 a2 − a3 v2 − 2 a4 v2 − 3 a5 − a6 v22 − 3 a5 v2,

J12 = −a3 − a4 − 2 a6 v2 − a5 < 0, J21 = v2 (1 + v2) > 0, J22 = 0. (4.17)

Obviously, det(J ) = −J12 J21 > 0 by (4.10) and then the stability of E2 is deter-
mined by tr(J ∗) = J11. Direct calculations show that tr(J ∗) < 0 is equivalent to

(a2 − 2 a5) < (a4 + 2 a5) v2. (4.18)

Because v2, a4, a5 are all positive, (4.18) is satisfied if (4.13) holds. Furthermore,
if a2 > 2 a5, the local stability of E2 further requires v2 > (a2 − 2 a5)/(a4 + 2 a5),
as presented in (4.14). Equilibrium E2 loses stability when (4.15) holds. ��

Note that (4.13) is equivalent to

⎧
⎪⎪⎨

⎪⎪⎩

r0 >
a m

c p − m q
+ d,

r0 ≤ d + a (c p + m q)

q (c p − m q)
,

(4.19)

and (4.14) is equivalent to

⎧
⎪⎪⎨

⎪⎪⎩

r0 > d + a (c p + m q)

q (c p − m q)
,

k >
q (c p − m q)2 ((r0 − d) q (c p − m q) − a (c p + m q))

c2 p a (q d(c p − m q) + a (c p + m q))
.

(4.20)
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Then, by Theorem 4.3, we obtain that prey and predators will tend to a steady state
if (4.19) holds. In this case, the stability of E2 is not affected by the cost of fear, which
is similar to the results we obtained from the previous Sect. 3. In other words, the
stability of the co-existence equilibrium will not change if the birth rate of prey is
not large enough to support oscillations no matter how sensitive prey are to predation
risks. However, in contrast to the results of model with linear functional response
(3.1), for the model with the Holling type II functional response (4.2), conditions in
(4.20) imply that the stability of E2 is affected by the level of anti-predator defence.
Conditions in (4.20) indicate that when the birth rate of prey is large enough, prey
and predators still tend to a steady state if prey are sensitive enough to perceive
potential attacking by predators and show anti-predation behaviours accordingly but
lose stability if not. It is well-known that the classic predator-prey model without the
cost of fear but with the Holling type II functional response admits the occurrence of
Hopf bifurcation when the carrying capacity of prey is large enough. The phenomenon
‘paradox of enrichment’ (McAllister et al. 1972; Riebesell 1974; Rosenzweig 1971;
Gilpin andRosenzweig 1972) appears as a consequence. However, as discussed above,
incorporating the cost of fear into predator–preymodels can rule out such phenomenon
‘paradox of enrichment’ by choosing large enough k.

4.2 Global stability of positive equilibrium

In the above section, we have shown that E2 is locally asymptotically stable if (4.13)
or (4.14) holds. The following theorem confirms that E2 is globally symptomatically
stable under (4.13) and another condition.

Theorem 4.4 The positive equilibrium E2 is globally asymptotically stable if

a5 − a1 < a2 ≤ 2 a5 and 1 ≤ a2 + a4. (4.21)

Proof Denote the right-hand sides of system (4.8) by P(u, v), Q(u, v) respectively.
Take the following function as a Dulac function: B(u, v) = u−1 vβ where β is to be
specified later. Then the divergence of the vector is

D = ∂(P(u, v) B(u, v))

∂u
+ ∂(Q(u, v) B(u, v))

∂v

= u−1 vβ ( f1(u) v + f2(u)) , (4.22)

where

f1(u, β) = −2 a5 u
2 + u (2 + β − a4) − (β + 2),

f2(u, β) = −2 a5 u
2 + u (a2 + β + 1) − (β + 1). (4.23)

By (4.23) and (4.21), we have

f1(u, β) = f2(u, β) + (u(1 − a4 − a2) − 1) ≤ f2(u, β) (4.24)
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for u in [0,∞). Thus, we have D ≤ 0 for (u, v) ∈ R
2+ if

f2(u, β) ≤ 0, for u ∈ [0,∞). (4.25)

Therefore, it suffices to find a β such that (4.25) holds. Because a5 > 0, (4.25) is
satisfied if

�(β) = (a2 + β + 1)2 − 8 a5 (β + 1) ≤ 0 (4.26)

holds. For convenience, let β + 1 = β. Then (4.26) becomes

�(β) = β
2 + 2 (a2 − 4 a5)β + a22 ≤ 0. (4.27)

The existence of β satisfying (4.27) is implied by �(4a5 − a2) ≤ 0 which is
equivalent to

a5 (2 a5 − a2) ≥ 0. (4.28)

But this is ensured by the first inequality in (4.21). Thus, under (4.21), there exists
β such that D ≤ 0 for (u, v) ∈ R

2+, and by the well-known Dulac–Bendixson theorem
(Perko 1996, Theorem 2, p 265), E2 is globally asymptotically stable. ��

4.3 Existence of limit cycles and Hopf bifurcation

In the above section, we have shown that there is no limit cycle if (4.21) holds. Now
we show that there exists a limit cycle if (4.15) is satisfied.

Theorem 4.5 There exists a limit cycle if (4.15) holds.

Proof By (4.15) and Theorem 4.3, E2 = (1, v2) is unstable and E1 = (u1, 0) is a
saddle point. Note that by (4.15) we have

ū1 =
a2 +

√

a22 + 4a1a5

2a5
> 1.

Let L1 = u − u1. Then

du

dt

∣
∣
∣
L1=0

= u1(−a3 v − a4 u1 v − a6 v2 − a5 u
2
1 v) < 0, (4.29)

since a3, a4, a5, a6 are all positive.
Next, let L2 = v − λ with λ > 0 to be specified later. By calculations, we obtain

dL2

dt

∣
∣
∣
∣
L2=0

= dv

dt

∣
∣
∣
∣
v=λ

= λ (u − 1) (1 + λ) < 0, for u ∈ (0, 1). (4.30)
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Moreover, let

L3 = 2 (u1 − 1)(v − λ) + λ (u − 1). (4.31)

Calculations give

dL3

dt

∣
∣
∣
∣
L3=0

= 2 (u1 − 1)
dv

dt
+ λ

du

dt

= 2 (u1 − 1)v (u − 1) (1 + v)

+λ u (a1 + a2 u − a3 v − a4 u v − a5 u
2 − a6 v2 − a5 u

2 v)

≤ −a6 u

4
λ3 + λ2

(
2 (u1 − 1)2 − u

2
(a3 + a4 u + a5 u

2)
)

+λ ((a1 + a2 u − a5 u
2)u + 2 (u1 − 1)2). (4.32)

Because a6 > 0 and 0 < u < u1, it follows from (4.32) that dL3/dt < 0 for
sufficiently large λ > 0.

By Poincaré–Bendixson theorem (Meiss 2007, Theorem 6.12), there exists a limit
cycle if (4.15) holds. ��

From the above analysis, we see that when (4.15) holds, the positive equilibrium
E2 becomes unstable and a limit cycle comes into existence. Such a limit cycle is a
result of Hopf bifurcation. Indeed, from the proof of Theorem 4.3, we see that E2
loses its stability and Hopf bifurcation occurs when tr(J ∗) = J11 in (4.17) changes
sign from negative to positive. Thus, tr(J ∗) = J11 = 0 gives the condition for Hopf
bifurcation. Making use of (4.11), the formula for J11 in (4.17) can be simplified to

J11 = −(a4 + 2a5)v̄2 + a2 − 2a5. (4.33)

Therefore, sign change of J11 from negative to positive is actually equivalent to
switch from condition (4.14) to condition (4.15) implying that the limit cycle arises
from a Hopf bifurcation.

Next, we deal with the direction of Hopf bifurcation, intending to understand the
impact of the fear effect on the Hopf bifurcation and its direction in terms of the fear
effect parameter k. We first have the following general theorem on the bifurcation
direction.

Theorem 4.6 Let

σ := −8 a5 (a2 − 2 a5)
2 a26 − (a4 + 2 a5) (−a4 + 6 a4 a5 − 2 a5 + 8 a3 a5 + 4 a25)

(a2 − 2 a5) a6 − a5 (a4 + 2 a5)
2 (2 a3 + a4) (a3 + a4 + a5). (4.34)

Then, the Hopf bifurcation is supercritical if σ < 0 and it is subcritical if σ > 0.
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Proof Let x = u − 1, y = v − v2. Then system (4.8) becomes

dx

dt
= J11 x + J12 y + f1(x, y),

dy

dt
= J21 x + J22 y + f2(x, y), (4.35)

where J11, J12, J21, J22 are shown in (4.17) and fi (x, y) for i = 1, 2 represent higher
order terms of x, y. We have seen in the above that the Hopf bifurcation occurs when
J11 = 0, or equivalently

v2 = a2 − 2 a5
a4 + 2 a5

. (4.36)

Moreover, by the transformation

X = x,Y = J11 x + J12 y = J12 y

and noting that J22 = 0, system (4.35) is further transformed to

dX

dt
= Y + f1

(

X,
Y

J12

)

,

dY

dt
= J12 J21X + J12 f2

(

X,
Y

J12

)

. (4.37)

Let

γ = −J12 J21 > 0, X = −X, Y = Y/
√

γ .

Then system (4.37) becomes

dX

dt
= −√

γ Y − f1

(

−X ,

√
γ

J12
Y

)

,

dY

dt
= √

γ X + J12√
γ

f2

(

−X ,

√
γ

J12
Y

)

. (4.38)

Now the Jacobian matrix of (4.38) at (0, 0) is of the Jordan Canonical form

[
0 −√

γ√
γ 0

]

. (4.39)
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Define F1 and F2 by

F1(X ,Y ) = − f1

(

−X ,

√
γ Y

J12

)

,

F2(X ,Y ) = J12√
γ

f2

(

−X ,

√
γ Y

J12

)

.

Then the direction of Hopf bifurcation is determined by the sign of the quantity

σ ∗ := 1

16

(
∂3F1

∂X
3 + ∂3F1

∂X∂Y
2 + ∂3F2

∂X
2
∂Y

+ ∂3F2

∂Y
3

)

+ 1

16ω

(
∂2F1
∂X∂Y

(
∂2F1

∂X
2 + ∂2F1

∂Y
2

)

− ∂2F2
∂X∂Y

(
∂2F2

∂X
2 + ∂2F2

∂Y
2

)

− ∂2F1

∂X
2

∂2F2

∂X
2 + ∂2F1

∂Y
2

∂2F2

∂Y
2

)

, (4.40)

where ω = √
γ = √−J12 J21. Using (4.36) and with the help of Maple software,

σ ∗ is calculated and simplified to the formula given by σ in (4.34). By Perko (1996)
(Theorem 1 on page 34), Hopf bifurcation is supercritical if σ < 0 and it is subcritical
if σ > 0. ��

In order to analyze how the fear affects the direction of Hopf bifurcation, we may
choose k as a bifurcation parameter. By (4.9), it is clear that only a3 and a6 depend on
the parameter k. Letting h = d/m, we see that

a3 = a6 + h. (4.41)

By a6 = p
m

1
k , we can equivalently take a6 (instead of k) as the bifurcation parameter

in the re-scaled model (4.8). By using (4.41), (4.36) can be simplified to

a6 = (a4 + 2 a5)(a4 a5 + a4 a1 + a5 a2 + 2 a5 a1 + 2 a5 h − h a2)

(a2 + a4)(a2 − 2 a5)
=: a∗

6 (4.42)

an equation with the right hand side independent of k, giving the critical value of a6
for Hopf bifurcation.

Regarding a6 as a bifurcation parameter which is chosen at the critical value a∗
6 , σ

in (4.34) can be expressed, in terms of a1 as a quadratic function, as

σ0 = A1 a
2
1 + A2 a1 + A3, (4.43)

the sign of which determines the direction of Hopf bifurcation. In (4.43), we have

A1 = −2 a5 (a4 + 2 a5)
2 (2 a2 − 2 a5 + a4)

2,

A2 = −(a4 + 2 a5) (B1 h + B2), A3 = D1 h
2 + D2 h + D3, (4.44)
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where

B1 = −4 a5 (−2 a5 + a2)
2 (2 a2 − 2 a5 + a4),

B2 = (a2 + a4)(−2 a5 a
2
2 + 6 a4 a5 a

2
2 + 20 a22 a

2
5 − a22 a4 − 44 a35 a2 + 3 a2 a5 a

2
4

+ 4 a4 a2 a5 + 8 a25 a2 − 8 a4 a
3
5 − 2 a24 a

2
5 − 4 a4 a

2
5 − 8 a35 + 24 a45),

D1 = −2 a5 (−2 a5 + a2)
4,

D2 = (a2 − 2 a5)
2 (a2 + a4) (−a4 a2 + 3 a4 a2 a5 + 10 a25 a2 − 2 a5 a2

−2 a4 a
2
5 + 4 a25 − 12 a35 + 2 a4 a5),

D3 = −a5 (a2 + a4)
2 (a24 a

2
2 + 12 a22 a

2
5 − 2 a5 a

2
2 + 7 a4 a5 a

2
2 − a22 a4 − 12 a2 a4 a

2
5

−a2 a5 a
2
4 − 28 a35 a2 + 8 a25 a2 + 4 a4 a2 a5 − 8 a35+4 a4 a

3
5−4 a4 a

2
5+16 a45).

(4.45)

From (4.44), it is clear that A1 < 0 because a5 > 0. Let � = A2
2 − 4 A1 A3.

Mathematical analysis show that A2, A3 and � can be positive or negative under
different conditions. Numerical simulations show that all reasonable combinations of
A2, A3,� are possible (see Figs. 1, 2, 3).

Notice that A1, A2, A3, � are all expressions of a2, a4, a5, h. Then, by taking
different values of a1, σ0 can be positive or negative. Let

a+
1 = 1

2

(

a4 +
√

a24 − 4 a5 h

)

(a2 + a4)

a5
− h, (4.46)

and

a−
1 = −1

2

(

−a4 +
√

a24 − 4 a5 h

)

(a2 + a4)

a5
− h. (4.47)
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Fig. 1 A1 < 0, A2 < 0, A3 < 0,� > 0 and A1 < 0, A2 < 0, A3 < 0, � < 0. Parameters are:
a2 = 9.0639, a4 = 8.8393, a5 = 4.4733, h = 0.8866 and a2 = 8.7964, a4 = 3.82, a5 = 1.4757,
h = 1.3037 respectively
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Fig. 2 A1 < 0, A2 > 0, A3 < 0, � < 0 and A1 < 0, A2 < 0, A3 > 0, � > 0. Parameters are:
a2 = 3.9703, a4 = 7.6983, a5 = 0.0715, h = 35.7226 and a2 = 6.9741, a4 = 0.1337, a5 = 0.1194,
h = 0.0032 respectively
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Fig. 3 A1 < 0, A2 > 0, A3 > 0, � > 0 and A1 < 0, A2 > 0, A3 < 0, � > 0. Parameters are:
a2 = 8.0115, a4 = 0.2414, a5 = 0.0256, h = 0.0131 and a2 = 7.1134, a4 = 7.3037, a5 = 0.0436,
h = 0.7421 respectively

By using a+
1 and a−

1 , the possibilities of the direction of Hopf bifurcation are
summarized in Table 1, which shows that the direction of Hopf bifurcation can be
supercritical or subcritical depending on different combinations of a1, a2, a4, a5, h.

5 Numerical simulations

In order to better explore the role that the cost of fear plays in our predator–prey
model, we conducted a series of numeric simulations for model (4.2) with parameters
in their original scales. In Fig. 4, the solid curve represents the critical curve which
determines the Hopf bifurcation without the fear effect (i.e. k = 0) by setting r0 and
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Table 1 Direction of Hopf bifurcation by taking a6 as a bifurcation parameter

Hopf direction conditions Hopf direction

A1 A2 A3 � a1

Cases

Case 1 <0 <0 <0 >0 ai1 Supercritical

Case 2 <0 <0 <0 <0 ai1 Supercritical

Case 3 <0 >0 <0 <0 ai1 Supercritical

Case 4-1 <0 <0 >0 >0 a+
1 Supercritical

Case 4-2 <0 <0 >0 >0 a−
1 Subcritical

Case 5-1 <0 >0 >0 >0 a+
1 Supercritical

Case 5-2 <0 >0 >0 >0 a−
1 Subcritical

Case 6-1 <0 >0 <0 >0 ai1, r2 < ai1 < r1 Subcritical

Case 6-2 <0 >0 <0 >0 a−
1 , r2 < a−

1 < r1 < a+
1 Subcritical

Case 6-3 <0 >0 <0 >0 ai1, a
−
1 < r2 < r1 < a+

1 Supercritical

Case 6-4 <0 >0 <0 >0 a+
1 , r2 < a−

1 < r1 < a+
1 Supercritical

Case 6-5 <0 >0 <0 >0 ai1, r1 < ai1 Supercritical

Here ai1, i = +,− are defined in (4.46), (4.47) and r1, r2 are larger and smaller roots of (4.43) respectively
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Fig. 4 Available region of Hopf bifurcation on r0, q plane. Parameters are: a = 0.01, p = 0.5,
c = 0.4,m = 0.05, d = 0.01

q as free parameters. Figure 4 shows that the model incorporating the cost of fear
requires larger r0 to admit the existence of Hopf bifurcation, compared to the models
without it. From a biological point of view, the cost of fear in prey requires higher
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Fig. 5 Different patterns for prey and predators. Parameters for a are: r0 = 0.03, k = 0.1, d = 0.01,
a = 0.01, p = 0.5, q = 0.1,m = 0.05, c = 0.4. Parameters for b are: r0 = 0.05, k = 10, d = 0.01,
a = 0.01, p = 0.5, q = 0.6,m = 0.05, c = 0.4. a Global stable positive equilibrium. b Stable limit cycle

compensation for the prey’s birth rate to support periodic oscillations in prey and
predator populations. As indicated in Fig. 5a, the population of the prey and predator
tend toward a globally stable steady state if r0 and q are located in the region between
the dashed curve and the solid curve in Fig. 4. In this case, no matter how sensitive
the prey is to predation risk, periodic oscillations can not occur. Figure 5b shows that
the populations of prey and predator oscillate periodically due to supercritical Hopf
bifurcation if the parameters are chosen in the region between the solid line and the
dotted line in Fig. 4. In Fig. 4, by choosing q = 0.6, we can obtain a vertical line
which intersects with the solid line and the dotted line when increasing the value of
r0. This indicates that increasing r0 or equivalently increasing k may lead to change
of directions of Hopf bifurcation from forward to backward. Figure 6 is a subcritical
Hopf bifurcation diagram plotted using Matcont software (Dhooge et al. 2003, 2008).
As shown in Fig. 6, taking k as a bifurcation parameter, there are two branches for
the period of oscillation where the lower one corresponds to an unstable limit cycle
and the upper one accounts for a stable limit cycle. Biologically, increasing the level
of the fear effect in prey may induce a transition from the state where the populations
of the prey and predator oscillate periodically to a bi-stability situation. When bi-
stability happens, multiple limit cycles occur, as shown in Fig. 7. In this scenario,
the eventual pattern for prey and predators depend on their initial population sizes.
Prey and predators tend to a steady state if initial populations are relatively small and
stay inside the unstable limit cycle. The populations of prey and predators oscillate
periodically if initial populations are relatively large and locate outside the unstable
limit cycle. Figure 8 shows the relationship between (k, q) and (k, r0) along the
critical line determining Hopf bifurcation. Figure 8b indicates that when increasing
the value of the prey’s birth rate, lower levels of fear are required to obtain Hopf
bifurcation no matter how the handling time of food by predators varies. Biologically,
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Fig. 6 Bifurcation diagram for subcritical Hopf bifurcation. Parameters are: r0 = 2.671, d = 0.0246,
a = 0.0004, p = 0.0673, q = 0.0058, c = 0.0952,m = 0.0505
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Fig. 7 Subcritical Hopf bifurcation/bi-stability. Parameters are: r0 = 0.12, k = 60, d = 0.01, a = 0.01,
p = 0.5, q = 0.6,m = 0.05, c = 0.4

this implies that with a higher birth rate, the prey becomes less sensitive in perceiving
predation risk.

Similarly, Fig. 9 again shows that as fear effects become more extreme, it can
induce a change in the direction of Hopf bifurcation, from supercritical to subcritical
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Fig. 8 Two dimensional projection of Hopf bifurcation curve when k �= 0 into k, q and k, r0 respectively.
a k, q along Hopf bifurcation curve. b k, r0 along Hopf bifurcation curve
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Fig. 9 Available region of Hopf bifurcation on r0, p plane. Parameters are: q = 0.5, c = 0.5,m = 0.1,
d = 0.05, a = 0.01

by holding p fixed at some point. The difference between Figs. 4 and 9 lies in that p
needs to be large enough to support subcritical bifurcation whereas q has to be in an
intermediate interval.Biologically, the attack rate bypredators needs to be large enough
to instill fear in prey; otherwise, fear will not affect dynamical behaviours of predator–
prey systems and bi-stability can not happen. Figure 10a shows that prey are more
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Fig. 10 Two dimensional projection of Hopf bifurcation curve when k �= 0 into p − k plane and r0 − k
plane respectively, with the parameter values given in Fig. 9. a k, p along Hopf bifurcation curve. b k, r0
along Hopf bifurcation curve

willing to show anti-predator behaviours when the attack rate of predators increases
and Fig. 10b again confirms that the prey show weaker anti-predator behaviours when
the prey’s birth rate is greater, regardless of the change in the predators’ attack rate.

Another interesting observation is that the natural death rate of predators m needs
to be relatively small in order for the model to permit a subcritical Hopf bifurcation,
as indicated in Fig. 11. Biologically, a relatively high density of predators is required
to evoke anti-predator defenses in prey that carry costs large enough to affect prey
populations. The cost of fear can not be observed if the population of predators drops
too quickly whereby cues signifying predation risk are low, as will be the anti-predator
responses of prey (Fig. 12).

We also apply different functions in modelling the cost of fear when conducting
simulations. Particularly, we test the following two functions

f (v) = e−k v, (5.1)

and

f (v) = 1

1 + k1 v + k2 v2
. (5.2)

Both functions (5.1) and (5.2) are decreasing functions with respect to v, but with
different decreasing rates, compared with (4.1). Our simulation results for Hopf bifur-
cation and its direction are qualitatively unchanged with either (5.1) or (5.2), which
implies that our results are applicable for general monotone decreasing function of
v. Moreover, for (5.2), we also obtain a relationship between k1 and k2 along the
Hopf bifurcation curve as demonstrated in Fig. 13 indicating that k2 is indeed linearly
decreasing with k1 on the Hopf bifurcation.
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Fig. 11 Available region of Hopf bifurcation on r0, m plane. Parameters are: q = 0.5, p = 0.5, c = 0.6,
a = 0.01, d = 0.05
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Fig. 12 Two dimensional projection of Hopf bifurcation curve when k �= 0 into m − k plane and r0 − k
plane respectively, with the parameter values given in Fig. 11. a k,m along Hopf bifurcation curve. b k, r0
along Hopf bifurcation curve

In the context of population control, if all solutions of (4.2) tend to a steady state
eventually, then the fear effect will not affect the prey population over the long-term.
However, under the same scenario, the predator’s eventual population will decrease
when k increases (see 4.12). On the other hand, the populations of the prey and predator
may oscillate periodically due to supercritical or subcritical Hopf bifurcation. In this
case, Fig. 14 indicates that the biomass of prey and predators decrease with increas-
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Fig. 13 Relationship between k1 and k2 along the Hopf bifurcation line when taking fear function (5.2)
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Fig. 14 The biomass for predators and prey from periodic solutions with varying k due to supercritical
Hopf bifurcation. Parameters are: r0 = 2, d = 0.2, a = 0.04, p = 0.4, q = 0.2, c = 0.3,m = 0.1

ing k along periodic solutions due to supercritical Hopf bifurcation. Biologically,
this implies that anti-predator behaviours of prey may impact their long-term overall
growth rate, as a cost of fear. Moreover, Fig. 14 confirms the theoretical arguments
that stronger levels of defence result in higher costs, which can decrease the prey’s
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long-term population size. Simulations are also conducted for biomass of prey and
predators along periodic solutions with varying k due to subcritical Hopf bifurcation.
Results for such a case are consistent with the former one where Hopf bifurcation is
supercritical and is thus omitted.

6 Conclusions and discussions

In this paper, we have studied a predator–prey model that has incorporated the effect
that the fear of predators have on prey with either the linear functional response or the
Holling type II functional response. For the case with the linear functional response,
mathematical results show that the cost of fear does not change dynamical behaviours
of the model and a unique positive equilibrium is globally asymptotically stable when
it exists.

However, for the model with the Holling type II functional response, the cost
of fear affects predator–prey interactions in several ways. Analytical results show
that there exists a globally stable positive equilibrium if the birth rate of prey is
not large enough to support fluctuations. In this case, the populations of prey and
predators tend to generate positive constants eventually, no matter how sensitive the
prey is to potential dangers from predators. When the birth rate of prey is large
enough to support oscillations, the positive equilibrium of the predator–prey system
is locally asymptotically stable if the fear level is high. In this case, the cost of fear
can stabilize the predator–prey system by ruling out periodic solutions. This offers a
new mechanism to avoid the “paradox of enrichment” in ecosystems. Periodic solu-
tions can still exist when the fear level is relatively low. Conditions for existence
of Hopf bifurcation and conditions determining the direction of Hopf bifurcation
are obtained, which indicate that the cost of fear will not only affect the existence
of Hopf bifurcation but also change the direction of Hopf bifurcation. Indeed, we
have shown that Hopf bifurcation in the model incorporating the cost of fear can be
both supercritical and subcritical, which is in contrast to the classic predator–prey
models that ignore the predation risk effects where Hopf bifurcation can only be
supercritical.

Numerical simulations are conducted to show the potential role that fear effects can
play in predator–prey interactions by releasing one or two more parameters free rather
than the single k. Under conditions ofHopf bifurcation, increasing fear levelmay cause
a change in the direction of Hopf bifurcation, from supercritical to subcritical, when
the birth rate of prey increases accordingly. Fear generates rich dynamical behaviours
including bi-stability, where the solutions tend to a steady state or oscillate periodically
depending on the initial population size. Numerical simulations also show that the
prey is less sensitive to perceived predation risk when the birth rate of prey is high,
regardless of how other parameters change. Moreover, the prey would be more willing
to show anti-predator defences when the attack (i.e. predation) rate is high, and would
perceive fewer potential dangers as the death rate of predators increases. Simulations
with different functions modelling the cost of fear indicate that the results we have
obtained in this paper remain valid when other general monotone decreasing functions
are adopted.
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In our model formulation, we have assumed that the perceived predation risks only
reduce the birth rate and survival of offspring, and have ignored the possible impact
on the death rate of adult prey. Although Zanette et al. (2011) and Clinchy et al.
(2013) argue that fear may increase the adult death rate due to long-term physiological
impacts, there is still a lack of direct experimental evidence. For the same reason, we
have only considered the case when fear does not affect intra-specific competition
in our model, although there is also a theoretical argument in Cresswell (2011) that
the fear effect may change the strength of intra-specific competition because of the
complexity of food web. Once some experimental evidence becomes available, these
should all be incorporated into the model, and such a model would be able shed more
light on the prey–predator interactions.

References

Beddington JR (1975) Mutual interference between parasites or predators and its effect on searching effi-
ciency. J Anim Ecol 44(1):331–340

Cantrell RS, Cosner C (2001) On the dynamics of predator–prey models with the Beddington–DeAngelis
functional response. J Math Anal Appl 257(1):206–222

Castillo-Chavez C, Thieme HR (1995) Asymptotically autonomous epidemic models. Math Popul Dyn
Anal Heterog 1:33–50

Clinchy M, Sheriff MJ, Zanette LY (2013) Predator-induced stress and the ecology of fear. Funct Ecol
27(1):56–65

Creel S, Christianson D (2008) Relationships between direct predation and risk effects. Trends Ecol Evolut
23(4):194–201

Creel S, Christianson D, Liley S, Winnie JA (2007) Predation risk affects reproductive physiology and
demography of elk. Science 315(5814):960–960

Cresswell W (2011) Predation in bird populations. J Ornithol 152(1):251–263
DeAngelis DL, Goldstein RA, O’Neill RV (1975) A model for tropic interaction. Ecology 56(4):881–892
DhoogeA, GovaertsW, KuznetsovYA (2003)Matcont: a matlab package for numerical bifurcation analysis

of ODEs. ACM Trans Math Softw (TOMS) 29(2):141–164
DhoogeA,GovaertsW,KuznetsovYA,Meijer HGE, Sautois B (2008)New features of the softwarematcont

for bifurcation analysis of dynamical systems. Math Comput Model Dyn Syst 14(2):147–175
Eggers S, Griesser M, Ekman J (2005) Predator-induced plasticity in nest visitation rates in the Siberian

jay (Perisoreus infaustus). Behav Ecol 16(1):309–315
Eggers S, Griesser M, Nystrand M, Ekman J (2006) Predation risk induces changes in nest-site selection

and clutch size in the Siberian jay. Proc R Soc B Biol Sci 273(1587):701–706
Fontaine JJ,Martin TE (2006) Parent birds assess nest predation risk and adjust their reproductive strategies.

Ecol Lett 9(4):428–434
Freedman HI, Wolkowicz GSK (1986) Predator–prey systems with group defence: the paradox of enrich-

ment revisited. Bull Math Biol 48(5/6):493–508
Ghalambor CK, Peluc SI, Martin TE (2013) Plasticity of parental care under the risk of predation: how

much should parents reduce care? Biol Lett 9(4):20130154
Gilpin ME, Rosenzweig ML (1972) Enriched predator–prey systems: theoretical stability. Science

177(4052):902–904
HollingCS (1965)The functional response of predators to prey density and its role inmimicry andpopulation

regulation. Mem Entomol Soc Can 97(S45):5–60
Hua F, Fletcher RJ, Sieving KE, Dorazio RM (2013) Too risky to settle: avian community structure changes

in response to perceived predation risk on adults and offspring. Proceedings of the Royal Society B:
Biological Sciences 280(1764):20130762

Hua F, Sieving KE, Fletcher RJ, Wright CA (2014) Increased perception of predation risk to adults and
offspring alters avian reproductive strategy and performance. Behav Ecol 25(3):509–519

Huang J, Ruan S, Song J (2014) Bifurcations in a predator–prey system of Leslie type with generalized
Holling type III functional response. J Differ Equ 257(6):1721–1752

123



1204 X. Wang et al.

Hwang TW (2003) Global analysis of the predator–prey system with Beddington–DeAngelis functional
response. J Math Anal Appl 281(1):395–401

Hwang TW (2004) Uniqueness of limit cycles of the predator–prey system with Beddington–DeAngelis
functional response. J Math Anal Appl 290(1):113–122

Ibáñez-Álamo JD, Soler M (2012) Predator-induced female behaviour in the absence of male incubation
feeding: an experimental study. Behav Ecol Sociobiol 66(7):1067–1073

Kooij RE, Zegeling A (1997) Qualitative properties of two-dimensional predator–prey systems. Nonlinear
Anal Theory Methods Appl 29(6):693–715

Kuang Y, Freedman HI (1988) Uniqueness of limit cycles in Gause-type models of predator–prey systems.
Math Biosci 88(1):67–84

Lima SL (1998) Nonlethal effects in the ecology of predator–prey interactions. Bioscience 48(1):25–34
Lima SL (2009) Predators and the breeding bird: behavioural and reproductive flexibility under the risk of

predation. Biol Rev 84(3):485–513
May RM (1972) Limit cycles in predator–prey communities. Science 177(4052):900–902
McAllister CD, LeBrasseur RJ, Parsons TR, Rosenzweig ML (1972) Stability of enriched aquatic ecosys-

tems. Science 175(4021):562–565
Meiss JD (2007) Differential dynamical systems, vol 14. SIAM, Philadelphia
Orrock JL, Fletcher RJ (2014) An island-wide predator manipulation reveals immediate and long-lasting

matching of risk by prey. Proc R Soc B Biol Sci 281(1784):20140391
Peacor SD, Peckarsky BL, Trussell GC, Vonesh JR (2013) Costs of predator-induced phenotypic plasticity:

a graphical model for predicting the contribution of nonconsumptive and consumptive effects of
predators on prey. Oecologia 171(1):1–10

Perko L (1996) Differential equations and dynamical systems. Springer, New York
Pettorelli N, Coulson T, Durant SM, Gaillard JM (2011) Predation, individual variability and vertebrate

population dynamics. Oecologia 167(2):305–314
Preisser EL, Bolnick DI (2008) The many faces of fear: comparing the pathways and impacts of noncon-

sumptive predator effects on prey populations. PloS One 3(6):e2465
Riebesell JF (1974) Paradox of enrichment in competitive systems. Ecology 55(1):183–187
Rosenzweig ML (1971) Paradox of enrichment: destabilization of exploitation ecosystems in ecological

time. Science 171(3969):385–387
Ruan S, Xiao D (2001) Global analysis in a predator-prey system with nonmonotonic functional response.

SIAM J Appl Math 61(4):1445–1472
Seo G, DeAngelis DL (2011) A predator–prey model with a Holling type I functional response including

a predator mutual interference. J Nonlinear Sci 21(6):811–833
Sheriff MJ, Krebs CJ, Boonstra R (2009) The sensitive hare: sublethal effects of predator stress on repro-

duction in snowshoe hares. J Anim Ecol 78(6):1249–1258
Song Y, Zou X (2014) Bifurcation analysis of a diffusive ratio-dependent predator prey model. Nonlinear

Dyn 78(1):49–70
Song Y, Zou X (2014) Spatiotemporal dynamics in a diffusive ratio-dependent predator prey model near a

Hopf–Turing bifurcation point. Comput Math Appl 67(10):1978–1997
Sugie J, Kohno R, Miyazaki R (1997) On a predator–prey system of Holling type. Proc Am Math Soc

125(7):2041–2050
Svennungsen TO, Holen ØH, Leimar O (2011) Inducible defenses: continuous reaction norms or threshold

traits? Am Nat 178(3):397–410
Wirsing AJ, Ripple WJ (2011) A comparison of shark and wolf research reveals similar behavioural

responses by prey. Front Ecol Environ 9(6):335–341
Wolkowicz GSK (1988) Bifurcation analysis of a predator-prey system involving group defence. SIAM J

Appl Math 48(3):592–606
ZanetteLY,WhiteAF,AllenMC,ClinchyM(2011) Perceived predation risk reduces the number of offspring

songbirds produce per year. Science 334(6061):1398–1401
Zhu H, Campbell SA, Wolkowicz GSK (2003) Bifurcation analysis of a predator–prey system with non-

monotonic functional response. SIAM J Appl Math 63(2):636–682

123


	Modelling the fear effect in predator--prey interactions
	Abstract
	1 Introduction
	2 Model formulation
	3 Model with the linear functional response
	4 Model with the Holling type II functional response
	4.1 Existence of equilibria and dynamical behaviours in boundary
	4.2 Global stability of positive equilibrium
	4.3 Existence of limit cycles and Hopf bifurcation

	5 Numerical simulations
	6 Conclusions and discussions
	References




