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ABSTRACT. In this paper, we consider the evolutionary competition between
budding and lytic viral release strategies, using a delay differential equation
model with distributed delay. When antibody is not established, the dynamics
of competition depends on the respective basic reproductive ratios of the two
viruses. If the basic reproductive ratio of budding virus is greater than that of
lytic virus and one, budding virus can survive. When antibody is established
for both strains but the neutralization capacities are the same for both strains,
consequence of the competition also depends only on the basic reproductive
ratios of the budding and lytic viruses. Using two concrete forms of the viral
production functions, we are also able to conclude that budding virus will
outcompete if the rates of viral production, death rates of infected cells and
neutralizing capacities of the antibodies are the same for budding and lytic
viruses. In this case, budding strategy would have an evolutionary advantage.
However, if the antibody neutralization capacity for the budding virus is larger
than that for the lytic virus, the lytic virus can outcompete the budding virus
provided that its reproductive ratio is very high. An explicit threshold is
derived.

1. Introduction. In the real world, there are mainly two types of viral release
strategies: lytic and budding. Viruses can be released from the host cell by lysis, a
process that kills the cell by bursting its membrane, after a period of accumulation
of new virions inside the host cell. This is a feature of many bacterial and animal
naked viruses, such as many types of phages, rhinoviruses and picornaviruses [2].
Many viruses do not lyse their host cells; instead, progeny virions are released from
the cells over a period of time by gradually budding. Enveloped viruses, such as
HIV and influenza, are typically released from host cells by this strategy (see [5, 9]).
During this process a virus acquires its envelope from cell surface membrane.

A typical viral production process consists of viral attachment (to the host cells),
penetration, uncoating, replication and release. However, lytic and budding viral
strains have different life cycles. A lytic virus has a lytic cycle during which the
new virions are produced and accumulated inside the host cell, and released by a
burst (lysis) when the number of viruses inside becomes too large for the cell to
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hold. A budding virus reproduces inside and escapes the host cell by constantly
budding throughout the lifespan of the infected cell.

There is some research on the kinetics of viral production. Coombs [4] examined
the optimal virus production schedules by considering the trade-off between viral
replication and cell death rate. Burst size, defined as the expected number of virions
produced over the lifetime of an infected cell, was considered as viral reproductive
fitness. It was found that if viral production rate and cell mortality rate are linked,
replicating at the maximal rate so that the burst size is maximized, may not be
the optimal strategy for virus, even if natural selection favors viral strains whose
virion production rate maximizes viral burst size. The optimal viral production rate
may be lower than the maximum viral production rate, or may not be a constant,
meaning that it may vary with the time or the age of the infected cell, depend-
ing on the trade-off between cell mortality and viral production. In a subsequent
work, Gilchrist et al. [6] used an age-structured model of virus dynamics to study
the optimal viral fitness. It was shown that trade-offs between virion production
and immune system clearance of infected cells could lead natural selection to fa-
vor production rates lower than the one that maximizes burst size. Nelson et al.
[10] also used an age structured model to study the influence of different profiles
of nonconstant viral production rate and nonconstant infected cell death rate on
HIV infection dynamics. As for lytic virus, Wang et al. (see [13, 14]) studied the
optimal lysis time and phage fitness. It was found that a delay in lysis time can
lead to production of more progeny per infected host. Therefore, there is a trade-off
between a present immediate linear gain by extending the vegetative cycle of phage
and a future uncertain exponential gain derived from lysing the current host and
releasing the progeny virion.

Komarova [8] studied the evolutionary competition between budding and lytic
strategies. It was concluded that if all the parameters, such as the rate of viral
production, cell lifespan and neutralizing capacity of antibodies, were the same
for the lytic and budding viruses, the budding life-strategy would have a large
evolutionary advantage because it is advantageous for an organism to reproduce
earlier in life rather than later, given that the offspring is the same in both cases.
However when the antibody effect is considered, the difference in removal capacity of
the antibodies against budding and lytic virions could make lytic virus evolutionarily
more competitive. Newly produced virions of a budding virus exit the host cell
gradually and are immediately attacked by antibodies, while that of a lytic strain
exit all at once, in a burst, and if there are sufficiently many of them, they can
“flood” the immune system making it less effective.

Komarova [8] used the Euler-Lotka equation for the host cell population and
reaction diffusion equations for antibody flooding effect. The disadvantage of the
Euler-Lotka model is that it only models a steady state of viral spread, when the
uninfected host cells are freely available. In this paper, we aim at providing an
alternative perspective by focusing on the infection age and release strategy. More
specifically, we propose a mathematical model described by ordinary differential
equations with distributed delay accounting for infection age. By analyzing this
structured model system, we study the evolutionary competition between these two
viral productive strategies.

The rest of this paper is organized as follows. In Section 2, we present an age
structured model and its simplified form with distributed delay. In Section 3, we
prove that all the solutions of our model are positive and bounded. In Section 4, the
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equilibria of the model and their stability are discussed. In Section 5, we give two
explicit forms of the viral production function and investigate the effect of antibody
on evolutionary competition of budding and lytic strategies. The paper is ended by
Section 6, where in addition to conclusion, some discussion is also presented.

2. Model formulation. Age structured models have been used to study the wit-
hin-host dynamics for HIV (see [6, 10, 11]). We use an age structured model for
the infected cell population. The infection age, a, is the time lapsed since a cell was
infected by a virus. Suppose that T'(¢) is the concentration of uninfected target cells
at time ¢; Vp(t) is the concentration of virus produced by the budding strategy at
time ¢ (we call it budding virus); Vi (¢) is the concentration of virus produced by the
lytic strategy at time ¢ (we call it lytic virus); T} (¢, a) is the concentration of infected
cells at infection age a at time ¢, which are infected by budding virus; T} (¢, a) is the
concentration of infected cells at infection age a and at time ¢, which are infected by
lytic virus; A(t) is the concentration of antibody at time ¢. By infection, budding
virus and lytic virus compete for uninfected target cells. Assuming mass action
infection mechanism, we propose the following system of differential equations to
describe the competition dynamics of budding and lytic viruses:

d%(st) = H —drT(t) - BT ()Va(t) — BLT()VL (1),
T oTs:

Bc’)(tt ) %(;’a) = —dr; (a)T3(t a),
oT} (t, oT; (¢, .

pra) LY i@y (1)

= vB(a)T;(t,a)da — dyVe(t) —neVp(t)A(t),

dt

dVis (1) / (1)

B

o
O [ p@T - dyVi(o) - mVa ) A(),
TL

dA(t)
BT p(VB(t) + VL (1)) A(t) — daA(t) — VB () A(t) — nLVL(¢)A(t).
Here, B and [ represent the infection rates of budding virus and lytic virus
respectively. vg(a) and vr(a) are the virion production rates from infected cells
with an infection age a by budding strategy and by lytic strategy respectively. 75
and 77, denote the ages when the infected cells begin to release new virions by
budding and lysis respectively. p is the activation rate of antibodies. np and 7, are
the neutralization rates of antibodies for budding virus and lytic virus respectively.
Although the model (1) looks symmetric in its form for the two viruses, it is the
particular forms of the two functions yg(a) and v, (a) that will actually characterize
the nature of the production/release strategies of the two viruses, and thereby,
make the model (1) asymmetric. This will be discussed in Section 5, particularly
demonstrated in Fig. 4 and Fig. 5.

We assume that viruses are introduced at time ¢t = 0, meaning that there is
neither virus nor infection for ¢t € [—7*,0), and infection occurs at ¢ = 0 immediately
after introduction of viruses. Accordingly

T5(0,a) =0, T7(0,a) =0, for all a> 0.
The infected cells of age zero come from the new infections, that is
T5(t,0) = BT (t)Ve(t), Tr(t,0) = BLT()VL(t).
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Now, for the budding virus, the dynamics are determined by the following initial-
boundary value problem:

Ty(t,a) | OTg(t,a) .
ot + 90 = —dT}; (a)TB (t, a),

Tp(t,0) = BT (t)Va(t), (2)
T5(0,a) =0, Va>0.

Solving this problem by the method of characteristics, we obtain

_ _ _foa dT* (§)d§ >
T5(ha) = {ﬁBT(t a)Vp(t—a)e B t>a,

t < a.

Similarly, we have

a

BrLT(t —a)VL(t —a)e” Jo dry (©dsy a,
0 t<a.

Ti(t,a) = {

Substituting the above formulas for T} (¢, a) and T (¢, a) into Vg and Vi, equations
in (1), and by our assumptions that V() =0, V() =0, forall§ € [—7*,0), we
obtain the following model system:

d%t) =H —drT(t) — BT ()Vs(t) — BLT(t)VL (),
dVC];t(t> - /ﬂ: vp(a)e Jo dry, (E)dEﬁBT(t —a)Vp(t —a)da
—dyVp(t) —npVa(t)A(t), “
d‘/;?t(t) _ /T: vi(a)e” Jo dry (5)d§5LT(t —Q)Vi(t - a)da
—dy Vi (t) = nL V(1) A(t),
%it) =p(Va(t) + VL(£))A(t) — daA(t) — naVp(t)A(t) — nLVL (1) A().

In the rest of the paper, we shall investigate the dynamics of this system.

TABLE 1. The descriptions of the parameters in the model (3)

Varibles/Parameters | Descriptions

T Density of target cells

\%:; Viral load of budding virus

1% Viral load of lytic virus

A Density of antibody

H Recruitment rate of target cells

dr, dT;; , de Death rates of target cells/budding-virus-infected cells/
lytic-virus-infected cells

dy,da Clearance rates of virus/antibodies

BB, BL Infection rates of budding virus/lytic virus

YB, YL Viral production rates of infected cells by budding/lytic strategy

nB,NL Neutralization rates of antibodies induced by budding/lytic virus

p Activation rate of antibodies
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3. Positivity and boundedness of solutions. Let X = C([—7*,0],R?*) be the
Banach space of continuous functions with supremum norm. By the fundamental
theory of FDEs [7], we know that there is a unique solution (T'(¢), Vi(t), VL(t), A(t))
to the system with given initial conditions (T'(0), Vg (6),V(0), A(9)) € X. Due to
the biological meanings of the unknown functions, we need to further assume that
the initial functions T'(0), V(0), VL(0), and A(0) satisty

{T(e) >0, V() =0, V(A) =0, A(h) >0, foralld € [-7*,0),

T(0) > 0, Vi(0) > 0, V1.(0) > 0, A(0) > 0. (4)

The following theorem addresses the well-posedness of the model (3).

Theorem 3.1. Let (T'(t),Vp(t), VL(t), A(t)) be a solution of the system (3) satis-
fying (4). Then T'(t), Vp(t), VL(t) and A(t) are non-negative and bounded for all
t>0.

Proof. From the first and last equations of the system (3), we have
t
T(t) = T(0)e~ Ji (dr+BoVi(©+ALVi(€)de | / He i (r+85Va(©+B: Vi (€)de g <,
0
At) = A(O)efJ[PVB(f)Jr:DVL(5)*dA*nBVB(ﬁ)*nLVL(ﬁ)}df > 0.

Next, we show that Vp(t) > 0 for all ¢t € (0,00). Otherwise, there exists a first time
t1 > 0 such that Vp(¢t1) = 0 and Vp(¢) > 0 for ¢t € [0,¢1). This would lead to

dvziitl) = / vp(a)e Jo' (g)dEBBT(tl —a)Vp(t; — a)da > 0.

B

This implies Vp(t) is negative in a small left neighborhood of ¢;, a contradiction.
Therefore, Vp(t) > 0 for all ¢ > 0. Similarly, we can prove Vi (t) > 0 for all £ > 0.

To prove the boundedness, let 3 = max,c(ry, -+ YB(a), o = MaX,e[r, -+ YL(a),
7 = max{¥yp,yr}, dr+ = min{minTBSaST*,dTg (a), min,, <g<r* dr; (a)} and n =
min{ng,n}. Define

*

G(t) = a/: e AT (t — a)da + Vp(t) + Vi (t) + ZA(t).

B

By the nonnegativity of solutions, it follows that

t ™ T
%i) :Hﬁ/ e~dradg — dT”y/ e~ P(t — a)da

B
¢

- 7/7 e BT (t — a)Vp(t —a) + BT (t — a)Vi(t — a)|da

B

*

+ / ve(@)e 0 TEOE BT — Vit — a)da — dy V()

*
a

+ / yp(a)e” o O g (4 @)V (t — a)da — dy Vi (t)

L

—nVB(t)A(t) —nLVL(t)A(t)
Vet + Vi () A(t) %A(t) = T2y A() - TV (A
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SH"y/ e~dradg — dT”y/ e T (t — a)da

B B

— dyVi(t) — dy Vi (t) — dAgA(t)

where Q = H;/f:; e~ %q > 0 and d = min{dr,dy,da} > 0. Therefore,
limsup,_,. G(t) < Q/d, implying that G(t) is bounded, and so are T'(t), Vp(t),
Vi (t) and A(t). O

4. Equilibria and their stability. Let

RO _ PeHEs Loy _ fLHKL
B dVdT ’ dvdT ’

RS =RY —op, R = R — oy,

where
Kp= [ nta)e 5O 1 = [ @ 0%
TB TL
op = Bpda i Brda .
dr(p —n5) dr(p —nr)
Here, e J6 4584 qenotes the age-specific survival probability of an infected cell

infected by budding virus, i.e., the probability of an infected cell remaining alive
at infection age a. Thus, Kp is the total number of new virions produced by one
infected cell, infected by budding virus, over its whole lifespan. We call Kp the
burst size of budding virus. Similarly, K is the burst size of lytic virus. Notice
that 1/dy is the life span of budding virus in the absence of antibody, H/dr is
the cell concentration without infection, and Bg is the infection rate. Hence, one
budding virus, once inoculated into an environment containing H/dr uninfected
cells, can lead to SpH/(drdy) infected cells. These infected cells then produce
the amount SpH Kp/(drdy) of new virions. Therefore, Rg)) gives the reproductive
ratio of the budding virus in the absence of antibody (also referred to as the basic

reproductive number). In parallel, R(LO) is the reproductive ratio of the lytic virus in
the absence of antibody. Note that op accounts for the clearance rate of antibody
for budding virus. Thus, Rg) is the reproductive ratio of budding virus when the
antibody for budding virus is established. Similarly, R(Ll) is the reproductive ratio
of lytic virus when the antibody for lytic virus is established.

For the system (3), there always exists an infection-free equilibrium Ey = (T(O), 0,
0,0), where T O =H /dr. Other possible equilibria are summarized below:

(I) If Rg,)) > 1, there exists an equilibrium Fjg = (T(lo), Vlgw), 0,0), where

d d
() _ _dv_ a0 _ dr (p0)
T KpBp' P BB (RB 1> .

(IT) 1f Rg)) > 1, there exists an equilibrium Ey; = (T(Ol), 0, VL(Ol), O), where

d d
(o1 _ _%v (01) _ 4T (p(0) _
T 7 e 5 (RL 1).
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(I11) If Rg) = R(LO) > 1, there are infinitely many equilibria of the form F =
(T, VB, VL,O), where

v

KppBp

(IV) If p > np and Rg) > 1, there exists an equilibrium Eyy = ( 70, VéQO),O,
A(QO)), where

TZ , 5BVB+ﬁLVL ZdT(Rg}) —1).

7(20) _ H ) Vézo) _ da ALY _dv (Rg) _ 1) _
dr(1+0op) p—1p ne(l+0op)

(V) If p > nr, and R(Ll) > 1, there exists an equilibrium Fp; = (T(Oz),OJ/L(OQ)7
A(OQ)), where

T02) _ H ’ VL(02) __da A0 dy ( (Ll) _ 1) .
dr(1+or) P—L ne(l+or)

VI) The positive equilibrium Eay = (T2, V(22), V(22)7A(22) , Where
B L

0) _ (0))
T2 _ H(ny —nB) 422) _ dv (RL Ry
dr (Rg)m - R(LO)"YB) RS?UL - Rg))UB
(22 dT(T(THmT —1-00)9B (0 dT(ﬂ%mT —1-op)os
B L 9

Bplop —or) Br(oL —oB)
exists in any of the following cases:
(VI-1) op > op, i, > np, R > RY, and

RO 4 (1+0)1-22)y> RO > RO | (14 o5)1 - 1L,
nB nB nB nB

(VI-2) o5 > op, ni < np, R < RY | and
RO L 1yop)(1— )y RO > RO (140 ) - 12,
B B B nB
(VI—3) op<or,nNL > N8, R(l?) > Rg))7 and
RO L (1yop)(1— ) RO > RO (14 07)1 - 12,
B B B nB
(VI-4) o5 < op, ni < np, BY < RY | and

RO 414y —"2ys RO > RO 4 (14 op)1 - 12,
nB nB B nB
We now consider the stability of some equilibria. The following result suggests
that if the basic reproductive ratios of both budding virus and lytic virus are less
than one, then the population sizes of both budding virus and lytic virus will ap-
proach zero as t — oo and the antibody cannot be established.

Theorem 4.1. The equilibrium Ey = (H/dr,0,0,0) is globally asymptotically sta-
ble if RY <1 and R < 1.
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Proof. First we consider local stability of the equilibrium Ey. Linearizing the system
(3) at equilibrium Ej leads to

duq (t) H H
—2 = —dpui(t) — Be—us(t) — B —us(t
i Tui (1) 5BdTu2( ) BLdTus( )
dus(t a e H
u;t( ) - / ve(a)e Jo' dry, (f)dgﬂg d—ug(t —a)da — dyus(t),
i ' (5)
dus(t a g H
u;t( ) = / vr(a)e Jo drg (g)dfﬁLd—ug(t —a)da — dyus(t),
L T
dU4(t)
=—d t).
o Aua(t)
The characteristic equation of this linear system is
A+dr Bear Brir 0
0 Ady — L Kp(\) 0 0
Jo(A\) = dr _ =0,
oY) 0 0 Atdy —BLLEL(N) 0
0 0 0 A+dy
where
Kg(\) :/ VB(a)e_(foa dTﬁ(g)dH’\a)da,I_(L()\) :/ ’YL(a)e_(f"a dry (©d€2a) g,
B TL
It is obvious that Ay = —dp < 0 and Ao = —d4 < 0 are two eigenvalues and the

other eigenvalues are determined by
H _
Atdy = BBd—KB()\),
T

and
H _
Ady = BLd—KL(/\),
T

which are equivalent respectively to

A 0 Ks(\)

dv+1_RB Xy (6)
and

A © KL\

AN

v + R; e (7)

We need to show that under the conditions of the theorem, all roots of (6) and (7)
have negative real parts. Let A = x + iy be a root of (6). We show that x < 0.
Otherwise, z > 0 implies

/T
TB

Thus, if Rggo) < 1, then

*

|Kp(N)| < o (st drg (©)dg+2a)

75 (a) MS/ yp(a)e” 50 75 O% g = K.

TB

Kp()\)
Kp

A (0)
AN R
dv B

o

<.

a contradiction to (6). Therefore, x < 0 under Rg) < 1, implying that all roots of
(6) have negative real parts if Rg)) < 1. Similarly, if Rg]) < 1, then all roots of (7)
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also have negative real parts. It follows from [7], that the equilibrium Ej is locally
asymptotically stable if RSBO) < 1 and R(LO) < 1.

To show that Ejy is globally asymptotically stable, it is sufficient to show that Fj
is globally attractive. By the positivity of solutions, we have

dT(t
% = H—drT(t) - BeT(t)Vs(t) — BT (H)VL(t),
< H—drT(t).
This implies
) H
limsupT'(¢) < —. (8)
t—o0 dT
Denote
RO (o) = BeH+OKs  poy ) ALl +e)Kr
dydr dydr

Let € > 0 be sufficiently small such that Rg)) () <1 and R(Lo)(s) < 1. For such an
€ > 0, by (8), there exists a t* > 0 such that

H
T < 25 for t > ¢,
dr
Thus,
dVp(t H a [ dy
B() S +8/ VB(a)e fo dTB(g)dgﬁBVB(t—a)da—dVVB(t),
ot dr /.,
AV (t H a [ dy.
L() S +€/ VL(a)e fo dTL(é)dgﬁLVL(t—a)da—deL(t).
dt dr J.,

We consider the following auxiliary linear system

dwy(t) H+e

/ vp(a)e™ J" dry, (E)d‘gﬁgwg(t —a)da — dyws(t),

o0 dr J.,
dws(t) H+e [T ¥
W, IR I

& dr / yp(a)e™ 0 T OC B w1 — a)da — dyws ().

Notice that the two equations in (9) are the same as the second and third equations
in (5) except that H is replaced by H + . Thus, the characteristic equation of
(9) is the product of two equations of the form (6) and (7) with H replaced by

H + ¢. Thus, Rg]) () < 1 and R(LO) () < 1 ensure that all eigenvalues of (9) have
negative real parts, and hence, the trivial solution of (9) is globally (since (9) is
linear) asymptotically stable, meaning that every solution (w2 (t), w3(t)) — (0,0) as
t — oo. Notice that (9) is a co-operative delay system. By the comparison theorem
[12], we conclude that tlir&(VB(t), V()T = (0,0).

Finally, the first and the last equations of (3) form a system which has the
following autonomous system as the limit system.

dwq (t

wdlt( ) =H - dTwl(t),
dwy(t
%() = —dawa(t).

Obviously, every solution of this system approaches (H/dr,0). By the theory
of asymptotically autonomous systems (see, e.g., [3]), for any positive solution
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(T(t),Ve(t), VL(t), A(t)) of (3), T(t) = H/dr and A(t) — 0 as t — oo, and there-
fore, (T'(t), Vp(t),VL(t), A(t)) — (H/dr,0,0,0) as t — oo. That is, Ey is globally
attractive, completing the proof. O

The following result indicates that if the basic reproductive ratio for the budding

virus is greater than one and exceeds the basic reproductive ratio for the lytic virus,
then the budding virus can survive when the antibody effect is not established.

Theorem 4.2. Assume that Rg) >1 and Rg) > R(LO). If either (i) p < np; or (ii)
p > np and Rg) < 1, then the equilibrium E1¢ is locally asymptotically stable. If
Rg)) < R(LO), orp>np and Rg) > 1, then this equilibrium is unstable.

Proof. Linearizing system (3) at equilibrium Ejq gives

du (t
’U;t( ) — dTul(t) _ BBVBglo)ul(t) _ BBT(lo)'LLQ(t) _ 5LT(10)U3(1?),
dus (t T rag.
U;t( ) :/ 'YB(CL)(? fo dTB (E)dg[ﬁBVélo)Ul(t _ a) +6BT(10)U2(t - a)]da
TB
— dvus(t) = npVg Vua(t),
dus(t) _ i — Jo dp= (£)dE (10)
dt - ’YL(a)e L ﬁLT U3(t — a)da — dv’d3(t)7
TL
duy(t
;t( ) (o= ) VS Ous(t) — daua(t).
The characteristic equation of this linear system is
A+ diy BT 8, T(10) 0
~BeVSOKp(\) A+ dy - BpTUOKp(N) 0 v
0 0 A+ dy — BLTAOKL (N 0
0 0 0 A+ dy
= 0. wh d. =d (10) 5 _ R (10) . .
=0, where d. =dr + Vg ', dy =da— (p—nB)Vg . One eigenvalue is
d
A =—da+(p— nB)VéIO) ) (Rg) - 1) .
0B

It is clear that if p < np, then \; < 0. If p > ng but Rg) < 1, we also have A1 < 0;
and if R\ > 1, then \; > 0.
The other eigenvalues are determined by
Atdy = TR (), (10)
and
A +dr)A+dv) + A +dy)BsVE? — (A +dr) BTV K () = 0. (11)
Equation (10) is equivalent to

AL RY K (N)

dv RO K

(12)

By a similar argument to that in analyzing (6), we conclude that all roots of (10)

have negative real parts if Rg) > R(LO). Equation (11) is equivalent to

Kp())
Kp

A+ dp)A+dy) + (A + dy)dr(RY — 1) — (A + dr)dy =0,
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which can be further rewritten as

(A +dpRY) (A + 1) = (A +dy)

Kp())
dy '

Kp

(13)

Let A = x + iy be a root of (13). If z > 0, then by Rg) > 1, we have

A Kg(\
‘A+dTRg))‘>|>\+dT|, — +1| >1, Ks() <1.
dy Kp
Therefore,
A Kg(\
A+ dr R (= +1)| > |(A+dp) ()
dy Kp

This is a contradiction to equation (13). Therefore, if R%)) > 1, then z < 0 for
equation (13), implying that all roots of (13) have negative real parts.

In summary, we have shown that under the assumption that Rg) > 1 and Rg) >
R(LO), if either (i) p < np, or (ii) p > np and Rg) < 1, then all roots of the
characteristic equation have negative real parts and hence equilibrium FE1 is locally
asymptotically stable.

If p>npand Rg) > 1, then A\; > 0 implying that Ejg is unstable. For case that
RY < RY et

A RO K, (N
A)=-—+1-—L

Then

On the other hand, ¥(X) = +00,as A = +o00. Thus, there exists a A* > 0 such that
P(A*) = 0, that is, (12) has a positive root, implying that FEy( is unstable. The
proof is completed. 0

Parallel to Theorem 4.2, we have the following conclusion about the lytic virus
when the antibody effect against lytic virus is not established.

Theorem 4.3. Assume that R(LO) > 1 and Rg)) > Rg)). If (i) p < nr; or (ii)

p > ng and R(Ll) < 1, then the equilibrium Egy is locally asymptotically stable. If

R(LO) < RSBO) orp>nr and R(Ll) > 1, then this equilibrium is unstable.
Assume that Rg) > 1 and p > np. Then when Rg) passes the value 1, F1g loses
its stability, giving rise to the equilibrium Fyy. The following theorem describes the

stability of Fsg, characterizing the conditions under which the budding virus will
persist in the presence of established andibody.

Theorem 4.4. Assume that p > ng and Rg) > 1. If

RY <1+op+"= (RY -1), (14)
B
the equilibrium Foq is locally asymptotically stable; if
R > 1+03+2—L (Rg) - 1), (15)
B

this equilibrium is unstable.
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(0)

Proof. Firstly, note that p > np and Rg) > 1 imply R’ > 1. Linearizing the

system (3) at Fayg leads to

duq (t
) _ g (t) ~ BV (6) — BT us(t) — BTy (1),
duy(t a [ dp
= / vp(a)e” 0 15 OBV E s (t - a) + BT us(t — a)]da
B
— dyus(t) — np AP us(t) — npVE ua(t),
dus(t a v d.
u;t( : :/ vL(a)e 5 dry (g)dfﬁLT@O)us(t — a)da — dyus(t) — 1, A®Vus
TL
duy(t
P4E) (1) A () + (p — i) A1) + (p — 1) Vi a(8) — daua8).
The characteristic equation of this linear system is
A+ dr + BV BT
_ | =BsVEVEp(\) A+dy +15AR0 — BrTCOK ()
Jao(N) 0 0
0 —(p— UB)A(QO)
BLT(QO) 0
0 T)BVL(;QO)
A+dy +npACY) — B TEYE () 0
—(p—nL)AR0 Ada—(p—np)Vg"

The roots of this equation are determined by

At dy +nL AP — B TCOKL(A) =0,

and
A+dy BBT(ZO) 0
BV Rp(\) A+ds — BpTCORE(N) npVE” | =0,
0 —(p—np)ARY A+ ds

where d; = dp + BBVSO), dy =dy +npAPY, dg =ds — (p— WB)Vézo)'
Equation (16) is equivalent to

nL  dy ( (1) ) o dv  Kp(\)
A+d ——— Ry’ —1)=R
* V+7]Bl+0'B B L'1+op Kp '’
which can be further rewritten as
1+o0p KL(A)

A 1+op+ 22 (RY 1) = RY
Vv nB

(),

(18)

Let A = = + iy be a root of (18). If x > 0, then the left hand side of the equation

(18) satisfies

1
+UBA+1+UB+TIL(Rg)—l)‘zl—&—aB—&—nL(Rg)—l),
dv nB nB

and the right hand side of the equation satisfies

Krp(\
RO L(\)

(0)
< .
Kr |~ R
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Therefore, if (14) holds, then the above two inequalities contradict to each other.
Thus z < 0 if (14) holds, implying that all roots of (18) have negative real parts.
Equation (17) is equivalent to

MO+ dr) (A dy + 05420 ) 4 85V EY (A -+ dy +npa®)
~BeTE KN+ dr)| +nVE (0 = 1) A (A +dr + B5V5" ) =0,

which is further equivalent to

1 d 1 Kp(\
<1+ L )( +T§§A+1>+AA<1—@> <1+ L >= IE;( ) (19
ar t1) \dvRy R & +1 B

Let A = z + iy be a root of (19). If z > 0, by Rg) > 1, the right hand side of the
equation (19) satisfies

Kp()\)
Kp
and the left hand side of the equation satisfies

1+ d 1
1+ 28 AL+ (1 ) (1
i-+1) \dyR}y A R ~+1
oB 14+0p
(1”“) (d R(O)Hl)’
dr viap

> 1,

<1

)

>

leading to a contradiction to (19). Thus z < 0, implying that all roots of (19) have
negative real parts.
In summary, we conclude that if (14) holds, then the equilibrium FEyq is locally
asymptotically stable.
Let
YOy = 28
1%

Then 9(A) = 0o as A — oo. On the other hand

KL()‘).

A+1+JB+:77—L(R§)—1)—R(L°)
B

$(0) =1+0p+ 1= (RY 1) - R <0,
nB

provided that (15) holds. Therefore, there exists a A* > 0, such that ¥(A\*) = 0.
This means the equation (18) has at least one positive eigenvalue, implying that
the equilibrium Fsq is unstable. The proof of the theorem is completed. O

Similarly, for lytic virus we have the following result when the antibody effect is
established.

Theorem 4.5. Assume that p > 1, and R(Ll) >1. If

RY <140+ Z—B (R 1), (20)
L
the equilibrium Eos is locally asymptotically stable; if
RO > 140+ Z—B (R - 1), (21)
L

this equilibrium is unstable.
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The conditions for the existence and stability of some equilibria are summarized
in Table 2. We see that if p < np and p < np, there may only be three equilibria
Ey, Eo1, and Eqg (except the equilibrium line E), whose stability are determined
by basic reproductive ratios RSBO) and REO). If RSBO) > 1 and RSBO) > RE;O), Fhp is
locally asymptotically stable. If R(LO) > 1 and R(LO) > RSBO), Ey; is locally asymptot-
ically stable. In this case, the antibody does not play a role in the long-term virus
dynamics, this is because when p is too small (p < np and p < 7)), activation of
new antibodies cannot satisfy the demand on antibodies involved in neutralization
of the virus for both strains. In the following discussion, we always assume that
p>nporp>nL.

TABLE 2. The conditions for the existence and stability of the equilibria

Existence L.A.S. Outcompetes
Ey Always Rg)) < 1 and Rg)) <1 No virus
FE1o R(BP) >1 Rg}) > Rgo) and {p<np,orp>np & Rg) < 1} | Budding Virus
Eo1 Rg)) >1 R(LO> > Rg)) and {p<np,orp>nL & R(Ll) < 1} | Lytic Virus
Ey | p>nB, Rg> >1 RE-JO) < Rg))% +(14o0op)(1—- %) Budding Virus
Eo2 | p >0, R(Ll) >1 R(LO) > Rg)% +Q+op)(1 - %) Lytic Virus

The bifurcation diagrams in different cases are given by figures in Fig. 1 to Fig.
3, representing the three cases ng > 1, np = 1, N < N respectively.

For the case ng > np, the bifurcation diagram is shown in Fig. 1, in which,
the first quadrant of Rg) — R(LO) plane is divided into sub-regions with appropriate
shadings, representing the stability of the different equilibria. The shadings are
given in such a way that regions with the same shading pattern share the same
stable equilibrium. For example, in Fig. 1-(a) where op > oy, the stability regions
of equilibria E;; (¢,7 = 0,1,2) with respect to ngo) and R(LO) are denoted by S;;
i = 1,...,13. Here the solid diagonal line is R(LO) = Rg)); the dash-dot line is

R(LO) =RWIL 4 (1+o0p)(1—- %); and the dashed line is R(LO) =RWIL 4 1+

B 1B B 1B
o)1 — %) In the regions shaded with wvertical lines (Si, Sz and Ss), Eqg is

locally asymptotically; in regions shaded with southwest-northeast lines (Sg, S7
and Sg), Eao is locally asymptotically stable. In these six regions, budding virus
outcompetes. Similarly, in the regions shaded with horizontal lines (i.e., Sy and
S4), Fo1 is locally asymptotically stable; in the regions shaded with northwest-
southeast lines (i.e., Sg, S19 and S11), Ep2 is locally asymptotically stable. In these
five regions, lytic virus outcompetes. In the regions with overlap shadings, there
are two locally asymptotically stable equilibria. For instance, in S13 both F5y and
FEyo are locally asymptotically stable; and in Si3, both F1y and Ey; are locally
asymptotically stable. In these two regions with overlap shadings (S12 and Si3),
in addition to the two locally stable boundary equilibria (E19 and Ep1, or Eo and
Eys) there is also a positive equilibrium Ess whose stability is undetermined. In the
region Sy, the disease-free equilibrium FEj is locally asymptotically stable. Table 3
summarizes the situations in these regions.

In Fig. 1-(b), op < or. As is shown in this figure, existence and stability of
equilibria are the same as Fig. 1-(a) in all regions other than S5, S5 and S, the
situation of which is shown in Table 4: in both regions S75 and Si3 there is no stable
equilibrium except the positive equilibrium Fss whose stability is undetermined.
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, when np > nr:

TABLE 3. Stability regions of the equilibria corresponding to Fig.

1-(a)

Region | Existence L.AS. Possibly S.
So Eo Eo -
S1 Ep, E1o E1o -
So Ey, En Eo1 -
Ss Eo, Eio, Eo1 E1o -
Sy Ey, Eo1, E1o Eo1 -
Ss Eo, Eo1, E10, Eoz2 E1o -
Se Eo, E10, E20 Eso -
St Eo, E10, Eo1, E20 E2o -
Ss Eo, E10, Eo1, E20, Eo2 Eso —
So Eo, Eo1, Eo2 Eoz -
S10 Eo, Eo1, E10, Eo2 Eo2 -
S11 Eo, Eo1, E10, Eo2,E20 Eo2 -
S12 Ey, Eo1, E10, Eoz2, E22 E10, Eo2 | Eo2
S13 Eo, E10, Fo1, E20, Eo2, Foo | E20, Eo2 | Fa2

TABLE 4. Stability regions of the equilibria corresponding to Fig.

1-(b)
Region | Existence L.A.S. | Possibly S.
S5 Eo, Fo1, E10, E20 Eo1 -
S12 Eo, Eo1, E10, E20, Eo22 - Eoo
S13 Eo, Fio, Fo1, E20, Eo2, F22 | — Eao

Fig. 1-(c) covers the case op = or. Comparing Fig. 1-(c) with Fig. 1-(a) and Fig.
1-(b), there is no region S5, S12 and Si3. The existence and stability of equilibria
in all other regions remain the same as Fig. 1-(a) and Fig. 1-(b).

By symmetry, we have Fig. 2 for the case ng < 1y which is parallel to Fig. 1.
Tables parallel to Table 3 and Table 4 can be drawn but are omitted here.

If ng = 1, (see Fig. 3), the positive equilibrium Ess does not exist. Furthermore,
there are no regions Sio and S13. The properties of equilibria in all other regions
are same as Fig. 1-(a) for Fig. 3-(a), Fig 1-(b) for Fig. 3-(b), Fig. 1-(c) for Fig.

3-(c).
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From the above analysis, we know that if p < min{ng,n.}, the antibody cannot
establish and the dynamics of the model (3) are determined by basic reproductive
ratios Rg) and R(LO). If Rg) > max{1, R(LO)}, the budding strategy is advantageous
over the lytic strategy; if R(LO) > max{1, Rg)}, the lytic strategy is advantageous. If
max{RS_t?)7 R(O)} < 1, neither strategy will succeed since both strains will eventually

go to extinction.

If p > np or p > nr, antibody may have effect on the dynamics, depending on
the antibody mediated reproductive ratios Rg) and R(Ll). If p > max{np,n.} and
max{Rg),R(l)} < 1, the dynamical behavior of the model also only depends on

the basic reproductive ratios RSBO) and R(LO). If Rg) > 1 or RS) > 1, antibody will
affect the dynamics, since there exists the stable equilibrium FEsg or Egps or Fos.
We also see from Fig. 3 that if the neutralizing capacities of the antibodies for
budding and lytic viruses are the same (i.e., ng = n1.), the evolutionary dominance
of budding or lytic virus is also determined by the basic reproductive ratios Rg))
and RL0 , regardless of p < min{np,n} or p > min{ng,n.}, in the sense that when
R(O) > max{1, R! )} then Fy or Eyg is locally asymptotically stable, implying that



DYNAMICS OF EVOLUTIONARY COMPETITION 1107

budding virus can survive. Similarly, if R(LO) > max{l,Rg)}, then Egy or Eys is
locally asymptotically stable.

5. Influence of antibody effect on the evolutionary competition between
budding and lytic strategies. From the above results on the dynamics of the
model (3), we see that the impact of the production/release strategies for new
virions is reflected by the dependence of the reproductive ratios on Kg and K, the
burst sizes of budding virus and lysis virus under the respective production/release
strategies represented by vg(a) and v (a) and the initial releasing time 75 and 77,.
In this section, we consider two particular forms for the release strategy functions
vg(a) and yp(a), by which we hope to obtain more information on the impact of
antibody and the release strategy. To this end, we assume that the total number of
virions replicated from an infected cell without considering cell death is the same
for all strategies, that is,

/ vg(a)da :/ vr(a)da = N (a constant). (22)
TB TL

The first possible candidate for the viral production kernel function is the one
used in [10] which has the form

mi (1 — e‘m"‘(“_ﬂ) ifa >,
= . 2

v(a) { 0 if a<T. (23)
Here mq controls how rapidly the saturation level m; is reached, while 7 > 0 is the
initial releasing time. For this production kernel, the constraint equation

*

/T ~v(a)da = N, (24)

defines a trade-off relation of 7, my and mo, which is

1 .
m (7‘* -7+ — (e—mﬂf - 1)) =N, (25)

ma

or equivalently,
N mo

mo(T* —7) + (eiW(T**T) - 1) .

Fig. 4 demonstrates the strategy function v(a) with N = 100 and 7 = 30 fixed
and m; determined by the trade-off equation (26) for some values of mg and 7. As
is shown in Fig. 4, larger moy will make v(a) to approach the saturation level my
faster. Smaller 7 represents the budding strategy and larger 7 accounts for lytic
strategy.

Another candidate for v(a) has the following form which was used in [1]:

ki(a —71)
v(a) =14 ky+(a—7)
0

i >
ifa>T, (27)

ifa <.

This function is not monotone, and it has the maximum k; /(2vkz) at a = 7+ /ka.
Here ko determines how rapidly the maximum is reached. For this function, the

calculation gives
™ k * 2
/T v(a)da = ?1 In (1 + (7—]{:27—)) ;
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FIGURE 4. 7(a) function given by (23) under the constraint (26),
with N =100, 7* = 30. mg = 0.5in (a) and mg = 2in (b); different
curves correspond to different values of 7: 7 = 5,10, 15, 20, 25.
Smaller 7 represents the budding virus and large 7 accounts for
lytic virus.

thus, the constraint (24) reads
2N
=2\’
In (1 + =% )
Similarly, Fig. 5 shows the behavior of v(a) given by (27) for some values of the
parameters. As is in Fig. 4, we also fix N = 100 and 7 = 30. ko is fixed at ko = 2
in Fig. 5-(a) and at ks = 20 in Fig. 5-(b), the plots are for 7 = 5,10, 15,20, 25
respectively with k1 determined by (28). We can see from Fig. 5 that with small ko,
v(a) reaches the maximum rapidly. Furthermore, for small 7, there is a small surge
in viral production with a subsequent long period of low level viral production;

in contrast, for large 7, there is a big surge in viral production. Again, small 7
accounts for the scenario of budding strategy while large 7 explains lytic strategy.

ky = (28)

30 - 30
=25 =25
25 25
20 =20 1 20
= =15 =
L 15( 15 =10 =15 =20
] =15
10 \ 10 T:5 T:lO
5 5
—
0 0
5 10 15 20 25 30 5 10 15 20 25 30
a a

(a) (b)

FIGURE 5. ~(a) function given by (27) under the constraint (28)
with N = 100 and 7% = 30 fixed. k2 = 2 in (a) and k2 = 20
in (b); different curves correspond to values of 7 = 5,10, 15, 20, 25
respectively. Small 7 accounts for budding strategy and large 7
explains lytic strategy.
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For the above two concrete forms of y(a), if we further assume that the death
rate of infected cells is constant: dp«(a) = dp+, we can calculate the total number
of new virions produced/released by an infected cell under the strategy v(a) as

Nmsy [m2 (ede*-r _ e*dT*T*) _ dT*e*dT*T* 4 dT*efmz(‘r*f-r)de*T*}

K(T) = dp- (m2 + dT*) [mQ(T* _ T) n e—ma(T*—T) _ 1] 5 (29)

for y(a) given by (23), and

INe dr*T foT -7 inaz e—dr=adq
In (1+ 5
for v(a) given by (27). One can explore the dependence of K(7) on 7, as well as

on mo and ks, to obtain more information. For example, numeric plots show that
these two functions are both decreasing in 7 (see Fig. 6).

K(r) = (30)

100 100
d-=0.001 d_-=0.001
T T
gof — 80
d-=0.01 d-=0.01
__ 60 __ 60
E e
X X

40% 40\%

20’\"1’:0'1\ 20
l—d.-=0.3 ~d:=0.3

0 0
5 10 15 20 25 30 5 10 15 20 25 30

T T

() (b)

FIGURE 6. Burst size K (7), with viral production kernel y(a) given
by (23) in (a) and y(a) given by (27) in (b). N = 100, 7* = 30,
ks = 2 and mg = 2 are fixed and dp- taking different values.

When dr+(a) is not constant, it is generally difficult to obtain an explicit formula
for K, but numerical calculation can give some information. To illustrate this, we
consider the following death rate function proposed in [10]:

do a < Ty,
drs = 31
T (CL) {50 + 61 (1 - 6762(&77’0)) a> To, ( )

where g is the background death rate, 7y is the delay between infection and the on-
set of cell-mediated killing or the beginning of cell death due to the viral cytopathic
effects, dg + 91 is the maximal death rate and do controls how quickly it approaches
the saturation level. Fig. 7 shows some plots of this function for some parameter
values.

For this death function, if 79 < 7, the burst size reads

K(r) = [ ata)e i i ©gq = s [ A(aye [Ortover e ]y,
T T (32)

7o o [T _ ag 3L o—d2(a=70)
K(T) :/ ,y(a)ef&)ada_'_e&'ro-‘ri/ 'y(a)e [(6g+61) +5; 0 ]da (33)
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FIGURE 7. The death rate function dp«(a) of infected cells when
do = 0.02, 41 = 0.6, and 19 = 5 are fixed and d5 taking 0.05, 0.1
and 0.5 respectively.

Numeric plots in Fig. 8 and Fig. 9 also show how the values of 7 and 02 affect
K(7), e.g., K(7) is indeed decreasing in both 7 and ds.

K(1)
K(®)

FIGURE 8. The burst size K(7) when death rate function is given
by (31): (a) with viral production kernel (23); (b) with viral pro-
duction kernel (27). N =100, 7* = 30, k3 = 2 and 79 = 5.

The above framework enables us to compare the burst sizes Kg and K, when the
strategies vp(a) and 7y, (a) have the same form of either (23) or (27). For example,
suppose

oy (1 — e’m2(a7'”3)) if a > 7p,

’YB(a)_{ 0 if a < 7p;
(34)

(a) = my (1 — e‘mQ(“_TL)) if a > 1,

M= 0 if a < 71p,

where 75 < 7. If the infected cells have the same death rate for both virus, i.e.,
dTE ((l) = dTZ (a), then

/ v(a)e” I3 dry (§)d5da > / vr(a)e” Jo dry (ﬁ)dﬁda’ (35)

B TL
that is, Kp > K. If we further assume that the budding virus and lytic virus
have the same infection rate, Sg = 1, then R%)) > Rg)) holds, implying that the
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K(T)

() (b)

FIGURE 9. The burst sizes, K(7), with (a) viral production kernel
(23), (b) viral production kernel (27), are decreasing functions of 7.
When N =100, 7* = 30, k3 = 2, 79 = 10, and death rate function
(31).

budding strategy would have evolutionary advantage and would be favored. If the
neutralization capacity of the antibodies against budding virus is larger than that
of lytic virus, ng > nr, then op > o assuming also that S = B

From the bifurcation diagram Fig. 1 and Table 3, we see that lytic virus can
survive if the basic reproductive ratio satisfies

R(LO) > max{l,min {Rg)),Rg))nL +(1+o05B) (1 — 77L) }} )
B B

Similarly, budding virus can survive if

Rg) > max {Lmin {R(LO),R(LO)UB +(1+4+o01) <1 - nB) }} .
L 1L

Both viruses can survive, if R(LO) < Rg]) and

RO 4 (1+0p) (1—“) <RV <« RO 1 (14 0p) <1—"L>.
nB nB nB nB

With the assumption that dr; = dr; and (22), we also have (35) and further, Rg) >
R(LO) if B = Br,. Moreover, from Fig. 1, we see that lytic virus should have very high

basic reproductive ratio in order to survive, say REO) >(1+o0p)(1 - ZTLs) + %REBO)

(the equilibrium FEjys is stable, in region S1; where Rg) > R(LO)). From Fig. 2, we
know that if n;, > npg, the lytic virus cannot survive, since Rg) > R(LO) (both Ejg
and Fy are unstable).

We see that if the neutralization capacities of antibodies against budding and
lytic virus are different, the dynamical behavior is not only determined by the basic
reproductive ratios Rg) and Rg)), but also by other parameters measuring antibody
effects, such as ng, nr, op and or.

6. Discussion and conclusion. In this paper, proposed and analyzed is a math-
ematical model with distributed delays that describe the competition of budding
and lytic virus within a host. Budding virus is featured by a longer release period
of new virions, while lytic virus is characterized by a long accumulation period but
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a shorter release period of new virions. These motivate us to use the infection age a
and an age structured model to govern the populations of the target cell and virus.
Two viral release strategies are distinguished by two beginning ages of viral release,
7 for budding and 7, for lytic, as well as by two viral production functions, vg
and vr,.

We have analyzed the dynamical behavior of the model (3). More specifically,
we studied the global asymptotical stability of the infection-free equilibrium FEp;
and we have also established local asymptotical stability of Ey1, E1g, Eg2 and Eq
which accounts for a scenario that among the two viruses, only one can survive
within the host. The local stability depends on RSBO) and R(LO)7 the respective basic

reproductive ratios in the absence of antibody, and on Rg) and R(Ll), the respective
reproductive ratios in the presence of antibody. If p < np and p < np, there are
only three equilibrium Fy, Eoi, and Ejp (except the equilibrium line E), whose
stability are determined by basic reproductive ratios Rg) and Rf). If RSBO) <1
and R(LO) < 1, Ey is locally asymptotically stable; if Rg)) > 1 and RSBO) > R(LO),
FEj1 is locally asymptotically stable; if Rf) > 1 and Rg)) > Rg), Ey; is locally
asymptotically stable. In this case, the antibody does not have any effect on the
long-term dynamics. However, when p > np and/or p > 7, the antibody will
have effect on the dynamical behavior of the model. If ng = nr, that is, the
neutralization capacity of antibody is the same for both budding and lytic viruses,
then, whether the budding virus or the lytic virus can survive depends on the basic
reproductive ratios RSBO) and R(LO) (see Fig. 3). Yet, if ng > ng or np < nr, the
positive equilibrium occurs in some regions in the R%,])—R(LO) plane. Bistability may
arise in these regions. For example, in Fig. 1, in region Si2, both E1¢ and Eyo are
locally stable; and in region Si3, both Eyo and Esg are locally stable.

We have considered two concrete forms of functions for the viral production ker-
nel, as a function of the infection age. To study the evolutionary competition of
budding and lysis strategies, we assume that the total amount of virions replicated
during the lifespan of an infected cell is the same for both strains, without consid-
ering the release procedure and cell death. Under such a circumstance, the burst
size of the budding virus is greater than that of the lytic virus (i.e., K > KJ)
provided that dT}; = dTL*' If the budding virus and lytic virus have a same infection

rate, Sp = B, then Rg) > R(LO) always holds. This means that if the rate of viral
production, the infected cell lifespan and the neutralizing capacity of the antibodies
were the same for the budding and lytic viruses, the budding virus would outcom-
pete the lytic virus. In this case, budding strategy would have an evolutionary
advantage. If the neutralization capacities of the antibodies against the budding
virus and lytic virus are different, then the lytic virus can survive as long as the
reproductive ratio Rg)) is very high.

Using a diffusion model for virus and antibody, Komarova [8] observed that if
the production rate of the virions and the efficacy of the antibodies were the same
for a budding and a lytic virus, the lytic virus would always be significantly less
efficient in spreading, and thus the lytic strategy would be evolutionary disadvan-
tageous. Lytic virus can be competitive against budding virus if the antibodies are
less effective against lytic virions than they are against budding virions. This is
because the effect of antibody flooding increases the rate of spread of lytic virions.
In this work, we do not consider the diffusion effect of antibodies; instead, we use
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ordinary differential equation model with distributed delays accounting for the

release strategies. Our model can also predict a possibility that lytic virus may have

an

evolutionary advantage when the efficacies of antibodies are different for the two

viruses. Thus this work offers an alternative view point for the scenario that a lytic
virus can also outcompete budding virus under certain circumstances.
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