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Abstract: Motivated by an age-structured population model over two patches that assumes constant
dispersal rates, we derive a modified model that allows density-dependent dispersal, which contains
both nonlinear dispersal terms and delayed non-local birth terms resulted from the mobility of the
immature individuals between the patches. A biologically meaningful assumption that the dispersal
rate during the immature period depends only on the mature population enables us investigate the
model theoretically. Well-posedness is confirmed, criteria for existence of a positive equilibrium are
obtained, threshold for extinction/persistence is established. Also addressed are a positive invariant
set and global convergence of solutions under certain conditions. Although the levels of the density-
dependent dispersals play no role in determining extinction/persistence, our numerical results show
that they can affect, when the population is persistent, the long term dynamics including the temporal-
spatial patterns and the final population sizes.
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1. Introduction

Among the various features for population dynamics of a single species are the heterogeneity of
different habitats for the species and the age structure of species . Due to some natural barriers such
as rivers and mountains, man-made barriers such as buildings and highways, and the local habitation
of insects and small animals, a patchy environment is often considered in population models. Ran-

http://http://www.aimspress.com/journal/MBE
http://dx.doi.org/10.3934/mbe.2019251


4977

dom migrations betweens patches are often assumed which adopts constant dispersal rates between
patches. However, for many species, their intention of dispersal is heavily influenced by the population
distribution among the patches and the variance of resources in all patches. This is because individu-
als typically seek habitats with abundant sources and mates and flee from the threat of predators [1].
On the other hand, most species have a clear and well-defined age-structure consisting of immature
(juvenile) and mature (adult) stages, and behave differently at different stages. Therefore, it is vital
to explore the effects of density dependent dispersal rates on population dynamics that involve both
heterogeneity among habitats and the age structure.

In [2], Levin proposed a two-patch model to explore the spatial heterogeneity of a single species
population. In [3], the authors systematically developed age-structured population models to describe
the evolution of populations over multiple life stages. Combining the two aspects in [2] and [3] and
assuming constant dispersal rates between patches, So et. al. [4] derived a system of delayed differ-
ential equations (DDEs) to describe the adult populations of a single species living on two patches;
and by analyzing the derived model, they were able to illustrate some effect of the immature death rate
on global dynamics. In subsequent studies in [5, 6, 7] on the model assuming identical patches, rich
dynamics including Hopf bifurcation, synchronized periodic oscillations and unstable phase-locked
oscillations were obtained by applying local bifurcation theory to the DDE model; and global conver-
gence to the trivial state or a positive homogeneous state was established under certain conditions in
[6]. A recent study [8] examined the model with two general patches and three typical birth functions
(linear, Ricker and Allee functions). For these types of birth function and in two patches, the author
investigated the extinction and persistence of the species under consideration, the boundedness of the
solutions to the model, and certain attractors of the model system.

In reality, the mechanisms of dispersion/migration of many species can be very complicated, and
constant dispersal rate would be too simple and too ideal. In [1] the authors introduced an adap-
tion mechanism of dispersion in a predator-prey model by assuming that according dispersal rates are
dependent of the population densities; more specifically, they assumed that a higher density of prey
population in a patch results in a lower migration rate of predators in the same patch, and a prey tends
to flee from the regions with a high density of predators. They incorporated adaptive migration with
multiple timescales, and numerically observed co-dimension two Bautin bifurcation. Recently, the
authors in [9, 10, 11] constructed some mathematical models to examine the adaptive dispersal rates
of predator-prey populations and compared the adaptive dispersal rate of competitive species between
their habitats. The authors in [9] proposed a patch payoff concept to describe adaptive dispersal; this
concept entails assuming that the net movement between patches is always toward the patch with the
higher per capita growth rate. In [10, 11], the authors described the fitness of individuals according
to the local growth rate and assumed that each individual tends to move to a patch with higher fit-
ness. By analyzing the local stability of equilibria, they obtained some results that can hardly occur in
patch models with constant dispersal rates, such as an adaption-induced change in persistence patterns
[10, 11], oscillations and Neimark-Sacker bifurcation [9]. The terms of adaptive dispersal typically re-
sult in complex nonlinearity, and hence, the global dynamics remains an open and challenging problem
in the above mentioned three studies.

Because of the limitation in resources, biological species tend to leave a crowded habitat. In this
study, we incorporate a density-dependent dispersal strategy into the prototypical age-structured model
proposed in [3]. Motivated by and following the derivation of the model in [4], we derive a DDE model
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for the adult population in the case of density dependent dispersal. In contrast to the model in [4], there
are two additional difficulties in theoretically studying this new DDE model: the nonlinear instan-
taneous dispersal terms and the nonlinear delayed birth terms mediated by the nonlinear dispersals.
Allowing a non-monotone birth function such as the Ricker or Allee functions is another common
challenge in population models.

Global dynamics of a DDE system is generally very difficult to investigate, even in a scalar DDE
( see, e.g., [12, 13, 14]). The authors in [12, 13] used a domain decomposition method to study
mono-stability and bi-stability in scaler DDEs respectively, and obtained some nice results, including
a Poincaré-Bendixson type result, heteroclinic orbits, and basins of attraction. This method generally
fails for systems of more than one DDE, and hence, the convergent dynamics in a two-variable DDE
system is still a hard problem, especially when it involves a non-monotone feedback. Among the
known attempts, Xu [6] investigated a population model in two identical patches and attacked this
problem by seeking an attractor for the system and applying the monotone dynamical system theory;
and for a species living in a general patchy environment with heterogeneity between two patches,
Terry [15] examined the population dynamics of the model with impulsive culling of the adults by
the comparison with certain linear DDE system.

The main goal of this study is to explore the impact of density-dependent migration on the dynam-
ics of an age-structured population model in two heterogeneous patches. In Section 2, we derive our
model which turns out to be a system of DDEs with nonlinearity in the dispersion terms and spatial
non-locality in the delayed nonlinear birth terms. In Section 3, we show well-posedness of the pro-
posed model, and focus on the case with only adult dispersal. In Section 4, by analyzing this model,
we obtain some criteria for the existence of positive equilibrium and determine the uniform persistence
of populations in the two patches. Making use of these results, we discuss how the density-dependent
dispersal affects persistence or extinction of populations. In addition, we investigate the global con-
vergence of the model by dividing the phase space, identifying an attractor for the model system, and
applying the theory of monotone dynamical systems. We also identify a positive invariant set within
which possible sustained oscillations may be induced by the maturation delay. We conclude the paper
by Section 5, in which we present some numerical simulations and offer some discussion of our results.

2. Model derivation

We follow the procedure in [4] to derive our model with density dependent dispersals. Let ui(t, a)
denote the density of a single species at time t (t ≥ 0) of age a (a ≥ 0) on patch i (i = 1, 2). In the case
of density-independent dispersal rates between the patches as considered in [4], by the basic equation
for age structured populations in [3], there hold

∂u1(t, a)
∂t

+
∂u1(t, a)
∂a

= −d1(a)u1(t, a) + D2(a)u2(t, a) − D1(a)u1(t, a)

∂u2(t, a)
∂t

+
∂u2(t, a)
∂a

= −d2(a)u2(t, a) + D1(a)u1(t, a) − D2(a)u2(t, a).
(2.1)

Here di(a) is the death rate of the individuals of age a in patch i, and D j(a) denotes the dispersal rate of
the species of age a from patch j to patch i, for 1 ≤ j , i ≤ 2. So et. al. [4] considered two age stages:
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immatures and matures, and assumed that

di(a) =

{
di,I(a) = dI(a), for 0 ≤ a ≤ r,
di,M(a) = di,m, for a > r,

(2.2)

and

Di(a) =

{
Di,I(a) = DI(a), for 0 ≤ a ≤ r,
Di,M(a) = Di,m, for a > r,

(2.3)

where r ≥ 0 denotes the maturation age, I and M stand for immature and mature respectively. Let wi(t)
be the total number of adults at time t on patch i, that is,

wi(t) =

∫ ∞

r
ui(t, a)da.

Noting that ui(t,∞) = 0 and that only adults produce and hence

ui(t, 0) = bi(wi(t)), (2.4)

where bi is a birth function of the population on the i-th patch, So et. al. derived the following system
in [4] for the adult populations

dw1(t)
dt

= −d1,mw1(t) + D2,mw2(t) − D1,mw1(t)

+σ

[
1 −

∫ r

0
e−

∫ r
θ

D̂(a)daD1(θ)dθ
]

b1(w1(t − r))

+σ

[∫ r

0
e−

∫ r
θ

D̂(a)daD2(θ)dθ
]

b2(w2(t − r)),

dw2(t)
dt

= −d2,mw1(t) + D1,mw2(t) − D2,mw1(t) (2.5)

+σ

[
1 −

∫ r

0
e−

∫ r
θ

D̂(a)daD2(θ)dθ
]

b2(w2(t − r))

+σ

[∫ r

0
e−

∫ r
θ

D̂(a)daD1(θ)dθ
]

b1(w1(t − r)),

where σ = e−
∫ r

0 dI (a)da and D̂(a) = D1(a) + D2(a).
Now we modify (2.1) by incorporating density dependent dispersion between patches. In general,

the dispersal rate of individuals may depend on the population of all ages. For simplicity of mathemat-
ics, in this paper we only consider a scenario that the dispersal rate of individuals depend only on the
mature population and this leads to the following revision of (2.1):

∂u1(t, a)
∂t

+
∂u1(t, a)
∂a

= −d1(a)u1(t, a) + D̃2(a,w2(t))u2(t, a) − D̃1(a,w1(t))u1(t, a)

∂u2(t, a)
∂t

+
∂u2(t, a)
∂a

= −d2(a)u2(t, a) + D̃1(a,w1(t))u1(t, a) − D̃2(a,w2(t))u2(t, a),
(2.6)

where
D̃i(a,wi) = Di(a) fi(wi), i = 1, 2, (2.7)
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with the functions fi satisfying

fi ∈ C1 and f ′i (w) ≥ 0 for w ≥ 0, fi(0) = 1, lim
w→∞

fi(w) = 1 + ηi, i = 1, 2. (2.8)

Such a scenario can be justified as below. Firstly, for many species, each single mature individual re-
produces a fixed numbers of offsprings. For examples, a couple of mature shorebirds lay fixed number
of eggs in a clutch and then hatch and breed them [16, 17]; some particular species of geckos and
lizards also lay fixed number of eggs to maximize their reproductive success [18]. For such a species,
it is reasonable to assume that the population at age a is proportional to the mature population. Sec-
ondly, the density-dependent dispersal is proposed to investigate the strategy of dispersing toward a
relatively abundant resource, and many species compete for resources mainly for their mature indi-
viduals because the immature individuals consume relatively little or none resource directly but obtain
all nutrition from their raisers. With the above two considerations, the dispersal rate given by (2.7) is
reasonable for such species.

The value of ηi ≥ 0 in (2.8) represents the strength of adaptive dispersal in patch i. We call Di(a)
and D̃i(a,wi) the intrinsic and adaptive dispersal rates respectively. When η1 = η2 = 0, (2.6) re-
duces to (2.1) reflecting density-independent dispersal rates. In this work, we consider (2.6) with the
assumptions (2.2), (2.3) and the typical function

fi(w) = 1 +
ηiw

1 + w
, for w ≥ 0.

By integrating (2.6) with respect to a from r to∞ and making use of the fact ui(t,∞) = 0, we obtain

dw1(t)
dt

= u1(t, r) − d1,mw1(t) + D2,m f2(w2(t))w2(t) − D1,m f1(w1(t))w1(t),

dw2(t)
dt

= u2(t, r) − d2,mw1(t) + D1,mw f1(w1(t))2(t) − D2,m f2(w2(t))w1(t).
(2.9)

To describe ui(t, r) in terms of the adult populations, we fix s and consider the function

V s
i (t) := ui(t, t − s), for s ≤ t ≤ s + r and i = 1, 2.

From (2.6),

dV s
i (t)

dt
= −di(t − s)V s

i (t) + D j(t − s) f j(w j(t))V s
j (t) − Di(t − s) fi(wi(t))V s

i (t) (2.10)

for s ≤ t ≤ s + r and 1 ≤ i , j ≤ 2. Since di(t − s) = dI(t − s) for i = 1, 2 and s ≤ t ≤ s + r, we have

d
dt

[V s
1(t) + V s

2(t)] = −dI(t − s)[V s
1(t) + V s

2(t)],

and then, by (2.4),
V s

1(t) + V s
2(t) = e−

∫ t−s
0 dI (a)da[b1(w1(s)) + b2(w2(s))].

For s ≤ t ≤ s + r, we rewrite (2.10) as

dV s
i (t)

dt
= −dI(t − s)V s

i (t) + D j(t − s) f j(w j(t))[V s
i (t) + V s

j (t)]

− [Di(t − s) fi(wi(t)) + D j(t − s) f j(w j(t))]V s
i (t)

= −K s(t − s)V s
i (t) + D j(t − s) f j(w j(t))e−

∫ t−s
0 dI (a)da[bi(wi(s)) + b j(w j(s))],

(2.11)
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where K s(a) = dI(a) + Di(a) fi(wi(a + s)) + D j(a) f j(w j(a + s)). Solving (2.11), we obtain

V s
i (t) = e−

∫ t
s K s(θ−s)dθV s

i (s)

+

∫ t

s
e−

∫ t
ξ

K s(θ−s)dθD j(ξ − s) f j(w j(ξ))e−
∫ ξ−s

0 dI (a)dadξ[bi(wi(s)) + b j(w j(s))].

Thus,

ui(t, r) = V t−r
i (t)

= e−
∫ t

t−r Kt−r(θ−t+r)dθbi(wi(t − r))

+

∫ t

t−r
e−

∫ t
ξ

Kt−r(θ−t+r)dθD j(ξ − t + r) f j(w j(ξ))e−
∫ ξ−t+r

0 dI (a)dadξ ×

[bi(wi(t − r)) + b j(w j(t − r))]

= e−
∫ r

0 [dI (a)+Γt−r(a)]dabi(wi(t − r)) + e−
∫ r

0 dI (a)da ×∫ r

0

{
e−

∫ r
θ

Γt−r(a)daD j(θ) f j(w j(θ + t − r))
}

dθ[bi(wi(t − r)) + b j(w j(t − r))], (2.12)

where
Γs(a) := D1(a) f1(w1(a + s)) + D2(a) f2(w2(a + s)).

In addition, ∫ r

0

{
e−

∫ r
θ

Γt−r(a)daD j(θ) f j(w j(θ + t − r))
}

dθ

=
[
e−

∫ r
θ

Γt−r(a)da
]θ=r

θ=0
−

∫ r

0

{
e−

∫ r
θ

Γt−r(a)daDi(θ) fi(wi(θ + t − r))
}

dθ

= 1 − e−
∫ r

0 Γt−r(a)da −

∫ r

0

{
e−

∫ r
θ

Γt−r(a)daDi(θ) fi(wi(θ + t − r))
}

dθ.

Combining this with (2.12), we have

ui(t, r) = σ

{
1 −

∫ r

0
e−

∫ r
θ

Γt−r(a)daDi(θ) fi(wi(θ + t − r))dθ
}

bi(wi(t − r))

+σ

∫ r

0
e−

∫ r
θ

Γt−r(a)daD j(θ) f j(w j(θ + t − r))dθb j(wi(t − r)),

with σ = exp(−
∫ r

0
dI(a) da) as before. Plugging this into (2.9), we finally obtain the following system

dw1(t)
dt

= −d1,mw1(t) + D2,m f2(w2(t))w2(t) − D1,m f1(w1(t))w1(t) + Λ1(w1t,w2t),

dw2(t)
dt

= −d2,mw2(t) + D1,m f1(w1(t))w2(t) − D2,m f2(w2(t))w2(t) + Λ2(w1t,w2t),
(2.13)

where wit ∈ C([−r, 0],R)→ R is defined by wit(θ) = wi(t + θ) for θ ∈ [−r, 0], i = 1, 2, and

Λi(w1t,w2t) = σ

[
1 −

∫ r

0
e−

∫ r
θ

Γt−r(a)daDi(θ) fi(wi(θ + t − r))dθ
]

bi(wi(t − r))

+σ

[∫ r

0
e−

∫ r
θ

Γt−r(a)daD j(θ) f j(w j(θ + t − r))dθ
]

b j(w j(t − r)), 1 ≤ i , j ≤ 2.
(2.14)
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Here bi(·) : R+ → R+, i = 1, 2, are still the birth functions which are assumed to be continuously
differentiable. Depending on the particular species, they may have different forms. Comparing with
(2.5), we note that both instantaneous and delayed dispersal terms have been modified in (2.13) by
nonlinear functions fi(wi), i = 1, 2, representing the density dependent adaptive dispersal strategy.

3. Well-posedness of the model

The model system (2.13) is a system of delay differential equations, which is associated with the
phase space C := C([−r, 0],R2). By the fundamental theory of functional differential equations (see,
e.g., [19]) or directly by an argument of steps, one knows that with the initial condition

w0 = (w10,w20) = φ = (φ1, φ2) ∈ C,

(2.13) has a unique solution w(t) = (w1(t),w2(t)) for t > 0. Next, we will show that if the initial
functions φ1 and φ2 are nonnegative, that is,

w0 = φ = (φ1, φ2) ∈ C+ := {φ ∈ C; φ1(θ) ≥ 0, φ2(θ) ≥ 0, θ ∈ [−r, 0]},

then the unique solution also remains nonnegative; moreover, if the birth function is bounded, then the
solution is bounded.

Lemma 3.1. If φ ∈ C+, then the solution of (2.13) remains non-negative for all t ≥ 0.

Proof. By the non-negativity of the functions fi(·) and bi(·), i = 1, 2, [Theorem 2.1, P81] in [20]
applies, leading to the conclusion of the lemma. �

Lemma 3.2. Assume that the birth functions bi(·), i = 1, 2, are bounded and let φ ∈ C+. Then the
corresponding solution of (2.13) is bounded.

Proof. Let B = sup{bi(u); u ∈ R+, i = 1, 2.} and d = min{d1,m, d2,m}. Then the total adult population
W(t) = w1(t) + w2(t), satisfies

dW(t)
dt

= −d1,mw1(t) − d2,mw2(t) + σ[b1(w1(t − r)) + b2(w1(t − r))] ≤ −dW(t) + σB.

This leads to
lim sup

t→∞
W(t) ≤

σB
d
,

implying that W(t) is bounded. This together with the non-negativity of w1(t) and w2(t) then further
implies the boundedness of w1(t) and w2(t), completing the proof. �

In the model system (2.13)-(2.14), the general forms of the dispersion rate functions Di(a) seem
to prevent us from going further in analyzing the mode, due to the occurrence of multiple iterated
integrals. In the sequel, we only consider the following simple case for the dispersion rate functions:

Di(a) =

 Di,I(a) = 0, a ∈ [0, r],
Di,m(a) = Di,m = a positive constant, a ∈ (r,∞).

(3.1)
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With these simple dispersion rate functions, the delayed term (2.14) reduces to

Λi(w1t,w2t) = σbi(wi(t − r)).

Also, the birth functions bi(·) have many choices depending on the particular species. In the rest of this
paper, we will chose the form of the Ricker’s birth function for both bi(·), i = 1, 2:

bi(w) = βiwe−γiw. (3.2)

For the above choices for the birth and dispersion rate functions, the model (2.13) becomes

dw1(t)
dt

= −d1,mw1(t) + D2,m f2(w2(t))w2(t) − D1,m f1(w1(t))w1(t) + σβ1w1(t − r)e−γ1w1(t−r)

dw2(t)
dt

= −d2,mw2(t) + D1,m f1(w1(t))w1(t) − D2,m f2(w2(t))w2(t) + σβ2w2(t − r)e−γ2w2(t−r)
(3.3)

4. Analysis of the simpler version (3.3)

First, we study the equilibria of the system (3.3) which are governed by the following system of
algebraic equations:

L1 : D2,m f2(w2)w2 − d1,mw1 − D1,m f1(w1)w1 + σb1(w1) = 0,
L2 : D1,m f1(w1)w1 − d2,mw2 − D2,m f2(w2)w2 + σb2(w2) = 0. (4.1)

For w ≥ 0 and i = 1, 2, denote

Gi(w) = Di,m fi(w)w, Fi(w) = di,mw + Di,m fi(w)w − σbi(w).

Then (4.1) is equivalent to G j(w j) = Fi(wi) for 1 ≤ i , j ≤ 2. Note that Gi(0) = 0 and limw→∞Gi(w) =

∞ for i = 1, 2. Obviously, each function Gi has an increasing inverse function G−1
i on [0,∞) satisfying

G−1(0) = 0 and limw→∞G−1
i (w) = ∞. Hence, the curve Li in the first quadrant is described by

w j = G−1
j (Fi(wi)) := Hi(wi),

for wi ≥ 0 and Fi(wi) > 0. According to the feature of functions Fi(w), we obtain the following
properties of the curves Li.

Lemma 4.1. The following hold:

(i) if
σβi ≤ di,m + Di,m ,

then the function Hi is increasing on [0,∞) and only has the trivial root w = 0;
(ii) if

di,m + Di,m < σβi ,

then in addition to the trivial root, Hi also has a positive root wr
i > 0 and is strictly increasing on

[wr
i ,∞).
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Proof. First, we explore features of the functions Fi. Write it as Fi(w) = w[hi(w) − ki(w)] where
hi(w) := di,m + Di,m fi(w) is a nondecreasing and ki(w) := σbi(w)/w = σβie−γiw is a nonincreasing.
Thus, if σβi ≤ di,m + Di,m, then hi(0) ≥ ki(0) and Fi(w) = 0 has no positive root and Fi(w) is increasing
on [0,∞); and if di,m + Di,m < σβi, then in addition to the trivial root, Fi(w) = 0 also has an unique
positive root wr

i > 0 and Fi(w) is increasing and positive on [wr
i ,∞) and negative on [0,wr

i ). Now
combining these features of Fi(w) with the properties of G−1

j (·) immediately leads to the assertions on
Hi, completing the proof. �

Lemma 4.2. The graph of Li in the first quadrant admits an asymptote w j = piwi + qi, 1 ≤ i , j ≤ 2,
for some constant qi and

pi :=
di,m + Di,m(ηi + 1)

D j,m(η j + 1)

Proof. In the first quadrant, a point (wi,w j) on the graph of Li obeys

w j

wi
=

di,m + Di,m fi(wi) − σbi(wi)/wi

D j,m f j(w j)
=

di,m + Di,m fi(wi) − σβe−γiwi

D j,m f j(w j)
. (4.2)

Note that limwi→∞ Fi(w) = ∞ and limw→∞G j(w) = ∞. In addition, a point (wi,w j) on the curve Li

satisfies w j → ∞ as wi → ∞. The assertion follows from the above and the form of fi(w), completing
the proof. �

Based on previous results, we discuss existence of positive equilibria in the following.

Theorem 4.1. The system (3.3) always has the trivial equilibrium E0 = (0, 0). In addition, it admits
an unique positive equilibrium when one of the following conditions holds:

(A) σβi ≤ di,m + Di,m for i = 1, 2, and Πk=1,2(dk,m + Dk,m − σβk) < D1,mD2,m;

(B) σβi > di,m + Di,m for i = 1 or 2.

Proof. E0 = (0, 0) is obviously always an equilibrium of (3.3). An non-trivial equilibrium is governed
by

w j = Hi(wi), for 1 ≤ i , j ≤ 2, (4.3)

for wi > 0 with Hi(wi) > 0. Note that each G−1
i is increasing on [0,∞). As explored in Lemma 4.1,

Fi is also increasing on [0,∞) under (A) (respectively on [wr
i ,∞) under (B) ), when Fi(w) = 0 has

one (respectively, two) nonnegative root. Therefore, the function Hi is increasing on [0,∞) under (A)
(respectively on [wr

i ,∞) under (B) ). Next, we discuss the existence of roots to (4.3).
First, we consider the system (3.3) under the criterion(A). From Lemma 4.2, it always holds that

H′1(∞) =
d1,m + D1,m(η1 + 1)

D2,m(η2 + 1)
>

D1,m(η1 + 1)
d2,m + D2,m(η2 + 1)

=
1

H′2(∞)
= (H−1

2 )′(∞), (4.4)

where H′i (∞) := limw→∞ H′i (w). The condition σβi < di,m + Di,m for i = 1, 2 implies that each Fi(w) = 0
only has the trivial root and Fi(w) > 0 for all w > 0, and then the function G−1

i is defined and increasing
on [0,∞). Therefore, each Hi is defined, continuous and increasing on [0,∞). The further condition in
(A),

Πk=1,2(dk,m + Dk,m − σβk) < D1,mD2,m
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is equivalent to
H′1(0) < (H−1

2 )′(0).

Since H1(0) = H−1
2 (0) and H′1(0) < (H−1

2 )′(0), there is a small w̌ > 0 such that H1(w̌) < H−1
2 (w̌).

From H′1(∞) > (H−1
2 )′(∞), there is a large enough ŵ such that H1(ŵ) > H−1

2 (ŵ). Since functions H1

and H−1
2 are continuous on [0,∞), there exists at least one point (w∗1,w

∗
2) in the first quadrant such

that H1(w∗1) = H−1
2 (w∗1) = w∗2, giving a positive root to (4.3). From (4.3) and the monotonicity of

each function Hi, i = 1, 2, the positive equilibrium is unique when it exists. See Figure 1 (a) for a
demonstration of this case.

Assume that the criterion(B) holds only for i = 1 then F1(w) = 0 has two nonnegative roots, 0,
wr

1, and F1(w) > 0 for all w > wr
1. Hence, the function H1 is defined, continuous and increasing on

[wr
1,∞). Note that H1(wr

1) = 0 ≤ (H2)−1(0) < (H2)−1(wr
1) and the fact (4.4) implies a large enough ŵ

such that H1(ŵ) > H−1
2 (ŵ). Similar to the case with (A), but considering [wr

1,∞) as the domain of H1,
there exists a unique positive root to (4.3). See Figure 1 (b) for an illustration of this case. Similarly,
the assertion holds when (B) holds only for i = 2 or for both i = 1, 2. The proof is completed. �
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Figure 1. Graphs of curves w j = Hi(wi), for 1 ≤ i , j ≤ 2.

Theorem 4.2. Consider the system (3.3) and assume that neither(A) nor (B) holds. Then the popula-
tion in (3.3) goes to extinction in both patches, that is, every solution (w1(t),w2(t)) of (3.3) with φ ∈ C+

satisfies limt→∞ wi(t) = 0, for i = 1, 2.

Proof. From (3.3), it holds that

dw1(t)
dt

≤ −d1,mw1(t) + D2,m f2(w2(t))w2(t) − D1,m f1(w1(t))w1(t) + σb̃1(w1(t − r)),

dw2(t)
dt

≤ −d2,mw2(t) + D1,m f1(w1(t))w1(t) − D2,m f2(w2(t))w2(t) + σb̃2(w2(t − r)),

where

b̃i(w) =

{
bi(w), if w ∈ [0, 1/γi],
bi(1/γi), if w ∈ (1/γi,+∞).
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The auxiliary system

dx1(t)
dt

= −d1,mx1(t) + D2,m f2(x2(t))x2(t) − D1,m f1(x1(t))x1(t) + σb̃1(x1(t − r)),

dx2(t)
dt

= −d2,mx2(t) + D1,m f1(x1(t))x1(t) − D2,m f2(x2(t))x2(t) + σb̃2(x2(t − r)), (4.5)

is cooperative and irreducible [20] and admits the unique trivial equilibrium when neither (A) nor
(B) holds. Similar to the proof of Lemma 3.2, the solutions of (4.5) with initial conditions in C+ are
uniformly bounded. From [20, Theorem 5.4.1], each solution of (4.5) converges to the unique trivial
equilibrium, i.e. limt→∞ xi(t) = 0, for i = 1, 2. From the comparison principle [20, Theorem 5.1.1],
wi(t) ≤ xi(t) for t ≥ 0, i = 1, 2, and then it completes the proof. �

Next, we consider permanence of the populations described by (3.3).

Theorem 4.3. Consider the system (3.3) and assume that either (A) or (B) holds. Then (3.3) is uni-
formly persistent in the sense that there is a positive constant ρ∗ such that every solution (w1(t),w2(t))
of (3.3) with φ ∈ C+ \ {0̂}, where k̂ denotes the constant function on [−τ, 0] taking value k, satisfies

lim inf
t→∞

wi(t) ≥ ρ∗, for i = 1, 2.

Proof. First, we suppose that (A) holds. Define

X = C([−r, 0],R2
+),

X0 = {φ = (φ1, φ2) ∈ X with φi , 0̂ for i = 1, 2},
∂X0 = X \ X0 = {φ ∈ X : either φ1 = 0̂ or φ2 = 0̂ }

Obviously, both X and X0 are positive invariant under the semiflow of (3.3) and X \ X0 is relatively
close in X. From Lemma 3.2, system (3.3) is point dissipative. Set

M∂ = {φ ∈ X|Φ(t)φ ∈ ∂X0,∀t ≥ 0},

where Φ(t) is the semiflow generated by (3.3). Then obviously M∂ ⊂ ∂X0. We claim that M∂ = {0̂}. It
is clear that {0̂} ⊂ M∂, so it suffice to show M∂ ⊂ {0̂}. Assume the opposite, there is φ = (φ1, φ2) ∈ M∂

with φ , 0̂. Without loss of generality, we suppose φ1 , 0̂, φ2 = 0̂. (i) If φ1(0) > 0, we have dw2(0)
dt > 0

and then there is a small t0 > 0 such that w2(t) > 0 for t ∈ (0, t0). Since φ1(0) > 0, there is a t1 ≤ t0 such
that w1(t) > 0 for t ∈ (0, t1). Thus, Φ(t)φ ∈ X0 for t ∈ (0, t1), a contradiction to the fact that φ ∈ M∂. (ii)
If φ1(0) = 0 and φ1(−r) > 0, we see that

dw1(0)
dt

= σb1(φ1(−r)) > 0.

From continuity of solutions to (3.3) and φ ∈ C, there is a t2 > 0 such that

dw1(t)
dt

> σb1(φ1(−r))/2 =: K1 > 0,
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for t ∈ [0, t2]. Then w1(t) > K1t, for t ∈ [0, t2]. In addition,

dw2(t)
dt

≥ −d2,mw2(t) − D2,m f2(w2(t))w2(t) + D1,mK1t ≥ −K2w2(t) + D1,mK1t,

where
K2 := max

t∈[0,t2]
{d2,m + D2,m f2(w2(t))},

is finite. By a comparison theorem,

w2(t) ≥ e−K2tw2(0) +

∫ t

0
e−K2tD1,mK1sds > 0,

for t ∈ (0, t2], also a contradiction to φ ∈ M∂. (iii) If φ1(0) = 0 and φ1(−r) = 0, we set r∗ = sup{−θ|θ ∈
[−r, 0], φ1(θ) , 0} < r. Then dw1(t)

dt = 0 and w1(t) = 0 for t ∈ [0, r − r∗]. From the assumption φ2 = 0̂, it
also holds that w2(t) = 0 for t ∈ [0, r−r∗]. Since φ ∈ C, there is a small ε1 > 0 such that φ1(−r∗+ε1) > 0.
Define

ψ(θ) =

{
φ(θ + r − r∗ + ε1), if θ ∈ [−r, r∗ − ε1 − r),
w(θ + r − r∗ + ε1), if θ ∈ [r∗ − ε1 − r, 0],

then ψ2(θ) ≥ 0̂ for θ ∈ [−r, 0] and

ψ1(0) = w1(r − r∗ + ε1) ≥ 0,
ψ1(−r) = φ1(−r∗ + ε1) > 0.

By the comparison principle (for ψ2(θ) ≥ ψ̃2(θ) := 0̂) and previous result (for φ1 = ψ1 and φ2 = ψ̃2), it
yields that ψ < M∂. Note that Φ(t)ψ = Φ(t + r − r∗ + ε1)φ. By the positive invariance of the set M∂, it
leads to φ < M∂, a contradiction again. From the contradictions in all three cases (i)-(iii), we conclude
that M∂ ⊂ {0̂}, and hence M∂ = {0̂} indeed, proving the claim.

From (A), there exist constants 0 < ε2 < 1 and small ρ1 > 0 such that for 0 < ρ < ρ1

ε2σβi < di,m + Di,m fi(ρ), for i = 1, 2,
Πk=1,2(dk,m + Dk,m fk(ρ) − ε2σβk) < D1,mD2,m. (4.6)

For this ε2, there is a small 0 < ρ∗ < ρ1 such that

bi(ξ) ≥ ε2βiξ, for ξ ∈ [0, ρ∗]. (4.7)

Now, we claim that
lim sup

t→∞
max

i
{wi(t)} > ρ∗, for all φ ∈ X0. (4.8)

Suppose, for the sake of contradiction, that there exist an initial condition φ ∈ X0 and a t3 > 0 such that
|wi(t)| ≤ ρ∗, i = 1, 2, for t ≥ t3 − r. From (4.7), for t ≥ t3,

dwi(t)
dt

≥ −di,mwi(t) + D j,mw j(t) − Di,m fi(ρ∗)wi(t) + ε2σβiwi(t − r).

We consider an auxiliary equation

dxi(t)
dt

= −di,mxi(t) + D j,mx j(t) − Di,m fi(ρ∗)xi(t) + ε2σβixi(t − r), (4.9)
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and its associated ordinary differential equation

dyi(t)
dt

= −di,myi(t) + D j,my j(t) − Di,m fi(ρ∗)yi(t) + ε2σβiyi(t). (4.10)

From the comparison theory in [20, Theorem 5.5.1],

Φ̃(t)φ ≤ Φ(t)φ, for t ≥ 0,

where Φ̃(t) is the semiflow of (4.9). In the ordinary differential equation (4.10), the characteristic
equation of the related Jacobian matrix at the trivial equilibrium is

λ2 + [d1,m + d2,m + D1,m f1(ρ∗) + D2,m f2(ρ∗) − ε2σβ1 − ε2σβ2]λ
+ Πk=1,2(dk,m + Dk,m fk(ρ∗) − ε2σβk) − D1,mD2,m = 0.

From (4.6), it admits two roots, λ1 < 0 < λ2, i.e. the stability modulus of (4.10) is positive. Also
note that (4.9) is a cooperative irreducible system. From Theorem 5.5.1 and Corollary 5.5.2 in [20],
the system (4.9) also admits a positive stability modulus associated with a positive eigenvector u. Note
that the semiflow of (3.3) is eventually strong monotone in [0̂, ρ̂∗], see [20, Corollary 5.3.5], and 0̂ is
an equilibrium therein. There exist a t4 > t3 and a small α > 0 such that

0̂ � αû � Φ(t4)φ.

Hence, we have
Φ̃(t)αû ≤ Φ(t)αû � Φ(t + t4)φ,

for t ≥ 0, which is a contradiction to boundedness of the semiflow Φ(t), and this contradiction proves
(4.8).

Obviously, {0̂} is an isolated invariant set in X, and then the set M∂ consists with an acyclic equilib-
rium point. From (4.8), W s(0̂) ∩ X0 = ∅, where W s(0̂) denotes the stable manifold of 0̂. By the per-
sistence theory in [21, Theorem 4.6], the system (3.3) is uniformly persistent with respect to (X0, ∂X0)
and the assertion is proved.

Next, we suppose that (B) holds, i.e. σβi > di,m + Di,m for some i. Then there is a positive constant
ρ2 such that

σβi > di,m + Di,m fi(ρ2) (4.11)

and
dwi(t)

dt
≥ −di,mwi(t) − Di,m fi(ρ2)wi(t) + σbi(wi(t − r)).

for 0 ≤ wi(t) < ρ2. For this i, consider an auxiliary equation

dz(t)
dt

= −di,mz(t) − Di,m fi(ρ2)z(t) + σbi(z(t − r)).

From (4.11), it obviously admits an unique positive equilibrium z∗. According to z∗ ≤ 1/γi or z∗ > 1/γi,
we refer to Proposition 3.2 or Theorem 3.5 in [13] respectively to derive the existence of positive
constants ρ3 < ρ2 and t5 such that z(t) > ρ3 whenever t > t5. The comparison principle in [20, Theorem
5.1.1] implies that wi(t) ≥ z(t) ≥ ρ3 whenever 0 ≤ wi(t) ≤ ρ2. Thus lim inft→∞ wi(t) ≥ ρ3 =: ρ∗i . If, in
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addition, σβ j > d j,m + D j,m for j , i, then we have also lim inft→∞ w j(t) ≥ ρ∗j and the assertion holds
for ρ∗ = min{ρ∗1, ρ

∗
2}. If σβ j ≤ d j,m + D j,m for j , i, then from the equation of w j in (3.3),

dw j(t)
dt

≥ −d j,mw j(t) + Di,m fi(ρ∗i )ρ∗i − D j,m f j(w j(t))w j(t),

for t > t5. Let
F̃ j(w) = d j,mw + D j,m f j(w)w, (4.12)

which is obviously strictly increasing in w ∈ [0,∞) and satisfies F̃ j(w) = 0 and F̃ j(∞) = ∞. Thus,
there is a unique ρ̃∗j > 0 such that F̃ j(ρ̃∗j) = Di,m fi(ρ∗i )ρ∗i . Hence, for t > t5,

dw j(t)
dt

> −F̃ j(ρ̃∗j) + Di,m fi(ρ∗i )ρ∗i = 0,

whenever 0 ≤ w j(t) < ρ̃∗j. Therefore, lim inft→∞ w j(t) ≥ ρ̃∗j, and the assertion holds for ρ∗ :=
min{ρ∗i , ρ̃

∗
j}. �

To demonstrate the convergent dynamics in system (3.3) that involves the non-monotone feedback,
we identify an compact set that is invariant and attracting for (3.3) and in which, (3.3) is monotone
dynamics and hence the monotone dynamical system theory is applicable therein. For convenience of
formulation, we denote w̃i = 1

γi
for i = 1, 2, w̃ = (w̃1, w̃2) and an order interval

I := [0̂, ˆ̃w] = {φ = (φ1, φ2)|φi ∈ C([−r, 0], [0, w̃i])}.

Theorem 4.4. Consider the system (3.3). Suppose that either (A) or (B) holds. Suppose that (w∗1,w
∗
2) ≤

(w̃1, w̃2) and

σb1(w̃1) ≤ F̃1(w̃1) −G2(w̃2),
σb2(w̃2) ≤ F̃2(w̃2) −G1(w̃1), (4.13)

where F̃i is defined in (4.12). Then the positive equilibrium, (w∗1,w
∗
2) attracts all solutions in X, i.e.

limt→∞ wi(t) = w∗i for i = 1, 2.

Proof. Denote, for l ≥ w̃1 + w̃2,

Ωl :=
{
φ = (φ1, φ2)

∣∣∣∣∣∣ φi ∈ C([−r, 0], [0, l − w̃ j]), j , i,
φ1(θ) + φ2(θ) ≤ l for θ ∈ [−r, 0]

}
,

see Figure 2. We claim that each Ωl is positive invariant under (3.3). Except for those on the axes,
there are three segments of the boundary of Ωl,

Bl
1 = {(w1,w2)|w1 = l − w̃2, 0 ≤ w2 ≤ w̃2},

Bl
2 = {(w1,w2)|0 ≤ w1 ≤ w̃1, w2 = l − w̃1},

Bl
3 = {(w1,w2)|w1 + w2 = l, wi ≥ w̃i for i = 1, 2}.

Denote the right side of (3.3) by J = (J1, J2)T , where T indicates the transpose. If φ ∈ Ωl and φ(0) ∈ Bl
1,

then we have

J1(φ) ≤ −d1,m(l − w̃2) + D2,m f2(w̃2)w̃2 − D1,m f1(l − w̃2)(l − w̃2) + σb1(w̃1)
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≤ −d1,mw̃1 + D2,m f2(w̃2)w̃2 − D1,m f1(w̃1)w̃1 + σb1(w̃1)
= −F̃1(w̃1) + G2(w̃2) + σb1(w̃1),
≤ 0,

where the last inequality follows from (4.13). Similarly, the case that φ ∈ Ωl and φ(0) ∈ Bl
2 leads to

J2(φ) ≤ 0. If φ ∈ Ωl and φ(0) ∈ Bl
3, then we have

J1(φ) + J2(φ) = −d1,mφ1(0) − d2,mφ2(0) + σ[b1(φ1(−r)) + b2(φ2(−r))]
≤ −d1,mw̃1 − d2,mw̃2 + σ[b1(w̃1) + b2(w̃2)]
= −F̃1(w̃1) − F̃2(w̃2) + G(w̃1) + G2(w̃2) + σ[b1(w̃1) + b2(w̃2)]
≤ 0.

Combining the result in Lemma 3.1 with [20, Remark 5.2.1], Ωl is positive invariant under the semiflow
of (3.3).

We write l̃ = w̃1+w̃2 and note that liml→l̃ Ωl = I. Next, we prove that I attracts each solution of (3.3).
It suffices to show that the omega limit set of each solution is contained in I. From boundedness in
Lemma 3.2, the solution to (3.3) with initial value φ has a nonempty, compact and positively invariant
omega limit set ω(φ). Define

l0 = inf{l|l ≥ w̃1 + w̃2, such that ω(φ) ⊂ Ωl}.

Then, there exists a ψ = (ψ1, ψ2) ∈ ω(φ) such that ψ(0) ∈ Bl0
1 , B

l0
2 or Bl0

3 . Also note that ϕi(θ) ≤ l0 − w̃ j

for 1 ≤ i , j ≤ j, and ϕ1(θ) + ϕ2(θ) ≤ l0 for each ϕ = (ϕ1, ϕ2) ∈ ω(φ). From the invariance of ω(φ),
there exists a ξ = (ξ1, ξ2) ∈ ω(φ) such that wr(ξ) = ψ. Now, suppose that l0 > l̃. If ψ(0) ∈ Bl0

1 , it holds
that

dw1(r, ξ)
dt

= J1(ψ) ≤ −d1,m(l0 − w̃2) + D2,m f2(w̃2)w̃2 − D1,m f1(l0 − w̃2)(l0 − w̃2) + σb1(w̃1)

< −d1,mw̃1 + D2,m f2(w̃2)w̃2 − D1,m f1(w̃1)w̃1 + σb1(w̃1)
≤ 0,

where the strict inequality follows from l0 > l̃. It implies a t1 < r such that

w1(t1, ξ) > w1(r, ξ) = w1(0, ψ) = l0 − w̃2,

which contradicts to wt1(ξ) ∈ ω(φ) ⊂ Ωl0 . Similarly, the case ψ(0) ∈ Bl0
2 also leads to a contradiction.

If ψ(0) ∈ Bl0
3 , it holds that

dw1(r, ξ)
dt

+
dw1(r, ξ)

dt
= J1(ψ) + J2(ψ)

= −d1,mψ1(0) − d2,mψ2(0) + σ[b1(ψ1(−r)) + b2(ψ2(−r))]
< −d1,mw̃1 − d2,mw̃2 + σ[b1(w̃1) + b2(w̃2)]
≤ 0.

It implies a t2 < r such that

w1(t2, ξ) + w2(t2, ξ) > w1(r, ξ) + w2(r, ξ) = w1(0, ψ) + w2(0, ψ) = l0,
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which contradicts to wt2(ξ) ∈ ω(φ) ⊂ Ωl0 . Therefore, the omega limit set ω(φ) ∈ Ωl̃ = I.
From Theorem 4.3, each omega limit set ω(φ) is in fact contained in I∗ := [ρ̂∗, ˆ̃w] for some ρ∗ > 0.

In addition, we see that (w∗1,w
∗
2) is the unique equilibrium of (3.3) in I∗ and this system is cooperative

and irreducible over the space I∗. By [20, Proposition 5.4.2], the unique equilibrium (w∗1,w
∗
2) attracts

all solutions in I∗, and therefore, it attracts all solutions in X. �

.

.


.


.


Figure 2. Illustraiton of regions I and Ωl, with I being the shaded region and Ωl being the
region bounded by two axes and the dashed line segments.

When (w∗1,w
∗
2) ≤ (w̃1, w̃2) does not hold, numerical simulations (see Section 5) show that it is

possible for (3.3) to have oscillatory solutions. To conclude this section, we establish some estimates
for the dynamics of (3.3) for the case (w∗1,w

∗
2) > (w̃1, w̃2), and identify an invariant set for (3.3) for this

case. To this end, we first have the following lemma.

Lemma 4.3. When (w∗1,w
∗
2) > (w̃1, w̃2), the system

F̃1(q1) −G2(q2) = σb1(w̃1), F̃1(p1) −G2(p2) = σb1(q1),
F̃2(q2) −G1(q1) = σb2(w̃2), F̃2(p2) −G1(p1) = σb2(q2),

(4.14)

has a unique positive solution for (p1, q1, p2, q2). Moreover, there holds the dichotomy: either pi <

w∗i < qi for i = 1, 2, or pi = qi = w∗i = w̃i for i = 1, 2.

Proof. Consider the equation

F̃1(x) −G2(y) = σb1(w̃1),
F̃2(y) −G1(x) = σb2(w̃2),

which is equivalent to

F̃1(x) −G2(y) = σb1(w̃1), (4.15)
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d1,mx + d2,my = σb1(w̃1) + σb2(w̃2) := M.

Substituting y = (M − d1,mx)/d2,m into (4.15) leads to the equation

P(x) := F̃1(x) −G2

(
M − d1,mx

d2,m

)
− σb1(w̃1) = 0.

From the facts that P(0) = −G2( M
d2,m

)−σb1(w̃1) < 0, P( M
d1,m

) = F̃1( M
d1,m

)−σb1(w̃1) > 0 and the continuous
function P is strictly increasing on [0, M

d1,m
], there is a unique positive root satisfying P(q1) = 0, and

thus there are unique q1 and q2 = (M−d1,mqi)/d2,m satisfying the two left equations in (4.14). A similar
argument shows that the two right equations in (4.14) has a unique positive solution (p1, p2).

If w∗i > qi for i = 1, 2, we derive

σ[b1(w∗1) + b2(w∗2)] = d1,mw∗1 + d2,mw∗2 > d1,mq1 + d2,mq2 = σ[b1(w̃1) + b2(w̃2)],

which is a contradiction. If w∗i > qi and w∗j ≤ q j for some i and j , i, then strict monotonicity of
functions F̃i and G j implies

[F̃i(w∗i ) −G j(w∗j)] − [F̃i(qi) −G j(q j)] > 0.

It contradicts to the fact from (4.14),

[F̃i(w∗i ) −G j(w∗j)] − [F̃i(qi) −G j(q j)] = σ[bi(w∗i ) − bi(w̃i)] ≤ 0.

Therefore, w∗i ≤ qi for i = 1, 2.
To show pi ≤ w∗i for i = 1, 2, define the strictly increasing functions

Qi(w) := F̃i(w) −G j

(
σ[b1(q1) + b2(q2)] − di,mw

d j,m

)
.

Then

Qi(w∗i ) = F̃i(w∗i ) −G j

(
w∗j +

σ

d j,m
[b1(q1) + b2(q2) − b1(w∗1) − b2(w∗2)]

)
≥ F̃i(w∗i ) −G j(w∗j) = σbi(w∗i ) ≥ σbi(qi) = Qi(pi).

The strict monotonicity of Qi implies pi ≤ w∗i . From previous argument, we see that either pi < w∗i < qi

for i = 1, 2; or pi = qi = w∗i = w̃i for i = 1, 2. �

We now show that the constants pi, qi in (4.14) can help us estimate all omega limit sets and identify
a positive invariant set for (3.3).

Theorem 4.5. Assume that either (A) or (B) holds and (w∗1,w
∗
2) > (w̃1, w̃2). Let p = (p1, p2) and

q = (q1, q2) be as in Lemma 4.3. Then for each φ ∈ C+, ω(φ) ≤ q̂; moreover, if bi(qi) ≤ bi(pi) for
i = 1, 2, then the set [ p̂, q̂] is positively invariant under the semiflow of (3.3).
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Proof. When wi(t) > qi and w j(t) ≤ q j for 1 ≤ i , j ≤ 2,

dwi(t)
dt

= −F̃i(wi(t)) + G j(w j(t)) + σbi(wi(t − r))

< −F̃i(qi) + G j(q j) + σbi(w̃i) = 0.

When wi(t) > qi for i = 1, 2,

dw1(t)
dt

+
dw2(t)

dt
= −d1,mw1(t) − d2,mw2(t) + σb1(w1(t − r)) + σb2(w2(t − r))

< −d1,mq1 − d2,mq2 + σb1(w̃1) + σb2(w̃2) = 0.

Therefore, it holds that ω(φ) ≤ q̂ for all φ ∈ C.
Suppose that bi(qi) ≤ bi(pi) for i = 1, 2, let φ ∈ [p̂, q̂] and w(t) = (w1(t),w2(t)) be the corresponding

solution with initial function φ. If there is a t1 > 0 such that wi(t1) = pi, then

dwi(t1)
dt

= −F̃i(wi(t1)) + G j(w j(t1)) + σbi(wi(t1 − r))

≥ −F̃i(pi) + G j(p j) + σbi(qi) = 0.

If there is a t2 > 0 such that wi(t2) = qi, then

dwi(t2)
dt

= −F̃i(wi(t2)) + G j(w j(t2)) + σbi(wi(t2 − r))

≤ −F̃i(qi) + G j(q j) + σbi(w̃i) = 0.

By [20, Theorem 5.2.1 and Remark 5.2.1], [p̂, q̂] is positively invariant under the semiflow of (3.3). �

5. Summary and discussion

In this study, we incorporate adaptive dispersal, in the form of density dependent dispersal, into a
two-patch population model with a maturation delay derived in [4] which assumes constant dispersion
rates between patches, leading to a more realistic model. The improved model turns out to be a system
of delay differential equation with spatial non-local birth terms resulted from the dispersals of the
immature individual. The density dependent dispersals not only affect the instantaneous migrations
of the mature population, they also have an impact on the nonlocal birth terms. For mathematical
tractability, we have analyzed the case when the immatures only have constant dispersal rates, adopting
the Ricker’s birth function and a particular form for the density dependent dispersal rate functions.
We have addressed the well-posedness of the model, structure of equilibria, threshold dynamics (in
the sense of extinction and persistence) in terms of the conditions (A) and (B) (see Theorems 4.1-
4.3). When the population is persistent, under a condition accounting for a monotone scenario (i.e., (
w∗1,w

∗
2) < (w̃1, w̃2) ), we have shown that the positive equilibrium is globally attractive; while when this

condition is not satisfied ( i.e., (w∗1,w
∗
2) > (w̃1, w̃2) ), we have established an upper bound for omega

limit sets of solutions and identified an invariant set within which, periodic oscillations may occur.

We remark that surprisingly the threshold conditions A and B for extinction/persistence do not
depend on the ηi’s. However, ηi’s that reflect the level of density dependent dispersals do affect the value
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of the positive equilibrium (w∗1,w
∗
2), and accordingly, affect whether or not the condition (w∗1,w

∗
2) ≤

(w̃1, w̃2) holds. Thus, ηi’s do have an impact on the long time dynamics of the solutions in the case
of persistence. Below we numerically explore such an impact. To this end, we fix d1,m = 0.4,D1,m =

0.6, d2,m = 0.2,D2,m = 0.6, β1 = 7, γ1 = 2, β2 = 4, γ2 = 2, dI(a) ≡ 0.05 and r = 6. Then, by choosing
various combinations for η1 and η2, we may observe different persistent dynamics. Figure 3 shows the
results for three sets of (η1, η2) values, revealing that they may cause stability switch of the positive
equilibrium.
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Figure 3. Adaptive dispersals may induce stability switch: (a) convergence dynamics when
η1 = 1, η2 = 0; (b) varying η2 may cause oscillatory behaviours (η1 = 1, η2 = 1); varying η1

may annihilate oscillations (η1 = 2, η2 = 1).

Since the model is a DDE system, it is not surprising that the large delay r may destroy the stability
of an equilibrium leading to stable periodic solutions with the period depending on the value of r. This
is demonstrated in Figure 4, in which d1,m = 0.45,D1,m = 0.65, d2,m = 0.35,D2,m = 0.55, β1 = 8, γ1 =

2, β2 = 7, γ2 = 2, dI(a) ≡ 0.05, η1 = η2 = 1 and r = 4, 10 respectively. We point out that although the
amplitudes of the oscillations change as r varies, these periodic solutions are contained in the invariant
set [p, q] = [p1, q1] × [p2, q2] (see Section 3) which depends on the value of r since the value of σ in
(4.14) depends on r.
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Figure 4. Globally attracting periodic orbits of (3.3) are contained in the region [pr, qr]. Top:
r = 4; bottom: r = 10.

It was discovered both in a two-patch discrete time competitive model [22] and a diffusion model for
multiple competitive species [23], with random dispersal in spatially varying but temporally constant
environments, that lower dispersal rates are beneficial to the population persistence. Our adoption of a
density-dependent dispersal assumes a relatively higher migration rate than that of the random disper-
sal. This naturally raises a question as to whether or not density-dependent dispersal is advantageous
for population’s persistence in a single species model. Model (3.3) contains a non-monotone birth
function in (3.2), potentially yielding a result different from that of competition models. As remarked
above, according to Theorems 4.2 and 4.3, the levels of density dependence of the dispersal (ηi’s) do
not affect the threshold conditions for extinction/persistence. However, when it persists, the values of
ηi’s do play a significant role in affecting the final size of population, as the value of positive equilib-
rium (w∗1,w

∗
2) depends on ηi’s. In Figure 5, we present some numeric results on the impact of ηi’s on

(w∗1,w
∗
2), with choices of balanced adaptive dispersals (η1 = η2) and imbalanced adaption (η1 , η2),

revealing diverse consequences. In Figure 5-(a)-(b), we consider two identical patches by assuming
D1,m = D2,m = 0.2, d1,m = d2,m = 0.1, β1 = β2 = 1, γ1 = γ2 = 1. Take dI(a) ≡ 0.1 and r = 10 ln 5 lead-
ing to σ = 0.2. Then, we can see in this case that balanced adaption does not influence the final sizes
of population; and for the distribution among two patches while imbalanced adaption (with adaption
in patch-1 and without adaption in patch-2) not only changes the distribution of population but also
decreases the final total population (w∗1 + w∗2) as adaption (η1) is increased. In Figure 5-(c)-(d), we set
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the same parameter values except d2,m = 0.3 and β1 = 2 which means that patch-1 has lower mortality
and higher reproduction and is thus a better habitat than patch-2. In Figure 5-(c), even if two groups
adopt the same dispersion strategy, the final population decreases in (better) patch-1, so does the total
population with respect to η1. The imbalanced adaption leads to a similar but worse consequence. In
contrast, when patch-1 is a relative poorer habitat (with the same parameters as in (a) except d1,m = 0.3
and β2 = 2), although Figure 5-(e) shows that the balanced adaption is also disadvantageous to the final
population, the imbalanced strategy with only adaption in patch-1, on the other hand, does help boost
the species’s prosperity (total population) shown in Figure 5-(f).
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Figure 5. Comparison of the effect of balanced (η1 = η2)/imbalanced (η1 > 0, η2 = 0)
adaptive dispersal on the value of equilibrium (w∗1,w

∗
2) for three types of environment. (a)-

(b): two identical patches; (c)-(d): patch-1 is a better habitat; (e)-(f): patch-1 is relative
poorer.

The intrinsic age-structured dispersal rate, Di(a), varies among organisms. The general case involv-
ing a non-constant dispersal rate at each life stage is required for a population to exhibit its sensitive
age structure. Our original model incorporating both nonlinear dispersal terms and highly complex
delayed birth terms is a biologically meaningful and a mathematically intractable problem. In addi-
tion, the derived model with an Allee birth function, for example bi(w) = δiw2e−εiw where δi and εi

are constants, can involve the dynamics of bi-stability, and the convergent dynamics in such a non-
monotone feedback DDE is also interesting but very challenging. We will address these questions in
future research.
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