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Abstract

An integro-differential equation is proposed to model a general relapse phenomenon in infectious diseas-
es including herpes. The basic reproduction number R0 for the model is identified and the threshold prop-
erty of R0 established. For the case of a constant relapse period (giving a delay differential equation), this is
achieved by conducting a linear stability analysis of the model, and employing the Lyapunov–Razumikhin
technique and monotone dynamical systems theory for global results. Numerical simulations, with param-
eters relevant for herpes, are presented to complement the theoretical results, and no evidence of sustained
oscillatory solutions is found.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Herpes simplex virus type 2 (herpes) is a human disease that is transmitted by close physical or
sexual contact, and the incidence of this disease has risen over the last three decades [10]. Important
features of herpes are that an individual once infected remains infected for life, and the virus
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reactivates regularly with reactivation producing a relapse period of infectiousness (see, e.g., Blow-
er et al. [5] and the references therein, and Hart [10]).

An ordinary differential equation (ODE) compartmental model for herpes was formulated by
Tudor [18], who also noted that such a model is appropriate for pseudorabies in swine (see also
Smith and Grenfell [15]). In this model the constant population is divided into three compartments
depending on disease status. Individuals not previously exposed to the virus are susceptible, individ-
uals infected and shedding virus are infective (infectious), and individuals previously infected with
the virus but not currently shedding virus are recovered (latent). At time t, the numbers in each of
these compartments are denoted by S(t), I(t), and R(t), respectively, giving an SIRI model. Assum-
ing standard incidence, a basic reproduction number R0 is identified, and it is shown to be a sharp
threshold determining whether or not the disease dies out or approaches an endemic value.

This ODE model was extended to include more general incidence functions by Moreira and
Wang [13] and a similar threshold result identified. Blower [4] summarized four different compart-
mental models for herpes. One model [5] contains an ODE model with six compartments to pre-
dict how much drug resistance would emerge if antiviral treatment rates of herpes were increased.

Our aim is to formulate a more general three compartmental model for a disease with relapse,
and in particular to investigate the consequences of different assumptions about the relapse peri-
od. For the ODE models cited above, the infectious and relapse periods are assumed to have dis-
tributions that are negative exponentials. We allow for a more general relapse distribution, and in
particular consider a case in which the relapse time is a constant. Mathematically this arises from
taking a step function distribution for the relapse period, and leads to a delay differential equa-
tion. Such equations can have a Hopf bifurcation leading to sustained oscillatory solutions, but
we find no evidence of this in our model.

In Section 2, we formulate our general SIRI model that can be applied to a disease with relapse.
This is given in terms of P(t), the fraction of recovered individuals remaining in the recovered class
t units after recovery. Some basic results, including calculation of R0, are given in Section 3. For
P(t) a negative exponential, the ODE model dynamics are briefly summarized in Section 4. In Sec-
tion 5, P(t) is assumed to have compact support. The disease-free equilibrium is shown to be glob-
ally asymptotically stable if R0 < 1, and a Lyapunov–Razumikhin type theorem is used to
determine a condition under which the endemic equilibrium is globally asymptotically stable if
R0 > 1. For P(t) a step function (Section 6), the endemic equilibrium is proved to be locally
asymptotically stable if R0 > 1, and global asymptotically stable if, in addition, the relapse time
is short. Finally in Section 6, numerical simulations using parameters appropriate for herpes [5]
are presented that complement the theoretical results and indicate that R0 is a sharp threshold
also for the step function case.
2. Model formulation

Let S(t), I(t) and R(t) be the numbers of individuals in the susceptible, infective and the recov-
ered classes, respectively, with the total population N(t) = S(t) + I(t) + R(t). Assuming standard
incidence for the disease transmission, the rate of change of S(t) with time is
S 0ðtÞ ¼ bNðtÞ � k
SðtÞIðtÞ

NðtÞ � dSðtÞ; ð2:1Þ
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where the parameters b > 0 and d > 0 are the birth rate and death rate constants, respectively, and
k > 0 is the average number of effective contacts of an infectious individual per unit time (a frac-
tion S/N are with susceptibles). For simplicity, we only consider a closed community in which the
birth rate and death rate constants are equal, thus b = d. For genital herpes, these parameters can
be considered as the rate of entering and leaving the sexually active population. We assume that
the disease is not fatal, thus the death rate is the same for all individuals. In such a case, the total
population remains a constant (since N 0(t) = 0).

Rescaling S(t)/N! S(t), I(t)/N! I(t), and R(t)/N! R(t) with S + I + R = 1, we work with
proportions in each class, and (2.1) becomes
S0ðtÞ ¼ d � kSðtÞIðtÞ � dSðtÞ: ð2:2Þ

As outlined in Section 1, one important feature of herpes is that recovered individuals may re-
lapse. Denote by P(t) the fraction of recovered individuals remaining in the recovered class t time
units after recovery. By the meaning of P(t), it is reasonable to assume the following properties.

(A) P : [0,1)! [0,1) is differentiable (hence continuous) except at possibly finitely many points
where it may have jump discontinuities, non-increasing and satisfies P(0) = 1,
limt!1P(t) = 0 and

R1
0 P ðuÞdu is positive and finite.

The proportion of recovered individuals can be expressed by the integral
RðtÞ ¼
Z t

0

cIðnÞe�dðt�nÞP ðt � nÞdn; ð2:3Þ
where c > 0 is the recovery rate constant assuming that the infective period is exponentially dis-
tributed. The term e�d(t�n) in the above integral accounts for the death of infectives. It is assumed
that no individuals are initially in the recovered class, i.e., R(0) = 0. Differentiating (2.3) gives
R0ðtÞ ¼ �dRðtÞ þ cIðtÞ þ
Z t

0

cIðnÞe�dðt�nÞdtPðt � nÞdn: ð2:4Þ
Here, the integral is in the Riemann–Stieltjes sense to allow for possible jump discontinuities of
P(t). Substituting (2.3) and (2.4) into I 0(t) = �S 0 � R 0 leads to
I 0ðtÞ ¼ �ðd þ cÞIðtÞ þ kIðtÞ 1� IðtÞ �
Z t

0

cIðnÞe�dðt�nÞP ðt � nÞdn

� �

�
Z t

0

cIðnÞe�dðt�nÞdtPðt � nÞdn: ð2:5Þ
Fig. 1 gives a digram of interactions between S(t), I(t) and R(t).
Iλ

RIS

dS dRdI

γSI/NbN

P(t)

Fig. 1. Diagram of the model.
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From (2.2), (2.3), (2.5) and the relation S(t) + I(t) + R(t) = 1, it is obvious that in order to
determine the dynamics of each class, we only need to study (2.5) with assumption (A) and initial
condition taken as 0 < I(0) 6 1. For example, if I(t) approaches a constant I�as t!1, then by
(2.2) and the theory of asymptotically autonomous systems, it follows that SðtÞ ! �S ¼
d=ðk�I þ dÞ, and therefore, RðtÞ ! �R ¼ 1� �I � �S.

Since (2.5) is a differential equation with possible unbounded delay, the existence and unique-
ness of a solution to the initial value problem of (2.5) can be obtained by the fundamental theory
established in Schumacher [14]. The focus of our study is on the dynamic behavior of solutions of
(2.5). Note that due to the presence of the last term in (2.5), this scalar equation cannot be written
in the form I 0(t) = I(t)g(It) (here g(It) is the standard notation for general functional differential
equations including integro-differential equations) for general P(t), thus the analysis of the model
is non-trivial.
3. Some basic results

For biological reasons, we only need to consider I(t) 2 [0,1]. The following result establishes
this precisely.

Theorem 3.1. Assume that P(t) satisfies (A). If 0 < I(0) 6 1, then it follows that 0 < I(t) < 1 for all
finite t > 0.

Proof. Assume there is a t1 > 0 such that I(t) > 0 for t 2 [0, t1) and I(t1) = 0.
Let
hðtÞ :¼ �
Z t

0

cIðnÞe�dðt�nÞdtP ðt � nÞdn ¼ �
Z t

0

cIðt � nÞe�dndnP ðnÞdn:
By (A) and the choice of t1, h(t1) P 0. Denote
aðtÞ ¼ �ðd þ cÞ þ k 1� IðtÞ �
Z t

0

cIðnÞe�dðt�nÞP ðt � nÞdn

� �
:

Using an integrating factor for (2.5) gives
Iðt1Þ ¼ e
R t1

0
aðsÞ ds Ið0Þ þ

Z t1

0

hðsÞe�
R s

0
aðnÞ dn

ds
� �

> 0:
This implies that such a t1 > 0 cannot exist, and thus, I(t) > 0 for all finite t > 0.
To prove I(t) < 1 for t > 0, we consider two cases: I(0) < 1 and I(0) = 1. For the first case,

assume that there is a t2 > 0 such that 0 < I(t) < 1 for t 2 [0, t2) and I(t2) = 1. Then from (2.5),
I 0ðt2Þ ¼ �ðd þ cÞ � kc
Z t2

0

IðnÞe�dðt2�nÞP ðt2 � nÞdn�
Z t2

0

cIðnÞe�dðt2�nÞdtP ðt2 � nÞdn

6 �ðd þ cÞ � c½P ðt2Þ � P ð0Þ� 6 �ðd þ cÞ þ c ¼ �d < 0:
This implies that such a t2 cannot exist, and therefore, I(t) < 1 for all t > 0. For the second case,
(2.5) gives I 0(0) = �(d + c) < 0, also implying that I(t) < 1 for all t > 0. h
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Remark 3.1. If I(0) = 0, then I(t) = 0 for t P 0. Otherwise, there would exist a t0 P 0 such that
I(t0) P 0, I 0(t0) > 0 and I(t) = 0 for t 2 [0, t0). But then (2.5) implies that I 0(t0) = 0, a contradiction.
Since we are interested in disease dynamics that start with some infectives at t = 0, and I(t) is the
proportion of infectives, we assume that 0 < I(0) 6 1.

Note that once the dynamics of I(t) is known, (2.3) and the relation S + I + R = 1 will deter-
mine the behavior of R(t) and S(t). It is clear that the model has the disease-free equilibrium
(DFE) with (S, I,R) = (1,0,0).

Let
P̂ ¼ lim
t!1

Z t

0

e�dvPðvÞdv 6
1

d
ð3:1Þ
and define
R0 ¼
k

dð1þ cP̂ Þ
: ð3:2Þ
Then P̂ is the average time that an individual remains recovered before relapsing or dying. To
interpret formula (3.2) for R0, note that the average time in the infective class on the first pass
is 1/(d + c) and the probability of surviving this class is c/(d + c). Since P̂ is the average time in
the recovered class on the first pass, the probability of surviving the recovered class is 1� dP̂ .
Thus, the total average time in the infective class (on multiple passes) is
1

d þ c
1þ cð1� dP̂ Þ

d þ c
þ c2ð1� dP̂ Þ2

ðd þ cÞ2
þ � � �

" #
¼ 1

d þ c
1

1� cð1�dP̂ Þ
dþc

2
4

3
5 ¼ 1

dð1þ cP̂ Þ
:

Multiplying this by k gives R0, which is the average number of new infectives produced by one
infective introduced into a susceptible population [1]. Thus, R0 is the basic reproduction number,
and acts as a threshold as is shown in the following result.

Theorem 3.2. Consider (2.5) with 0 < I(0) 6 1 and assumption (A). If R0 < 1, then the DFE is
locally asymptotically stable. If R0 > 1, then the DFE is unstable.

Proof. To consider the stability of the DFE, set I(t) proportional to ezt in the linearization of (2.5)
at the DFE to obtain the characteristic equation
zþ ðd þ cÞ � k ¼ �c lim
t!1

Z t

0

e�ðdþzÞðt�nÞdtPðt � nÞdn: ð3:3Þ
It is well known that the zero solution of (2.5) is asymptotically stable if all roots of (3.3) have
negative real parts, and is unstable if (3.3) has a root with a positive real part (see, e.g., Cooke
and Grossman [7], or Beretta and Kuang [3]). Now taking z = x + iy in (3.3) and assuming that
x P 0 gives
jxþ ðd þ cÞ � kþ iyj 6 c lim
t!1

Z t

0

je�ðdþzÞðt�nÞdtP ðt � nÞjdn 6 cð1� dP̂Þ
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since P̂ 6 1=d from (3.1). Thus, ðx� kþ d þ cÞ2 þ y2
6 c2ð1� dP̂ Þ2 implying that

ðx� kþ d þ cÞ2 � c2ð1� dP̂ Þ2 6 �y2 which is impossible if �kþ d þ cdP̂ > 0 (equivalently
R0 < 1). Thus, if R0 < 1, then x < 0 and the DFE is locally asymptotically stable.

When R0 > 1, the characteristic equation (3.3) has a positive real root. To verify this, consider
real z. The left side of (3.3) is an increasing function of z with value d + c � k at z = 0 and tends to
1 as z!1; whereas the right side is a non-increasing function of z with value cð1� dP̂ Þ at z = 0.
Thus, if d þ c� k < cð1� dP̂ Þ, equivalently R0 > 1, then (3.3) has a positive real root, and
therefore the DFE is unstable. h

We point out that the above result is on local stability of the zero solution of (2.5) for R0 < 1.
For some particular forms of the function P(t), we are able to obtain global stability of this solu-
tion. In addition, for some special forms of P(t), we can determine, fully or partially, the dynamics
of (2.5) for R0 > 1. In the rest of the paper, we consider three particular forms for P(t), beginning
with a form for which the complete qualitative behavior of solutions of (2.5) can be determined.
4. P(t) = e�at: an ODE system

For P(t) = e�at, i.e., a negative exponential relapse distribution with relapse rate constant a, the
system (2.4) and (2.5) can be written as a two-dimensional ODE system
R0ðtÞ ¼ �ðd þ aÞRðtÞ þ cIðtÞ;
I 0ðtÞ ¼ �ðd þ cÞIðtÞ þ kIðtÞ½1� IðtÞ � RðtÞ� þ aRðtÞ:

ð4:1Þ
In this case, from (3.2), the basic reproduction number is
R0 ¼
kðd þ aÞ

dðd þ aþ cÞ :
This model is given in Diekmann and Heesterbeek [9, p. 33], where it is shown that R0 can be
calculated from the integral over T of the expected infectivity at time T after infection takes place.
For this ODE model, R0 can also be calculated as the spectral radius of the next generation ma-
trix, see Diekmann and Heesterbeek [9]; van den Driessche and Watmough [19]. Here, R0 can be
interpreted as the product of k and the total average time in the infective class, namely,
k
d þ c

1þ c
d þ c

a
d þ a

þ c2

ðd þ cÞ2
a2

ðd þ aÞ2
þ � � �

" #
¼ kðd þ aÞ

dðd þ aþ cÞ :
For R0 > 1, (4.1) has a unique endemic equilibrium (EE) given by
R� ¼ cI�

d þ a
; I� ¼ dðR0 � 1Þ

k
:

The dynamics of (4.1) are summarized in the following theorem.

Theorem 4.1. Consider system (4.1) subject to the initial conditions 0 < I(0) 6 1, R(0) = 0 with
D = {(I,R) : I P 0, R P 0, I + R 6 1}. If R0 < 1, then D is an asymptotically stable region for the
DFE (I,R) = (0,0). If R0 > 1, then D � {(0,0)} is an asymptotically stable region for the EE
(I,R) = (I*,R*).
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The above result, showing that R0 ¼ 1 is a sharp threshold in the global sense, is given in Tudor
[18]. Moreira and Wang [13] study a generalization of (4.1) in which more general incidence I/(S)
or Sw(I) is assumed. By transforming the system to a Liénard system and using a Lyapunov func-
tion, they also obtain a similar threshold result for the generalized model.
5. General P(t) with compact support: a delay differential equation with finite distributed delay

In this section, we consider P(t) with compact support. That is, we assume in addition to (A)
that P(t) = 0 for t P w, where w is the maximum relapse time. For such a P(t), P̂ ¼

R w
0

e�dvP ðvÞdv
and Eq. (2.5) for t P w becomes the following delay differential equation with distributed finite
delay:
I 0ðtÞ ¼ �ðd þ cÞIðtÞ þ kIðtÞ 1� IðtÞ �
Z t

t�w
cIðnÞe�dðt�nÞP ðt � nÞdn

� �

�
Z t

t�w
cIðnÞe�dðt�nÞdtPðt � nÞdn: ð5:1Þ
We can apply the Lyapunov–Razumikhin technique to obtain the global stability of the DFE.

Theorem 5.1. Assume that P(t) satisfies (A) and P(t) = 0 for t P w. If R0 < 1, then the DFE of (5.1)
with 0 < I(0) 6 1 is globally asymptotically stable.

Proof. Consider the Lyapunov function V ðIðtÞÞ ¼ 1
2
I2ðtÞ. Then, for those values of t P w such

that V(I(t + s)) 6 V(I(t)) for s 2 [�w, 0], the derivative of V(I(t)) along (5.1) is estimated as below:
V 0 ¼ kSðtÞI2ðtÞ � ðd þ cÞI2ðtÞ �
Z t

t�w
cIðtÞIðnÞe�dðt�nÞdtPðt � nÞdn

6 kI2ðtÞ � ðd þ cÞI2ðtÞ

� c
2

Z t

t�w
½I2ðtÞ þ I2ðnÞ�e�dðt�nÞdtP ðt � nÞdn

6 kI2ðtÞ � ðd þ cÞI2ðtÞ � cI2ðtÞ
Z t

t�w
e�dðt�nÞdtP ðt � nÞdn

¼ kI2ðtÞ � ðd þ cÞI2ðtÞ � cI2ðtÞ
Z w

0

e�dvdvPðvÞdv

¼ kI2ðtÞ � ðd þ cÞI2ðtÞ þ cI2ðtÞ½1� dP̂ �
¼ ½k� dð1þ cP̂Þ�I2ðtÞ

¼ �k
1

R0

� 1

� �
I2ðtÞ: ð5:2Þ
Here, we have used the assumption that P(t) is non-increasing and the fact that 0 6 S(t) =
1 � I(t) � R(t) 6 1. Now by (5.2), the assumption that R0 < 1 and a Lyapunov–Razumikhin type
theorem (see, e.g., Bélair [2]), we conclude that I = 0 is globally asymptotically stable. h
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When R0 > 1, the DFE becomes unstable (from Theorem 3.2) and there exists an EE given by
I� ¼ dðR0 � 1Þ
k

: ð5:3Þ
We now explore the global stability of this EE for the form of P(t) specified at the beginning of
this section.

Theorem 5.2. Assume that P(t) satisfies (A) and P(t) = 0 for t P w. If R0 > 1, then the EE of (5.1)
with 0 < I(0) 6 1 is globally asymptotically stable, provided that cP̂ < 1.

Proof. Let R0 > 1 and u(t) = I(t) � I*. Then, from (5.1) and (5.3), x(t) satisfies the following
equation:
u0ðtÞ ¼ �cð1� dP̂ÞuðtÞ � kIðtÞuðtÞ � kcIðtÞ
Z t

t�w
uðnÞe�dðt�nÞP ðt � nÞdn

� c
Z t

t�w
uðnÞe�dðt�nÞdtPðt � nÞdn: ð5:4Þ
Let V ðuðtÞÞ ¼ 1
2
u2ðtÞ. From Theorem 3.1, I(t) > 0 when I(0) > 0. Thus, at those t P 0 such that

V(u(t + s)) 6 V(u(t)) for s 2 [�w, 0], the derivative of V along (5.4) can be estimated as below
dV ðuðtÞÞ
dt

¼ �cð1� dP̂Þu2ðtÞ � kIðtÞu2ðtÞ

� kcIðtÞ
Z t

t�w
uðtÞuðnÞe�dðt�nÞPðt � nÞdn

� c
Z t

t�w
uðtÞuðnÞe�dðt�nÞdtP ðt � nÞdn

6 �cð1� dP̂Þu2ðtÞ � kIðtÞu2ðtÞ þ kcIðtÞu2ðtÞP̂

� cu2ðtÞ
Z t

t�w
e�dðt�nÞdtP ðt � nÞdn

¼ u2ðtÞ½�cð1� dP̂ Þ � kIðtÞ þ kcIðtÞP̂ þ cð1� dP̂ Þ�
¼ �kIðtÞ½1� cP̂ �u2ðtÞ < 0: ð5:5Þ
By a Lyapunov–Razumikhin type theorem (see, e.g., Bélair [2]), we conclude that u(t)! 0 as
t!1, implying that I(t)! I* as t!1 if I(0) > 0. h

Remark 5.1. The condition R0 > 1 is equivalent to
cP̂ <
k� d

d
: ð5:6Þ
Thus, k > d is necessary for R0 > 1. Moreover, the following implications are obvious:

(i) if d < k 6 2d, then the condition cP̂ < 1 is implied by R0 > 1;
(ii) if k > 2d, then R0 > 1 is implied by the condition cP̂ < 1.
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The condition cP̂ < 1 is equivalent to P̂ < 1=c, and thus holds when the average time that an indi-
vidual remains recovered before relapse or death is less than the average infective time. For her-
pes, this does not seem to be realistic. Thus, from a practical point of view, we only need to be
concerned with the situation where k > 2d, R0 > 1 and yet cP̂ > 1. Unfortunately, we are unable
to prove the global stability of the endemic equilibrium in this case. However, if P(t) is further
assumed to be a step function, then we can prove that the endemic equilibrium is (locally) asymp-
totically stable, as will be shown in the next section.
6. Step function P(t): a delay differential equations with a single delay

In this section we further restrict to the case in which all individuals remain in the recovered
class w time units before relapsing, thus P(t) is the step function given by
P ðtÞ ¼
1 t 2 ½0;wÞ;
0 t P w:

�
ð6:1Þ
For this P(t), from (3.2) the basic reproduction number becomes
R0 ¼
k

d þ cð1� e�dwÞ : ð6:2Þ
When t P w,
Z t

t�w
IðnÞe�dðt�nÞdtP ðt � nÞdn ¼

Z w

0

Iðt � nÞe�dndnP ðnÞdn ¼ Iðt � wÞe�dw½PðwþÞ � P ðw�Þ�

¼ Iðt � wÞe�dw½0� 1� ¼ �Iðt � wÞe�dw:
Therefore, (5.1) is further reduced to the following delay differential equation
I 0ðtÞ ¼ �ðd þ cÞIðtÞ þ cIðt � wÞe�dw þ kIðtÞ½1� IðtÞ � c
Z t

t�w
IðnÞe�dðt�nÞ dn�; ð6:3Þ
for t P w. For t 2 [0,w), the dynamics of I(t) in (5.1) is governed by
I 0ðtÞ ¼ �ðd þ cÞIðtÞ þ kIðtÞ 1� IðtÞ � c
Z t

0

IðnÞe�dðt�nÞ dn

� �
: ð6:4Þ
Obviously, the long-term behavior of I(t) is determined by (6.3), and thus, we will mainly focus on
(6.3) in the rest of this section.

When R0 > 1, (6.3) has the unique endemic equilibrium I* as in (5.3) with R0 given by (6.2). For
Eq. (6.3), in addition to the results established in the previous sections, we can obtain further sta-
bility results. First, we consider the local asymptotic stability of the EE. To this end, we study the
linearization of (6.3) at I* given by
u0ðtÞ ¼ �ce�dw½uðtÞ � uðt � wÞ� � kI�uðtÞ � kcI�
Z t

t�w
uðnÞe�dðt�nÞ dn: ð6:5Þ
Assuming that u(t) in (6.5) is proportional to ezt gives the following characteristic equation
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z2 þ ðce�dw þ dR0Þzþ dðR0 � 1Þðcþ dÞ þ cd e�dw � ce�dwze�zw � cdR0 e�dw e�zw ¼ 0: ð6:6Þ

Denote
P ðz;wÞ ¼ z2 þ ðce�dw þ dR0Þzþ dðR0 � 1Þðcþ dÞ þ cd e�dw;

Qðz;wÞ ¼ �ce�dwz� cdR0 e�dw:
Then, (6.6) can be rewritten as
P ðz;wÞ þ Qðz;wÞe�zw ¼ 0: ð6:7Þ

This is a transcendental equations with delay-dependent coefficients. Stability analysis of many
other models also leads to such equations; for example [8]. Recently, Beretta and Kuang [3] pro-
vide some criteria on stability switches for such equations, and one important feature is that such
equations may allow multiple switches of the stability as delay increases [8,3]. It is also interesting
to note that while (6.3) is a first-order scalar delay differential equation, its characteristic equation
at I* is a transcendental equation of degree 2. By analyzing (6.7) under the assumption R0 > 1, the
local stability of I* can be proved.

Theorem 6.1. If R0 > 1 and 0 < I(0) 6 1, then the endemic equilibrium I* of (6.3) is locally
asymptotically stable.

Proof. First, observe that z = 0 is not a root of (6.7), for
Pð0;wÞ þ Qð0;wÞ ¼ dðR0 � 1Þðcþ dÞ þ cd e�dw � cdR0 e�dw

¼ dðR0 � 1Þðcþ d � ce�dwÞ > 0:
Second, for w = 0 (zero relapse time), then all roots of (6.7) have negative real parts since
Pðz; 0Þ þ Qðz; 0Þ ¼ z2 þ ðcþ dR0Þzþ dðR0 � 1Þðcþ dÞ þ cd � cz� cdR0

¼ z2 þ dR0zþ d2ðR0 � 1Þ
has positive coefficients. By the above results and the standard theory of delay differential equa-
tions [7], as the delay w increases, roots of (6.7) can cross the imaginary axis only through a pair of
purely imaginary roots. Let z = iy (y > 0) be a root of (6.7). Then
� y2 þ iyðce�dw þ dR0Þ þ dðR0 � 1Þðcþ dÞ þ cd e�dw

þ ðcos yw� i sin ywÞð�ce�dwiy � cdR0 e�dwÞ ¼ 0:
Separating the real and the imaginary parts in the above equation gives
� y2 þ dðR0 � 1Þðcþ dÞ þ cd e�dw ¼ cdR0 e�dw cos ywþ ce�dwy sin yw;

yðce�dw þ dR0Þ ¼ ce�dwy cos yw� cdR0 e�dw sin yw:
ð6:8Þ
Squaring the two equations in (6.8) and adding the resulting equations yields
y4 � 2y2½dðR0 � 1Þðcþ dÞ þ cd�dw� þ ½dðR0 � 1Þðcþ dÞ þ cd e�dw�2

þ y2ðce�dw þ dR0Þ2 ¼ c2d2R2
0 e�2dw þ c2 e�2dwy2;
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which is equivalent to
y4 þ by2 þ c ¼ 0; ð6:9Þ

in which
b ¼ d2R2
0 � 2dðR0 � 1Þðd þ c� ce�dwÞ ¼ d2R2

0 � 2kdð1� 1=R0Þ;
c ¼ ½dðR0 � 1Þðcþ dÞ þ cd e�dw�2 � c2d2R2

0 e�2dw:
Since
dðR0 � 1Þðcþ dÞ þ cd e�dw � cdR0 e�dw ¼ kdð1� 1=R0Þ;

it follows that
c ¼ k2d2ð1� 1=R0Þ2 þ 2kcd2 e�dwðR0 � 1Þ:

Thus, (6.9) can be written as
½y2 � kdð1� 1=R0Þ�2 þ d2R2
0y2 þ 2kcd2 e�dwðR0 � 1Þ ¼ 0:
Since the left side of the above is positive, this gives a contradiction, showing that no root z = iy,
y > 0 exists. Therefore, for all w P 0, all roots of (6.7) remain in the left half of the complex plane,
completing the proof of the local stability. h

Since the form of P(t) given by (6.1) is a special case of the forms of P(t) specified in Section 5,
the result of Theorem 5.2 may be applied to (6.3), giving the global stability of I* under the addi-
tional condition
w <
1

d
ln 1þ d

c� d

� �
; ð6:10Þ
provided that c > d. This condition requires that the delay be sufficiently small. On the other hand,
the fact that (6.3) has only a single delay allows us to employ the monotone dynamical systems
theory to establish new criteria. The idea is to introduce an exponential ordering in the phase
space of (6.3). For details, see, e.g., Thieme and Smith [17] and Smith [16]. Using this technique,
we can prove that when P(t) is the step function given by (6.3), the condition (6.10) can by re-
placed by
w < sup
l>dþkþcþkc=d

1

l� d
ln 1þ

ðl� dÞðl� d � k� c� kc
d Þ

kc

" #
: ð6:11Þ
See Appendix A for a proof of this. This inequality, although not identical to (6.10), is again only
true for small relapse time. We point out that (6.10) and (6.11) are obtained from different
approaches for stability, and they do not seem to be related to each other.
7. Numerical simulations and discussion

To complement the analytical results of the previous sections, we now show some numerical
simulations for Eqs. (6.3) and (6.4). To this end, we adopt the following values for the parameters
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1/d = 20 years =7300 days, 1/c = 3.5 days and w = 27 days taken from the model parameters for
herpes simplex virus type 2 presented by Blower et al. [5]. For these values, the reproduction num-
ber R0 and the endemic equilibrium I* can be computed from (6.2) and (5.3) as
Fig. 2
(solid
scales
R0 ¼
k

0:001917
; I� ¼ 0:114948 1� 0:001917

k

� �
: ð7:1Þ
Recalling that k is the average number of effective contacts of an infectious individual per unit
time, it can be evaluated as a product k = cb where c is the average number of contacts of an infec-
tious individual per unit time, and b is the probability of transmission on each contact between an
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infectious and susceptible individual. As given in Blower et al. [5], b 2 [0.1,0.5]. Our simulations
are done by varying the values of k corresponding to various values of b and c within their bio-
logically meaningful ranges. From (7.1), we see that for the above values of d,c and w, the param-
eter k has a critical value k0 = 0.001917. When k is close to k0, the simulations also give
convergence either to the DFE (when k < k0) or to the EE (when k > k0), but the convergence
is so slow that we have to extend the time axis to a very large scale in order to observe the con-
vergence. Here, we give simulation results for values of k that are further away from k0 so that the
convergence is sufficiently fast.

In Fig. 2, we fix the parameters as above, and choose two different values for I(0) > 0, namely
I(0) = 0.01 and I(0) = 0.15. For Fig. 2(a), k = 0.0001 (giving R0 approximately equal to 0.05); for
Fig. 2(b), k = 0.02 (giving R0 approximately equal to 10); for Fig. 2(c), k = 0.03 (giving R0

approximately equal to 16); for Fig. 2(a), k = 0.05 (giving R0 approximately equal to 25). From
the figure, the disease dies out in the case R0 < 1 (in accordance with Theorem 5.1), whereas in all
cases with R0 > 1, solutions converge to the endemic equilibrium, even though w is sufficiently
large so that neither (6.10) nor (6.11) holds. In all simulations, transitory oscillations are observed
for about the first 400 days, but no sustained oscillations are observed.

As noted in Section 1, several disease transmission models with a constant period in one com-
partment can exhibit sustained oscillatory solutions for certain parameters values with the basic
reproduction number above a threshold. Such examples include an SIRS model in a population of
fixed size with a constant period of temporary immunity [12], and a model with standard incidence
and a distributed removed period [6]. In the light of these sustained oscillations and the fact that
this model with relapse shows no such behavior, it remains a general open question as to what
disease phenomena can generate sustained oscillations of the infectives; see Hethcote and Levin
[11] for a survey of some such mechanisms.
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Appendix A. Derivation of condition (6.11)

Theorem A1. Let R0 be given by (6.2) and assume R0 > 1. If (6.11) holds, then the endemic
equilibrium I* of (6.3) (given by (5.3)) is globally asymptotically stable in the sense of Theorem 5.2.

Proof. By Theorem 3.1, we only need consider I 2 (0,1]. Let C = C([�w, 0], (0,1]) be equipped
with the sup norm. For any l P 0, introduce the so-called exponential partial ordering 6l in
C as follows:
/16l/2 if and only if /1 6 /2 and ½/2ðsÞ � /1ðsÞ�els is non-decreasing:
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Denote by f(/) the functional on the right-hand side of (6.3), i.e.,
f ð/Þ ¼ ½k� ðd þ cÞ�/ð0Þ þ ce�dw/ð�wÞ � k/2ð0Þ � kc/ð0Þ
Z 0

�w
/ðsÞeds ds:
Then for /1, /2 2 C with /1 6 l/2, calculation shows that for l > d
f ð/2Þ � f ð/1Þ
¼ ½k� ðd þ cÞ�½/2ð0Þ � /1ð0Þ� þ ce�dw½/2ð�wÞ � /1ð�wÞ� � k½/2

2ð0Þ � /2
1ð0Þ�

� kc½/2ð0Þ � /1ð0Þ�
Z 0

�w
/2ðsÞeds ds� kc/1ð0Þ

Z 0

�w
½/2ðsÞ � /1ðsÞ�eds ds

P ½k� ðd þ cÞ�½/2ð0Þ � /1ð0Þ� � k½/2ð0Þ � /1ð0Þ�½/2ð0Þ þ /1ð0Þ�

� kc½/2ð0Þ � /1ð0Þ�
Z 0

�w
eds ds� kc

Z 0

�w
½/2ðsÞ � /1ðsÞ�eds ds

P ½k� ðd þ cÞ�½/2ð0Þ � /1ð0Þ� � 2k½/2ð0Þ � /1ð0Þ�

� kc½/2ð0Þ � /1ð0Þ�
Z 0

�w
eds ds� kc½/2ð0Þ � /1ð0Þ�

Z 0

�w
eðd�lÞs ds

¼ �k� d � c� kc
1� e�dw

d
� kc

1� e�ðd�lÞw

d � l

� �
½/2ð0Þ � /1ð0Þ�

P � kþ d þ cþ kc
d
þ kcðeðl�dÞw � 1Þ

l� d

� �
½/2ð0Þ � /1ð0Þ�: ðA:1Þ
By (6.11), there exists l > d + k + c + kc/d such that
w <
1

l� d
ln 1þ

ðl� dÞðl� d � k� c� kc
d Þ

kc

" #
;

which is equivalent to
kþ d þ cþ kc
d
þ kcðeðl�dÞw � 1Þ

l� d
< l: ðA:2Þ
For such a l > d, (A.1) and (A.2) lead to
f ð/2Þ � f ð/1Þ þ l½/2ð0Þ � /1ð0Þ� > 0: ðA:3Þ

By Thieme and Smith [17], the semiflow generated by (6.3) in C is strongly order preserving in C in
terms of the ordering 6l. Now, the global convergence theorem in Smith [16, p. 18, Theorem 3.1],
the instability of I = 0 (from Theorem 3.1) and the uniqueness of the positive equilibrium I* imply
that all positive solutions of (6.3) converge to I*. Global convergence to I* and the local stability
of I* (Theorem 6.1) gives the global asymptotic stability of I*, completing the proof. h

Taking l = k + 2d + c + kc/d in (6.11), the following more explicit sufficient condition is
obtained.

Corollary A2. Assume R0 > 1. If
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w 6
1

kþ d þ cþ kc
d

ln 1þ
ðkþ d þ cþ kc

d Þd
kc

 !
; ðA:4Þ
then the endemic equilibrium I* of (6.3) is globally asymptotically stable in the sense of Theorem 5.2.
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