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ON MECHANISMS OF TROPHIC CASCADE CAUSED BY ANTI-PREDATION

RESPONSE IN FOOD CHAIN SYSTEMS

YANG WANG AND XINGFU ZOU

Abstract. Motivated by a recent field study [Nat. Commun. 7(2016), 10698] on the impact of fear

of large carnivores on the populations in a cascading ecosystem of food chain type with the large

carnivores as the top predator, in this paper we propose two model systems in the form of ordinary

differential equations to mechanistically explore the cascade of such a fear effect. The models are of

the Lotka-Volterra type, one is three dimensional and the other four dimensional. The 3-D model only

considers the cost of the anti-predation response reflected in the decrease of the production, while the

4-D model considers also the benefit of the response in reducing the predation rate, in addition to the

cost by reducing the production. We perform a thorough analysis on the dynamics of the two models.

The results reveal that the 3-D model and 4-model demonstrate opposite patterns for trophic cascade

in terms of the dependence of population sizes for each species at the co-existence equilibrium on the

anti-predation response level parameter, and such a difference is attributed to whether or not there is

a benefit for the anti-predation response by the meso-carnivore species.

1. Introduction

Predator-prey interactions have attracted the great attention of both ecologists and mathematical

biologists, not only because of their vast existence in nature but also because of their diversified forms

and rich consequences in the real world. Mathematically, if only considering direct interaction through

predation, a classic predator-prey model can be generally described by a system of ordinary differential

equations of the form: 
du

dt
= f1(u(t))− p(u(t), v(t))v(t),

dv

dt
= f2(v(t)) + cp(u(t), v(t))v(t).

(1.1)

See, e.g., [16, 17, 28, 29]. Here u(t) and v(t) are the populations of the prey and predator respec-

tively, f1(u) and f2(v) denote growth functions of the prey and the predator respectively, p(u, v) is the

functional response which accounts for the predation rate and biomass transfer from the prey to the

predator after predation, and the constant c explains the efficiency in biomass transfer.

Predator-prey ODE models of the above form only consider interactions of two species with direct

effect reflected by the predation term. However, since 1990s, more and more ecologists have realized the

existence of indirect effects (e.g., fear effect), and observed impact of such effects; see, e.g. [1, 14, 21, 26].

Recent field experiments have found the presence of predator itself, can have significant influence on

prey’s population through changes in reproduction [15, 35], habitat selection [4, 27] and physiology

[3, 5, 34]. In contrast, as far as mathematical modeling is concerned, indirect effects have been largely (if
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not all) ignored in those existing models describing predator-prey interactions and those on conservation

and management of the ecosystem.

Motivated by the field study in [35] which observed an as high as 40% decrease in prey’s reproduction

rate when the prey perceived a risk of predator coming from the playback of the predator’s voice, [30]

formulated a mathematical model in the form of the following ordinary differential equations


du

dt
= f(k, v(t)) r0 u(t)− d u(t)− a u2(t)− p(u(t)) v(t),

dv

dt
= c p(u(t)) v(t)−mv(t).

(1.2)

Here u is the population of the prey species and v is the population of predator species, and the prey’s

growth follows a logistic growth with the intrinsic growth rate being split into the net growth rate r0
and natural death rate d, given by r0− d. To mimic the scenario of the field experimental study in [35]

in which predation actually did not occur due to the use of electronic fence, in (1.2) the fear effect is

only incorporated into the production term by the function f(k, v(t)) accounting for a cost. The term

au2 = (au)u reflects the self-limiting mechanism of u (due to intra-species competition) and c is the

biomass transform efficiency constant. The function p(u) is the functional response which is assumed

to depend on the prey population only. Analysis of (1.2), both analytical and numerical, have revealed

some interesting dynamics that would have not occurred without considering the fear effect.

Since [30], there have been some follow-up modelling works that extend the model (1.2) to accom-

modate various aspects of fear effect. For example, [31] considered age structure and discussed different

impacts of fear effect on different age stages; [32] explored the fear effect reflected thought the dispersals

and its impact on the pattern formation. [8] incorporated an extra food source for the predator in (1.2)

and also added a white noise to the death rates of the prey and predator, and analyzed the resulting

stochastic model. [18] further considered a digestion delay in addition to the cost of fear, white noise in

the death rates, and extra food for the predator but ignored the benefit of the anti-predation response.

More recently, in addition to a digestion delay and a cost in prey’s production due to the anti-predation

response, [33] further incorporated a benefit term from the anti-predation response, and explored the

joint impact of the fear effect and the digestion delay on the population dynamics for both predator

and prey.

In the real world, it is quite common that a species can predate on one species and in the mean time,

it can be a prey of other species. This leads to occurrence of food chains between multiple species,

consisting of cascading predator-prey interactions. One may naturally ask how a fear effect arising from

one or more species in the chain will affect the dynamics of the whole cascaded populations? In a more

recent field experimental study [25], the authors tested a meso-predator cascade by manipulating the

large carnivores playback, which resulted in a decrease in the population of meso-carnivore and increase

in the population of its prey. That is, the fear effect on the top species in that chain of three species

actually affects every species in the ecosystem explicitly or implicitly.

To better understand the above mentioned propagation of the fear effect from top layer to the bottom

layer in that food chain ecosystem reported in [25], we incorporate a fear effect on the top species into

a Lotka-Volterra type food chain model, formulated by the following system of ordinary differential

equations
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

dN1

dτ
= N1 (R1 − a11N1 − a12N2) ,

dN2

dτ
= N2 (R2 − a22N2 − a23N3 + a21N1) ,

dN3

dτ
= N3 (B(α)−D − a33N3 + a32N2) ,

N1(0) ≥ 0 , N2(0) ≥ 0 , N3(0) ≥ 0.

(1.3)

Here, N3 is the population of the meso-carnivore (e.g., racoon) which is affected by the large carnivore’s

(e.g., wolf, bear) playback; N2 is the prey (e.g., crab) of the meso-carnivore N3, and N1 is the prey of N2.

Each species is assumed to follow a logistic growth with growth rates R1, R2 and B(α)−D respectively.

The population of the large carnivores does not appear in the system because in the field study [25],

only their voices are played, and hence they only have fear (indirect) effect on the meso-carnivores

represented by B(α), where the net birth (production) rate B(α) depends on a parameter α standing

for the meso-carnivore’s anti-predation response level. By its biological meaning, B(α) is assumed to

satisfy

B′(α) < 0, B(0) = B3 > 0 and lim
α→∞

B(α) = 0. (1.4)

The constant D is the natural death rate of N3, aii (i = 1, 2, 3) are the intra-species competition

coefficients. a12 and a23 are the predation rates, while a21 and a32 are the conversion rate of the biomass

from N1 to N2 and from N2 to N3 respectively; thus, a12/a21 and a23/a32 actually account for the

efficiency of biomass transfer from the predations. We point out that this type of three dimensional food

chain models have been intensive and extensively studied by some researchers, see, e.g., [9, 11, 12, 13]

and the references therein. As far as fear effect in food chains is concerned, two recent papers [19, 20]

have also followed line of [30] to consider fear effect in food chain of three species; their scenario is

different from ours: they considered other types of functional responses, they incorporated fear effects

in the bottom and middle species, and they assumed that the top and middle species are specialist

predators. The first goal of this paper is to explore the dynamics of (1.3), particularly, the impact of

the meso-carnivore’s anti-predation response level α on the dynamics.

In (1.3), only the cost for the meso-carnivore’s anti-predation response is considered. For such a

response, in addition to cost, there should also be a benefit (see, e.g., [6, 26]), typically reflected by

the decrease in the chance of being predated. A response strategy is expected to seek balance between

cost and benefit to achieve certain optimality. In order to also add the benefit into the interplay in the

above model system (1.3), we need the term of predation on the meso-carnivore by a large carnivore,

which inevitably requires us to add the the population of that large carnivore into the system. This

leads to the following four dimensional food chain model

dN1

dτ
= N1 (R1 − a11N1 − a12N2) ,

dN2

dτ
= N2 (R2 − a22N2 − a23N3 + a21N1) ,

dN3

dτ
= N3 (B(α,N4)−D3 − a33N3 + a32N2 − a34(α)N4) ,

dN4

dτ
= N4 (−D4 + c̄ a34(α)N3) ,

N1(0) ≥ 0 , N2(0) ≥ 0 , N3(0) ≥ 0 , N4(0) ≥ 0,

(1.5)

where N4 is the population of the restored top predator (large carnivore) which is assumed to be a

specialist predator with the mortality rate D4. Now the net growth function of N3 depends not only
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on the anti-predation response level α but also on the population of its predator N4. The function

a34(α) denotes the encounter rate between N3 and N4 which is affected by the protective behaviours of

N3 species characterized by its dependence on the anti-predation response level α. By their biological

meanings of B(α,N4) and a34(α), they are assumed to satisfy the following conditions:

{
B(α,N4) is decreasing in α and N4, B(0, N4) = B(α, 0) = B3 > 0,

lim
α→∞

B(α,N4) = lim
N4→∞

B(α,N4) = 0,
(1.6)

and

a34(α) is decreasing, a34(0) = a0 > 0, lim
α→∞

a34(α) = 0. (1.7)

Finally, c̄ is the efficiency of biomass transform. So in this model, we consider both the complex

multi-trophic predator-prey structure and the trade-off from anti-predation response.

The remainder of this paper is organized as follows. In Section 2, we analyze the model system (1.3).

We establish the well-posedness of system (1.3) and find the condition for existence and stability for

all its equilibrium solutions. We also discuss the relationship between the anti-predation level and the

final population size. In the end, some numerical examples, together with some discussions, are given to

demonstrate our results. In Section 3, we investigate the dynamics of the four dimension model (1.5),

including the existence and stability of equilibria as well as the continuously dependence between the

final population size with respect to the anti-predation level. We also discuss the difference of the results

from those for (1.3) in Section 2. In addition, we also present some numerical examples to illustrate

that different functional response functions may lead to slightly different dynamical behaviour of the

solution. In Section 4, we summarize our main results and discuss their biological implications. We also

discuss some possible future projects along this direction of anti-predation response in predator-prey

interactions.

2. Analysis of the model without large carnivores

In this section, we analyze the three-species model (1.3). We first show the well-posedness of the

system (1.3). Then we find all equilibrium solutions and discuss their stability in terms of the parameter

values and anti-predation strategy level. As we mentioned in last section, this kind of food chain models

have been studied in literatures, and thus, some technical results can be found in existing researches,

e.g., [9, 11, 12, 13] and their references. But we need to associate the results to the new parameter α,

the anti-predation response level of the species N3 to shy light on influence of the fear effect for this

model.

2.1. Preliminaries. For mathematical simplification, we first non-dimensionalize the model (1.3). Let

t = R1τ, x =
a11N1

R1
, y =

a12N2

R1
, z =

a23N3

R1
,

then model (1.3) becomes 

dx

dt
= x(1− x− y),

dy

dt
= y(k − d1y − z + β1x),

dz

dt
= z(f(α)− d2z + β2y),

(2.1)
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where

k =
R2

R1
, d1 =

a22
a12

, d2 =
a33
a23

, β1 =
a21
a11

, β2 =
a32
a12

,

f(α) =
B(α)−D

R1
, f(0) =

B3 −D
R1

, lim
α→∞

f(α) = − D

R1
.

By the basic theory of ODE systems, we can easily show that the initial value problem for (2.1) has

a unique solution; moreover, the solution is nonnegative (positive) with nonnegative (positive) initial

conditions because each equation in (2.1) is of Gaussian type. Now we show that the solution to system

(2.1) is bounded.

From the first equation in system (2.1) and by the non-negativity of y(t), we have

dx

dt
= x(1− x− y) ≤ x(1− x).

By the comparison theorem [24], we can obtain limt→∞ supx(t) ≤ 1. Therefore, for any ε1 > 0, there

holds x(t) ≤ 1 + ε1 for large t. Incorporating this estimate for large t into the second equation in (2.1)

results in

dy

dt
= y(k − d1y − z + β1x) ≤ y(k + β1(1 + ε1)− d1y), for large t.

Applying the comparison theorem again, we then obtain

lim
t→∞

sup y(t) ≤ k + β1(1 + ε1)

d1
.

Since ε1 > 0 is arbitrary small, the above inequality actually implies

lim
t→∞

sup y(t) ≤ k + β1
d1

.

Incorporating the above inequality into the third equation in (2.1) and by the same argument, we can

obtain

lim
t→∞

sup z(t) ≤ max

(
f(α)d1 + β2(k + β1)

d1d2
, 0

)
.

Combining the above, we have proved that the solution (x(t), y(t), z(t)) to (2.1) is bounded.

2.2. Existence and Stability of the boundary equailibria. In this section, we find all boundary

equilibrium solutions and give the condition for their existence and stability. For the result to be

biologically meaningful, we are only interested in equilibria with nonnegative components.

An equilibrium of (2.1) solves the following system
x(1− x− y) = 0,

y(k − d1y − z + β1x) = 0,

z(f(α)− d2z + β2y) = 0.

There are seven boundary equilibrium solutions. E0 = (0, 0, 0) is the trivial equilibrium solution which

always exists. E1 = (1, 0, 0), E2 = (0, k/d1, 0) and E3 = (0, 0, f(α)/d2) are the equilibria representing

the scenario that only one species survives; E1 and E2 always exist, while E3 exists only when f(α) > 0.
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There are also other three possible equilibria corresponding to the scenario of two species coexisting,

and they are given by

E12 =

(
1− k + β1

d1 + β1
,
k + β1
d1 + β1

, 0

)
,

E13 =

(
1, 0,

f(α)

d2

)
,

E23 =

(
0,
d2k − f(α)

d1d2 + β2
, k − d1d2k − d1f(α)

d1d2 + β2

)
.

By the nonnegative requirement, E12 exists when k < d1, E13 exists when f(α) > 0 and E23 exists

when d2k > f(α) > −β2k/d1.

The local stability of an equilibrium is obtained by linearization at the equilibrium. The Jacobian

matrix at equilibrium (x∗, y∗, z∗) is given by

J (E = (x∗, y∗, z∗)) =


1− 2x∗ − y∗ −x∗ 0

β1y
∗ k − 2d1y

∗ + β1x
∗ − z∗ −y∗

0 β2z
∗ f(α)− 2d2z

∗ + β2y
∗

 . (2.2)

At E0 = (0, 0, 0), the Jacobian is given by

J(E0) =


1 0 0

0 k 0

0 0 f(α)

 ,

therefore E0 is unstable, as there are positive eigenvalues λ1 = 1 and λ2 = k.

Similarly, at E1 = (1, 0, 0), the Jacobian is given by

J(E1) =


−1 −1 0

0 k + β1 0

0 0 f(α)

 ,

therefore E1 is unstable, as there is a positive eigenvalue λ = k + β1.

At E2 = (0, k/d1, 0), the Jacobian is given by

J(E2) =



1− k

d1
0 0

β1k

d1
−k − k

d1

0 0 f(α) +
β2k

d1


,

therefore E2 is asymptotically stable if and only if 1− k/d1 < 0 and f(α) < −β2k/d1.
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At E3 = (0, 0, f(α)/d2), the Jacobian is given by

J(E3) =



1 0 0

0 k − f(α)

d2
0

0
β2f(α)

α2
−f(α)


,

hence, E3 is unstable since there is a positive eigenvalue λ = 1.

At E12, the Jacobian becomes

J(E12) =



k + β1
d1 + β1

− 1
k + β1
d1 + β1

− 1 0

β1k + β2
1

d1 + β1
−d1k + d1β1

d1 + β1
− k + β1
d1 + β1

0 0 f(α) +
β2k + β2β1
d1 + β1


,

thus, E12 is asymptotically stable if and only if f(α) < −β2k + β2β1
d1 + β1

.

At E13 = (1, 0, f(α)/d2), the Jacobian reduces to

J(E13) =



−1 −1 0

0 k + β1 −
f(α)

d2
0

0
β2f(α)

α2
−f(α)


,

therefore E13 is asymptotically stable if and only if f(α) > d2(k + β1).

At E23 =

(
0,
d2k − f(α)

d1d2 + β2
, k − d1d2k − d1f(α)

d1d2 + β2

)
, the Jacobian is given by

J(E23) =



1− d2k − f(α)

d1d2 + β2
0 0

β1d2k − β1f(α)

d1d2 + β2
−d1d2k − d1f(α)

d1d2 + β2
−d2k − f(α)

d1d2 + β2

0 β2k −
β2d1d2k − β2d1f(α)

d1d2 + β2
−d2k +

d1d
2
2k − d1d2f(α)

d1d2 + β2


,

therefore E23 is asymptotically stable if and only if f(α) > d2k − d1d2 − β2.

We summarize the above analysis in the following proposition.

Proposition 2.1. For system (2.1), the following statement hold.

(i) Equilibrium E0 and E1 always exist and are unstable.

(ii) Equilibrium E2 always exists; it is asymptotically stable if and only if k > d1 and f(α) <

−β2k/d1.
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(iii) When f(α) > 0, E3 exists; it is unstable. E13 exists and is asymptotically stable if and only if

f(α) > d2(k + β1).

(iv) When k < d1, E12 exists; it is asymptotically stable if and only if f(α) < −β2(k+β1)/(d1 +β1).

(v) When d2k > f(α) > −β2k/d1, E23 exists; it is asymptotically stable if and only if f(α) <

d2k − d1d2 − β2.

2.3. Existence and stability of a positive equilibrium solution. There is a unique positive equi-

librium solution E∗ = (x∗, y∗, z∗) if

d2(k + β1) > f(α) > max

(
d2k − d1d2 − β2,

−β2(k + β1)

d1 + β1

)
. (2.3)

Indeed, E∗ = (x∗, y∗, z∗) is given by
x∗ = 1− y∗,

y∗ =
d2(k + β1)− f(α)

d2(d1 + β1) + β2
,

z∗ = k + β1 − (d1 + β1)y∗.

(2.4)

The conditions in (2.3) directly comes from the formulas in (2.4).

The Jacobian matrix at the positive equilibrium can be simplified as

J(E∗) =


−x∗ −x∗ 0

β1y
∗ −d1y∗ −y∗

0 β2z
∗ −d2z∗

 ,

Thus, the corresponding characteristic equation is

λ3 + (d1y
∗ + d2z

∗ + x∗)λ2 + (d1d2y
∗z∗ + β1x

∗y∗ + β2y
∗z∗ + d1x

∗y∗ + d2x
∗z∗)λ

+ (β1d2 + d1d2 + β2)x∗y∗z∗ = 0.

where 
a1 = d1y

∗ + d2z
∗ + x∗ > 0,

a2 = d1d2y
∗z∗ + β1x

∗y∗ + β2y
∗z∗ + d1x

∗y∗ + d2x
∗z∗ > 0,

a3 = (β1d2 + d1d2 + β2)x∗y∗z∗ > 0,

and

a1a2 − a3 = d21d2(y∗)2z∗ + d1d
2
2y
∗(z∗)2 + β1d1x

∗(y∗)2 + β2d1(y∗)2z∗ + β2d2y
∗(z∗)2

+ d21x
∗(y∗)2 + 2d1d2x

∗y∗z∗ + d22x
∗(z∗)2 + β1(x∗)2y∗ + d1(x∗)2y∗ + d2(x∗)2z∗ > 0.

By Routh-Hurwitz criterion, the positive equilibrium is locally asymptotically stable. Moreover, we can

prove that it is actually globally asymptotically stable as long as it exists (i.e., (2.3) holds).

Theorem 2.1. If (2.3) holds, then the positive equilibrium E∗ is globally asymptotically stable.

Proof. Consider the Lyapunov function

V (x, y, z) = β1β2(x− x∗ − x∗ ln
x

x∗
) + β2(y − y∗ − y∗ ln

y

y∗
) + (z − z∗ − z∗ ln

z

z∗
),

then
dV

dt
= −β1β2(x− x∗)2 − β2(y − y∗)2 − (z − z∗)2 ≤ 0
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and
dV

dt
= 0 if and only if (x, y, z) = (x∗, y∗, z∗). By LaSalle’s Invariant Principle, we conclude E∗ is

globally asymptotically stable. �

For readers’ convenience, we summarize the analytical results on the dynamics of the model (2.1)

obtained above in the following Table 1.

Table 1. Condition of existence and stability of the equilibria in model (2.1)

Equilibrium solution Existence Stability

E0 Always Unstable

E1 Always Unstable

E2 Always d1 < k and f(α) < −β2k/d1
E3 f(α) > 0 Unstable

E12 d1 > k f(α) < −β2(k + β1)/(d1 + β1)

E13 f(α) > 0 f(α) > d2(k + β1)

E23 d2k > f(α) > −β2k/d1 f(α) < d2k − d1d2 − β2

E∗ d2(k + β1) > f(α) > max

(
d2k − d1d2 − β2,−

β2(k + β1)

d1 + β1

)
GAS

From Theorem 2.1 , we know that the positive equilibrium is always globally asymptotically stable

as long as it exists (i.e., (2.3) holds), implying that the populations of all three species will converge

to co-existence state at the respect levels x∗, y∗ and z∗. Thus, it is worthwhile to investigate how the

response strength α will affect these levels. Indeed, direct calculations give

dy∗

dα
=

−f ′(α)

d2(d1 + β1) + β2
> 0,

dx∗

dα
= −dy

∗

dα
< 0,

dz∗

dα
= −(d1 + β1)

dy∗

dα
< 0.

That is, within the range of α that guarantees (2.3), with the increase of the anti-predation response

strength α, the final population sizes of the meso-carnivore, its prey and the prey’s prey will decrease,

increase and decrease respectively, demonstrating an alternative pattern for the fear effect in the cascade,

which was observed in the field study [25]. Therefore, the model (1.3) does provide a mechanism that

can explain the phenomenon of trophic cascade caused by a fear of large carnivores reported in [25].

2.4. Numerical simulations. In this subsection, we present some numerical simulations to illustrate

the analytical results obtained above. For this purpose, we choose a particular form for the function

B(α) given by

B(α) =
R3

1 + cα
,
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and this sends (1.3) to the following system:

dN1

dτ
= N1 (R1 − a11N1 − a12N2) ,

dN2

dτ
= N2 (R2 − a22N2 − a23N3 + a21N1) ,

dN3

dτ
= N3

(
R3

1 + cα
−D − a33N3 + a32N2

)
,

N1(0) ≥ 0 , N2(0) ≥ 0 , N3(0) ≥ 0,

(2.5)

We fix the parameters

R1 = 1, a11 = 1, a12 = 0.4, R2 = 1, a22 = 0.2, a23 = 0.5, a21 = 0.5,

R3 = 3, D = 1, a33 = 0.5, a32 = 0.05, c = 0.4,
(2.6)

and demonstrate how α impacts the population dynamics. In this case, k = R2/R1 = 1 and d1 =

a22/a12 = 1/2 so k > d1. According to Proposition 2.1, there are three threshold values for α, denoted

by α∗1, α∗2 and α∗3, which are given by
f (α∗1) = d2(k + β1),

f (α∗2) = d2k − d1d2 − β2,

f (α∗3) = −β2k
d1

.

Using the parameter values in (2.6), we obtain α∗1 = 0.5, α∗2 ≈ 2.954545455 and α∗3 = 7.5. By Proposition

2.1, when 0 < α < 0.5, the equilibrium E13 is stable (as demonstrated in Figure 1-(a) for α = 0.4);

when 0.5 < α < 2.954545455, the coexistence equilibrium E∗ is stable (as demonstrated in Figure 1-(b)

for α = 2); when 2.954545455 < α < 7.5 (destroying (2.3), hence E∗ no longer exists), the equilibrium

E23 is stable (as demonstrated in Figure 1-(c) for α = 5); when α > 7.5, the equilibrium E2 is stable

(as demonstrated in Figure 1-(d) for α = 10). The bifurcation diagram with respect to α is given in

Figure 2.

Now, we change R1 to R1 = 3 and a33 to a33 = 0.1 and keep other parameters the same as in (2.6).

Then k = R2/R1 = 1/3 and d1 = a22/a12 = 1/2 leading to the scenario of k < d1. According to

Proposition 2.1, there are two threshold values for α, denoted by α1 and α2, which are given by
f (α1) = d2(k + β1),

f (α2) = −β2(k + β1)

d1 + β1
.

Using the parameter values in (2.6), we obtain α1 = 2.5 and α2 ≈ 8.409090911. By Proposition 2.1,

when 0 < α < 2.5, the equilibrium E13 is stable (as demonstrated in Figure 3-(a) for α = 2); when

2.5 < α < 8.409090911, the coexistence equilibrium E∗ is stable (as demonstrated in Figure 3-(b) for

α = 6); when α > 8.409090911, the equilibrium E12 is stable (as demonstrated in Figure 3-(c) for

α = 10). The bifurcation diagram with respect to α is given in Figure 4.

We find that depending on the difference between k and d1, we have two kinds of bifurcation. In both

cases, when the anti-predation response α passes a threshold, it leads to a transcritical bifurcation and

we can always observe a meso-predator cascade inside the coexistence region when increasing α: the

population of meso-predator is decreasing, the population of its prey is increasing and the population

of the prey’s prey (bottom prey) is decreasing. However, this pattern will be dramatically changed

when we restore large carnivores instead of only manipulating their playback to induce fear. In the next

section, we will model the case when we also introduce the large carnivores back into the food chain,

leading to a 4-D model.
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Figure 1. Population dynamics of (2.5) when d1 < k. (a) When 0 < α = 0.4 <

0.5, the equilibrium E13 is stable, (b) 0.5 < α = 2 < 2.954545455, the coexistence

equilibrium E∗ is stable, (c) when 2.954545455 < α = 5 < 7.5, the equilibrium E23 is

stable, (d) when α = 10 > 7.5, the equilibrium E2 is stable.

3. Model with restoring large carnivores

In this section, we analyze (1.5) which has the population of large carnivores incorporated together

with a benefit in preventing predation of the meso-carnivore by the large carnivores, in addition to the

cost in the meso-carnivore’s production. Parallel to Section 2, we first establish the well-posedness of

the 4-D model (1.5), discuss all possible equilibrium solutions and find the condition for their existence

and stability in terms of the parameter values and anti-predation strategy level.

3.1. Well-posedness. For mathematical simplification, we still apply non-dimensionalization for our

model (1.5) which is a natural expansion of the non-dimensionalization for (1.3) in Section 2, given by

t = R1τ, x =
a11N1

R1
, y =

a12N2

R1
, z =

a23N3

R1
, w =

a0N4

R1
,
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Figure 2. (a) Bifurcation diagram of (2.5) when k > d1, (b) In the region when the

coexistence equilibrium E∗ is stable, we can observe a meso-predator cascade.

with a0 = a34(0). Then model (1.5) becomes

dx

dt
= x(1− x− y),

dy

dt
= y(k − d1y − z + β1x),

dz

dt
= z (f(α,w)− d2z + β2y − p(α)w) ,

dw

dt
= w(−m+ cp(α)z)

(3.1)

where

k =
R2

R1
, d1 =

a22
a12

, d2 =
a33
a23

, β1 =
a21
a11

, β2 =
a32
a12

, m =
D4

R1
, c =

c̄a0
a23

.

For the transformed and rescaled functions f(α,w) and p(α), the conditions (1.6) and (1.7) are trans-

formed to 

f(α,w) =
B(α,N4)−D3

R1
,

f(α, 0) = f(0, w) = f0 =
B3 −D3

R1
,

∂f

∂α
< 0,

∂f

∂w
< 0,

lim
α→∞

f(α,w) = lim
w→∞

f(α,w) =
−D3

R1
,

p(α) =
a34(α)

a0
,

dp

dα
< 0,

p(0) = 1 and lim
α→∞

p(α) = 0.

(3.2)



ANTI-PREDATION RESPONSE IN FOOD CHAIN SYSTEMS 193

0 20 40 60 80 100

time

0

2

4

6

8

p
o
p
lu

a
ti
o
n

Solution of the three dimension system  = 2

level-1

level-2

level-3

(a)

0 20 40 60 80 100

time

1

2

3

4

5

6

p
o
p
lu

a
ti
o
n

Solution of the three dimension system  = 6

level-1

level-2

level-3

(b)

0 20 40 60 80 100

time

0

1

2

3

4

5

6

p
o
p
lu

a
ti
o
n

Solution of the three dimension system  = 10

level-1

level-2

level-3

(c)

Figure 3. Population dynamics of (2.5) when d1 > k. (a) When 0 < α = 2 < 2.5, the

equilibrium E13 is stable, (b) 2.5 < α = 6 < 8.409090911, the coexistence equilibrium

E∗ is stable, (c) when 8.409090911 < α = 10, the equilibrium E12 is stable.

By the fundamental theory of ODEs, we easily see that the initial value problem associated with

(3.1) has a unique solution; moreover, the solution is nonnegative (positive) with nonnegative (positive)

initial conditions. Next we show that the solution to system (3.1) is bounded.

Firstly, by the same argument as in subsection 2.2, we can obtain the same estimates for x(t) and

y(t):

lim
t→∞

supx(t) ≤ 1 and lim
t→∞

sup y(t) ≤ k + β1
d1

.

For z and w, we consider P = cz + w. Then we have

dP

dt
= cz (f(α,w)− d2z + β2y)−mw.
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Figure 4. (a) Bifurcation diagram of (2.5) when d1 > k, (b) In the region when the

coexistence equilibirum E∗ is stable, we can observe a meso-predator cascade.

Now for any given ε > 0, there holds y(t) ≤ (k + β1)(1 + ε)/d1 for large t. Then for some µ ∈ (0,m)

and large t, we have

dP

dt
+ µP = cz (µ+ f(α,w)− d2z + β2y)− (m− µ)w,

≤ cz
(
µ+ f0 +

β2(k + β1)(1 + ε)

d1
− d2z

)
=: cz(K − d2z)

(3.3)

where

K = µ+ f0 +
β2(k + β1)(1 + ε)

d1
.

If K ≤ 0, since z(t) ≥ 0, we can conclude that

dP

dt
+ µP ≤ 0,

leading to P ≤ P0e
−µt, where P0 = cz0 + w0 comes from the initial condition. Thus,

lim
t→∞

supP (t) ≤ 0.

If K > 0, then

dP

dt
+ µP ≤ cK

2

4d2
.

By the comparison theorem [24], we can obtain

P ≤ P0e
−µt +

(
1− e−µt

) cK2

4µd2
.

which implies

lim
t→∞

supP (t) ≤ cK
2

4µd2
.

Thus, in both cases, P is bounded, implying that z and w are both bounded. Therefore, all four

components of the solution are bounded.
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3.2. Existence and Stability of the boundary equailibrium solutions. As in Section 2, we first

analyze the boundary equilibria of the model (3.1). Again, we are only interested in the equilibria with

nonnegative components.

By solving the system 
x(1− x− y) = 0,

y(k − d1y − z + β1x) = 0,

z (f(α,w)− d2z + β2y − p(α)w) = 0,

w(−m+ cp(α)z) = 0,

we find that there are eleven possible boundary equilibria and they are described below. E0 = (0, 0, 0, 0)

is the trivial equilibrium solution which always exists, E1 = (1, 0, 0, 0), E2 = (0, k/d1, 0, 0) and E3 =

(0, 0, f0/d2, 0) are the equilibria that correspond to the case of only one species surviving: E1 and E2

are always exist while E3 exists only when f0 > 0. There are also four possible equilibria accounting

for the scenario of two species coexisting and they are

E12 =

(
d1 − k
d1 + β1

,
k + β1
d1 + β1

, 0, 0

)
,

E13 =

(
1, 0,

f0
d2
, 0

)
,

E23 =

(
0,

d2k − f0
d1d2 + β2

,
kβ2 + d1f0
d1d2 + β2

, 0

)
,

E34 =

(
0, 0,

m

cp(α)
, w

)
where w satisfies the equation

f(α,w)− d2m

cp(α)
− p(α)w = 0. (3.4)

Due to the requirement of non-negativity, E12 exists when k < d1, E13 exists when f0 > 0, and E23

exists when d2k > f0 > −β2k/d1. For the existence and uniqueness of E34, we denote

F1(w) = f(α,w)− d2m

cp(α)
− p(α)w.

Then it is obvious that F1(w) is a decreasing function with respect to w and limw→∞ F1(w) = −∞.

Thus, the sufficient and necessary condition for E34 to exist is F1(0) > 0, that is f0 > d2m/cp(α).

There are three possible equilibria for the case of three species coexisting, given by

E123 =

(
d1d2 − d2k + β2 + f0
β1d2 + d1d2 + β2

,
β1d2 + d2k − f0
β1d2 + d1d2 + β2

,
β1β2 + β1f0 + β2k + d1f0

β1d2 + d1d2 + β2
, 0

)
,

E134 =

(
1, 0,

m

cp(α)
, w

)
,

E234 =

(
0,
cp(α)k −m
d1cp(α)

,
m

cp(α)
, ŵ

)
,

where w̄ is as in (3.4) and ŵ satisfies the equation

f(α, ŵ)− d2m

cp(α)
+
β2cp(α)k − β2m

d1cp(α)
− p(α)ŵ = 0. (3.5)

Thus, E123 exists when

d2(k + β1) > f0 > max

(
d2k − d1d2 − β2,−

β2(k + β1)

d1 + β1

)
,
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The condition for E134 to exist is the same as for the existence of E34, that is, when f0 > d2m/cp(α).

Condition for E234 to exist is cp(α)k −m > 0 and

f0 >
d2m

cp(α)
− β2cp(α)k − β2m

d1cp(α)
.

In order to discuss the local stability, we calculate the Jacobian matrix at equilibrium E = (x∗, y∗, z∗, w∗)

as

J(E) =



1− 2x∗ − y∗ −x∗ 0 0

β1y
∗ k − 2d1y

∗ + β1x
∗ − z∗ −y∗ 0

0 β2z
∗ J33 J34

0 0 cp(α)w∗ −m+ cp(α)z∗


, (3.6)

where

J33 = f (α,w∗)− 2d2z
∗ + β2y

∗ − p(α)w∗,

and

J34 = z∗
∂f(α,w)

∂w

∣∣∣∣
w=w∗

− p(α)z∗ < 0 for z∗ > 0, w∗ > 0.

At E0 = (0, 0, 0, 0), the Jacobian becomes

J(E0) =



1 0 0 0

0 k 0 0

0 0 f0 0

0 0 0 −m


,

thus, E0 is unstable.

At E1 = (1, 0, 0, 0), the Jacobian reduces to

J(E1) =



−1 −1 0 0

0 k + β1 0 0

0 0 f0 0

0 0 0 −m


,

hence E1 is unstable.
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At E2 = (0, k/d1, 0, 0), the Jacobian is given by

J(E2) =



1− k

d1
0 0 0

β1k

d1
−k − k

d1
0

0 0 f0 +
β2k

d1
0

0 0 0 −m


,

so E2 is asymptotically stable if and only if 1− k/d1 < 0 and f0 < −β2k/d1.

At E3 = (0, 0, f0/d2, 0), the Jacobian is now

J(E3) =



1 0 0 0

0 k − f0
d2

0 0

0
β2f0
α2

−f0 J34

0 0 0 −m+
cp(α)f0
d2


,

therefore E3 is unstable.

At E12, the Jacobian is reduced to

J(E12) =



k − d1
d1 + β1

k − d1
d1 + β1

0 0

β1k + β2
1

d1 + β1
−d1k + d1β1

d1 + β1
− k + β1
d1 + β1

0

0 0 f0 +
β2k + β2β1
d1 + β1

0

0 0 0 −m


,

therefore E12 is asymptotically stable if and only if

f0 <
−(β2k + β2β1)

d1 + β1
.
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At E13, the Jacobian is

J(E13) =



−1 −1 0 0

0 k + β1 −
f0
d2

0 0

0
β2f0
α2

−f0 J34

0 0 0 −m+
cp(α)f0
d2


,

consequently, E13 is asymptotically stable if and only if

md2
cp(α)

> f0 > d2(k + β1).

At E23, the Jacobian is given by

J(E23) =



1− d2k − f0
d1d2 + β2

0 0 0

β1d2k − β1f0
d1d2 + β2

−d1d2k − d1f0
d1d2 + β2

− d2k − f0
d1d2 + β2

0

0
kβ2

2 + d1f0β2
d1d2 + β2

−kβ2d2 + d1f0d2
d1d2 + β2

J34

0 0 0 −m+
cp(α) (kβ2 + d1f0)

d1d2 + β2


,

therefore E23 is asymptotically stable if and only if

f0 > d2k − d1d2 − β2 and p(α) <
m (d1d2 + β2)

c (kβ2 + d1f0)
.

At E34 =

(
0, 0,

m

cp(α)
, w

)
, the Jacobian becomes

J(E34) =



1 0 0 0

0 k − m

cp(α)
0 0

0
β2m

cp(α)

−d2m
cp(α)

J34

0 0 cp(α)w 0


,

therefore E34 is unstable.
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At E123 = (X1, Y1, Z1, 0), the Jacobian is given by

J(E123) =



−X1 −X1 0 0

β1Y1 −d1Y1 −Y1 0

0 β2Z1 −d2Z1 0

0 0 0 −m+ cp(α)Z1


,

where X1, Y1 and Z1 denote the three positive components in E123. In Section 2, for the three

dimensional model (2.1), we have proved the principle 3 × 3 sub-matrix of J(E123) only has negative

eigenvalues. Therefore E123 is asymptotically stable if and only if −m+ cp(α)Z1 < 0, that is

p(α) <
m (β1d2 + d1d2 + β2)

c (β1β2 + β1f0 + β2k + d1f0)
.

At E134 =

(
1, 0,

m

cp(α)
, w

)
, the Jacobian is given by

J(E134) =



−1 −1 0 0

0 k + β1 −
m

cp(α)
0 0

0
β2m

cp(α)
− d2m

cp(α)
J34

0 0 cp(α)w 0


,

Since J34 < 0, E123 is asymptotically stable if and only if k + β1 − m/cp(α) < 0, that is p(α) <

m/c (k + β1).

At E234, the Jacobian becomes

J(E234) =



1− cp(α)k −m
d1cp(α)

0 0 0

β1 (cp(α)k −m)

d1cp(α)
−d1 (cp(α)k −m)

d1cp(α)
−cp(α)k −m

d1cp(α)
0

0
β2m

cp(α)
− d2m

cp(α)
J34

0 0 cp(α)ŵ 0


,

the lower 3× 3 principle sub-matrix can be written as

A =


−d1Y2 Y2 0

β2Z2 −d2Z2 J34

0 cp(α)ŵ 0

 ,
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where

Y2 =
cp(α)k −m
d1cp(α)

and Z2 =
m

cp(α)
.

Then the characteristic polynomial of matrix A is

λ3 + (d1Y2 + d2Z2)λ2 + (−cp(α)ŵJ34 + d2Z2d1Y2 + β2Z2Y2)λ− cp(α)J34d1ŵY2 = 0,

where 
a1 = d1Y2 + d2Z2 > 0,

a2 = −cp(α)ŵJ34 + d2Z2d1Y2 + β2Z2Y2 > 0,

a3 = cp(α)− J34d1ŵY2 > 0,

and

a1a2 − a3 = −cp(α)J34d2ŵZ2 + d21d2Y
2
2 Z2 + d1d

2
2Y2Z

2
2 + β2d1Y

2
2 Z2 + β2d2Y2Z

2
2 > 0.

Therefore, by the Routh-Hurwitz criterion, the sub-matrix A only has negative eigenvalues. Thus, E234

is asymptotically stable if and only if

1− cp(α)k −m
d1cp(α)

< 0.

3.3. Existence and stability of the positive equilibrium. By solving the system
1− x− y = 0,

k − d1y − z + β1x = 0,

f(α,w)− d2z + β2y − p(α)w = 0,

−m+ cp(α)z = 0,

(3.7)

we can find the expression of the possible positive equilibrium solution E∗ = (x∗, y∗, z∗, w∗) where

x∗ =
cp(α) (d1 − k) +m

cp(α) (β1 + d1)
,

y∗ =
cp(α) (β1 + k)−m
cp(α) (β1 + d1)

,

z∗ =
m

cp(α)
,

and w∗ is given by the equation

f(α,w∗)− d2z∗ + β2y
∗ − p(α)w∗ = 0.

Therefore, there exists a unique positive equilibrium if and only if the following inequalities hold
cp(α) (d1 − k) +m > 0

cp(α) (β1 + k)−m > 0,

f0 −
d2m

cp(α)
+
cp(α)β2 (β1 + k)− β2m

cp(α) (β1 + d1)
> 0,

(3.8)
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The Jacobian of the positive equilibrium is given by

J(E∗) =



−x∗ −x∗ 0 0

β1y
∗ −d1y∗ −y∗ 0

0 β2z
∗ −d2z∗ J34

0 0 cp(α)w∗ 0


,

The corresponding characteristic equation is

λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0,

where 
a1 = d1y

∗ + d2z
∗ + x∗ > 0,

a2 = −J34cp(α)w∗ + d1d2y
∗z∗ + β1x

∗y∗ + β2y
∗z∗ + d1x

∗y∗ + d2x
∗z∗ > 0,

a3 = −J34cp(α)d1w
∗y∗ − J34cp(α)w∗x∗ + β1d2x

∗y∗z∗ + d1d2x
∗y∗z∗ + β2x

∗y∗z∗ > 0,

a4 = −J34β1cp(α)w∗x∗y∗ − J34cp(α)d1w
∗x∗y∗ > 0.

Calculation gives

a1a2 − a3
= −J34cp(α)d2w

∗z∗ + d21d2(y∗)2z∗ + d1d
2
2y
∗(z∗)2 + β1d1x

∗(y∗)2 + β2d1(y∗)2z∗ + β2d2y
∗(z∗)2

+ d21x
∗(y∗)2 + 2d1d2x

∗y∗z∗ + d22x
∗(z∗)2 + β1(x∗)2y∗ + d1(x∗)2y∗ + d2(x∗)2z∗ > 0

and

a1a2a3 − a21a4 − a23
= d2x

∗z∗ (cp(α)w∗J34 + β1x
∗y∗)

2
+ d1d2y

∗z∗ (β1x
∗y∗ + cp(α)w∗J34)

2
+ positive terms > 0.

Therefore, by the Routh-Hurwitz criterion, the positive equilibrium is locally asymptotically stable.

For readers’ convenience, we summarize the results obtained above about the existence and stability

of all the equilibria in Table 2.

As was done to rescaled model (1.5) in Section 2, we can also examine the relationship how the

population size for each species at the stable positive equilibrium depends on the anti-predation level

α. Indeed, we can calculate to obtain

dz∗

dα
=
−m
cp2(α)

dp

dα
> 0.

By using implicit differentiation on the system (3.7), we can also determine
dx∗

dα
> 0 and

dy∗

dα
< 0.

However, we are not able to determine the sign of
dw∗

dα
.

From the above discussion, we see that after incorporating the benefit obtained by the meso-predator’s

anti-predation response in reducing the predation by the large carnivores, the final population sizes of

the meso-predator, its prey and its prey’s prey are increasing, decreasing, and increasing respectively

with respect to the response strength α. This alternating pattern is totally opposite to the one obtained

in Section 2 on this context.
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Table 2. Condition of existence and stability of the equilibria in model (3.1)

Equilibrium solution Existence Stability

E0 Always Unstable

E1 Always Unstable

E2 Always 1− k/d1 < 0 and f0 < −β2k/d1
E3 f0 > 0 Unstable

E12 k < d1 f0 < −
β2k + β2β1
d1 + β1

E13 f0 > 0
md2
cp(α)

> f0 > d2(k + β1)

E23 d2k > f0 > −β2k/d1 f0 > d2k − d1d2 − β2 and p(α) <
m (d1d2 + β2)

c (kβ2 + d1f0)
E34 f0 > d2m/cp(α) Unstable

E123 d2(k + β1) > f0 > max

(
d2k − d1d2 − β2,−

β2(k + β1)

d1 + β1

)
p(α) <

m (β1d2 + d1d2 + β2)

c (β1β2 + β1f0 + β2k + d1f0)

E134 f0 > d2m/cp(α) p(α) <
m

c (k + β1)

E234 cp(α)k −m > 0 and f0 >
d2m

cp(α)
− β2cp(α)k − β2m

d1cp(α)
. 1− cp(α)k −m

d1cp(α)
< 0

E∗ Condition (3.8) Stable

3.4. Numerical simulations. In this part, we present some numerical simulations to illustrate the

analytical results obtained above. To this end, we choose

B(α,N4) =
R3

1 + c1αN4
and a34(α) =

1

1 + c2α

in (1.5), leading to the following system

dN1

dτ
= N1 (R1 − a11N1 − a12N2) ,

dN2

dτ
= N2 (R2 − a22N2 − a23N3 + a21N1) ,

dN3

dτ
= N3

(
R3

1 + c1αN4
−D3 − a33N3 + a32N2 −

N4

1 + c2α

)
,

dN4

dτ
= N4

(
−D4 +

cN3

1 + c2α

)
,

N1(0) ≥ 0 , N2(0) ≥ 0 , N3(0) ≥ 0 , N4(0) ≥ 0,

(3.9)

We fix the parameters

R1 = 3, a11 = 1, a12 = 0.4, R2 = 1, a22 = 0.2, a23 = 0.5, a21 = 0.5,

R3 = 3, D3 = 1, a33 = 0.5, a32 = 0.05, c1 = 0.4, D4 = 0.1, c = 0.5, c2 = 0.2,
(3.10)

and illustrate how α impacts the population dynamics.

For the above set of parameter values, k = 1/3 < d1 = 1/2, the bifurcation diagram with respect to

α is given in Figure 5. There is a transcritical bifurcation between E∗ and E123 where the critical value

α∗ is given by

f0 −
d2m

cp(α∗)
+
cp(α∗)β2 (β1 + k)− β2m

cp(α∗) (β1 + d1)
= 0.

Using the parameter values in (3.10), we can solve this equation to obtain α∗ ≈ 97.77777780. We

can observe a trophic cascade in Figure 5 inside the coexistence region with respect to increment of
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Figure 5. Bifurcation diagram of (3.9) when k < d1.
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Figure 6. Bifurcation diagram of (3.9) when k > d1.

α. Contrary to the previous section, this cascade shows an increasing population in odd level and

decreasing population in even level.

Next, we change R1 from R1 = 3 to R1 = 1 in (3.10) and keep the same values for other parameters.

We then have k = R2/R1 = 1 and d1 = a22/a12 = 1/2 so that k > d1. For this case, we observe more

complicated dynamical behaviours: there are three critical values for α, denoted by α1, α2 and α3,

which are given by 
cp(α1) (d1 − k) +m = 0

cp(α2) (β1 + k)−m = 0,

md2
cp(α3)

= f0.

Using the parameter values in (3.10), we obtain α1 = 20, α2 = 70 and α3 = 95. In figure 6, when

0 < α < α1, E234 is stable; when α1 < α < α2, E∗ is stable; when α2 < α < α3, E134 is stable; when

α3 < α, E13 is stable. We can also observe trophic cascade in this case as is shown in Figure 6.
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Figure 7. (a) Bifurcation diagram of (3.9) when c2 = 2, (b) In the region when the

coexistence equilibrium E∗ is stable, we can observe a meso-predator cascade with

non-monotonically change on top predator.

In the last two cases, we can see that population size of large carnivores at the positive equilibrium

is monotonically decreasing. We point out that this is dependent on the choice of the benefit reflecting

term p(α) = a34(α)/a0. To see this, we change c2 from 0.2 to 2 (corresponding to a more significant

benefit to N3 and disadvantage to N4), then, as is shown in Figure 7-(a), we can see a transcritical

bifurcation from E∗ to E123 at threshold value α̃ = 10.43750000, and before this value, w∗(α) is not

monotone: it increases first and then decreases. Figure 7-(b) is an enlargement of (a) in which, one can

more clearly see that while the lower trophic still follow the cascade, the top predator (w∗) increases

first and then decreases with respect to the increment of α. Thus, the response function p(α) has an

impact of the trophic cascade.

4. Conclusion and discussions

A recent experimental study [25] in fields observed a phenomenon of trophic cascade in a food chain

population system consisting of three species, i.e., meso-carnivore on top, its prey in the middle and

the prey’s prey in the bottom, caused by the fear of virtual large carnivores which is implemented by

playback of the large carnivores. This phenomenon, together with some recent works on fear effect in

two species predator-prey models, has motivated us to theoretically explore the mechanisms for such

trophic cascade in this paper. To this end, we have proposed two models, (1.3) and (1.5), with (1.3)

directly corresponding to the scenario of field study in [25], and (1.5) being an extension to include

a benefit in the meso-carnivore from the anti-predation response, in addition to a cost, as in (1.3).

In order to incorporate the benefit term into the model, we have to add the population of the large

carnivores into the interplay, making (1.5) a 4-D system.

We have thoroughly analyzed the two models, using the approach of dynamical systems. For each

of the two models, we have obtained complete structure of the equilibria, and established their stabil-

ity/instability in terms of the model parameters, in the form of thresholds for certain parameters. For

model (1.3) our results show that an anti-predation response at lower level is beneficial to the top and
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bottom species (N3 and N1); while at higher level, it is beneficial to the middle species (N2) but disad-

vantageous to N3 and N1, confirming the phenomenon of trophic cascade reported in that experimental

study. For model (1.5), our results show that there are now three threshold values for the response

level α, distinguishing ranges for α accounting for various combinations of co-existence among the four

species. Particularly, within certain range of parameters, the model also demonstrates the phenomenon

of trophic cascade but with an opposite alternating pattern for the three species (the meso-carnivore, its

prey and its prey’s prey): increasing the response level α is beneficial to N3 and N1 but disadvantageous

to N2. This change is attributed to the effect of the benefit of the anti-predation response in reducing

the predation and its balance with cost of such a response.

Our results can have ecological implications as they may suggest practical strategies of manage-

ment/control for maintaining biodiversity. For example, in some ecosystems, populations of some

meso-predators have been observed to increase significantly due to the loss/extinction of larger carni-

vores, and this has in turn put some pressure on the meso-predators’ preys for their survivals. Our

results on model (1.3) suggest that by creating certain virtual situations (e.g, vocal) mimicking the

large carnivore predators, one may expect to reduce the populations of the meso-predators, and conse-

quently relax the pressure on the meso-predators’ preys. On the other hand, if the large (top) predators

of the meso-predators are present, their predation on the meso-predators poses a major threat to the

meso-predators. In such a case, by out results on model (1.5), creating the aforementioned virtual situ-

ations may stimulate the meso-predators to increase their anti-predation response level, which will then

reduce the predation risk by the top predators. This way, the benefit of anti-predation response of the

meso-predators in reducing the predation risk may outplay the cost in production, and thus, enhance

the survival probability of the meso-predators. Such a net benefit in the meso-predators can then be

passed on to the lower level species in an alternating fashion. Therefore, the risk events such as fear

effect in some species in an ecosystem may actually offer a management tool in shifting the structure

of ecosystem and help conserve the biodiversity.

Note that in our model, we have used the mass action or Holling Type I functional responses as the

predation mechanism. For some species between which the predation involves foraging, this mechanism

is not suitable and other types of functional responses should be adopted. It would be interesting and

worthwhile to investigate the population dynamics in models like (1.3) and (2.1) with such replaced

functional responses. We also point out that in our models, we have only considered fear effect of

meso-carnivore species N3 against the large carnivores N4. Such fear effect may also exist in N2 against

N3 and in N1 against N2. Modeling fear effect in those or in all levels would also be interesting but

would be very challenging mathematically.

We remark that for predator-prey interactions between two species only, the recent works mentioned

in the introduction may also suggest some possible extensions and expansions of the two models in this

paper. For example, one may also incorporate age structure, spatial structure, digestion delay, extra

food, stochastic noise, as was done in [8, 18, 31, 32, 33]. Efforts on all these lines will greatly enhance

our understanding of predator-prey interactions, and enrich the theory in this area.
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