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Analysed is a mathematical model for HIV-1 infection with two delays accounting, respectively, for
(i) a latent period between the time target cells are contacted by the virus particles and the time the virions
enter the cells and (ii) a virus production period for new virions to be produced within and released from
the infected cells. For this model, the basic reproduction numberR0 is identified and its threshold prop-
erty is discussed: the uninfected steady state is proved to be globally asymptotically stable ifR0 < 1 and
unstable ifR0 > 1. In the latter case, an infected steady state occurs and is proved to be locally asymp-
totically stable. The formula forR0 shows that increasing either of the two delays will decreaseR0.
This may suggest a new direction for new drugs—drugs that can prolong the latent period and/or slow
down the virus production process.
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1. Introduction

In the last decade or so, it has been realized that mathematical modelling can provide valuable insight
into HIV-1 pathogenesis. By using differential equations to quantitatively model the dynamics of the
HIV-1 virus, target cells (infected and uninfected) and even possibly the immune responses, researchers
have gained much knowledge about the mechanism of the interactions of these components in the im-
mune system and have thereby enhanced the progress in understanding the HIV-1 infection (seeCulshaw
et al., 2003; Herzet al., 1996; Nowak & May, 2000; Perelson & Nelson, 1999; Perelsonet al., 1996,
1993). Such understanding may offer guidance for developing new drugs and for designing optimal
combination of therapies available (see, e.g.Nelsonet al., 2001, 2000; Nelson & Perelson, 2002; Kepler
& Perelson, 1998, and the references therein).

Most existing mathematical models for HIV infection are by systems of ordinary differential equa-
tions (ODEs) (see, e.g.Nowak & May, 2000; Perelson & Nelson, 1999). A standard and classic one of
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this type is the following ODE system:






dT(t)
dt = s − μT T(t) − kV(t)T(t),

dT∗(t)
dt = kV(t)T(t) − μT∗(t),

dV(t)
dt = μN T∗(t) − cV(t),

(1.1)

whereT(t), T∗(t) and V(t) are the densities of uninfected target cells, infected target cells and the
free virus, respectively. The constant parameters in the equations are explained as below. The positive
constants is the rate at which new target cells are generated,μT is their specific death rate andk is
the constant rate at which a T-cell is contacted by the virus. It is assumed that once cells are infected,
they may die instantaneously at rateμ due to the action of either the virus or the immune system, and
in the mean time, they each producesN new virus particles during their life, which on average has
length 1

μ . Thus, on average, virus is instantaneously produced at rateμN. Alternatively, one can view
virus as being produced in a burst ofN particles when an infected cell dies via lysis, thus producing
virus at rateNμ. Lastly, virus particles are cleared from the system at ratec. There are other similar
versions of this model in which target cells proliferate logistically or virus also disappears by infecting
cells (Perelsonet al., 1993; Kepler & Perelson, 1998). Other variations can also be considered in which
virus spreads by cell-to-cell infection (Culshawet al., 2003), infected cells can proliferate or an explicit
immune response is followed. Here, we only consider the variants of (1.1). An underlying assumption
in such an ODE model is that infection of cells by virions is instantaneous and the production of new
virions by infected cells is also instantaneous.

However, in the real situation, there may be a lag between the time target cells are contacted by the
virus particles and the time the contacted cells become actively affected meaning that the contacting
virions enter cells. This can be explained by the initial (or eclipse) phase of the virus life cycle, which
include all stages from viral attachment until the time that the host cell contains the infectious viral
particles in its cytoplasm. Attachment is a specific binding between the two sets of proteins (also known
as anti-receptors) called gp120 and gp41 on the surface of the HIV and the two sets of proteins (known
as receptors), i.e. CD4 receptor and a beta-chemokine receptor (either CCR5 or CXCR4), on the surface
of the T-cell. After the attachment is completed, the virus seeks to penetrate into the cell via fusion.
Penetration allows the genetic core of virus (called the nucleocapsid) to be injected directly into the cell’s
cytoplasm. gp120 actually contains three sugar-coated proteins (glycoproteins) and once gp120 attaches
itself to CD4 receptor, these three proteins spread apart, allowing the gp41 protein, which is normally
hidden by the gp120 proteins, to become exposed and bind to the chemokine receptor. Once this has
occurred, the viral envelope and the cell membrane are brought into direct contact and essentially melt
into each other, completing the penetration. The above-stated processes take time. Realizing this time
lag,Kirschneret al. (1997) divided infected cells into two classes: inactively infected cells and actively
infected cells, and the 3D ODE system of the form (1.1) was accordingly modified into a 4D ODE
system. This is equivalent to assuming that the probability that a cell still remains inactively infected
t time units after being contacted by the virus obeys an exponentially decay probability density function.

In addition to the above time lag, there is also a period between the time the virus has penetrated
into a cell and the time the new virions are created within the cell and are released from the cell. This
is because the virus production process within a cell consists of several stages as well: (i) uncoating of
viral RNA, (ii) reverse transcription of viral RNA into DNA, (iii) transport of the newly made DNA into
the nucleus, (vi) integration of the viral DNA into the chromosome, (v) production of viral RNA and
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protein and finally (vi) creation of new virus from these newly synthesized RNA molecules and proteins;
seeMittler et al. (1998) for details.

Mittler et al. (1998) combined the aforementioned two lags into a single one and used a gamma
probability distribution function to describe all the above multiple stages. Note that not every contacting
viral particle can get through the eclipse phase, meaning that viral attachment is sometimes reversible.
That is, some virions may not attach to the cell successfully. This happens in particular when drugs (or
vaccines) called attachment inhibitors and/or fusion inhibitors such as T-20 (enfuvirtide, Fuzeon) are
applied. Therefore, before entering the cell, a contacting virion should still be considered a free virion
because it may fail to enter the cell and may contact other cells. Thus, in modelling the HIV-1 infection
dynamics, the latent period and the virus production period within cells should be treated differently.
Recently, in studying the efficacy of a protease inhibitor drug,Nelsonet al. (2000) incorporated into
(1.1) a discrete delay to account for the lag between inactively infected and actively infected. Assuming
a constant uninfected T-cell density and an imperfect drug efficacy, their analysis to the delayed model
shows that the delay does affect the rate of decline in plasma virus concentration. As a continuation of
Nelsonet al. (2000) and in studying the efficacy of ‘two drugs’—the protease inhibitor and the reverse
transcriptase inhibitor—Nelson & Perelson(2002) further generalized the model inNelsonet al.(2000)
by including two delays for the aforementioned ‘two periods’. The general model inNelson & Perelson
(2002) is given by the following system of differential–integral equations:






dT(t)
dt = s − μT T(t) − (1 − nrt)kV(t)T(t),

dT∗(t)
dt = (1 − nrt)k

∫∞
0 f1(ξ)V(t − ξ)T(t − ξ)dξ − μT∗(t),

dV(t)
dt = (1 − np)μN

∫∞
0 f2(ξ)T∗(t − ξ)dξ − cV(t).

(1.2)

Here, the meanings of the variables and parameters appeared in (1.1) remain the same except thatT∗

now stands for the density of cells with ‘integrated’ HIV-1 DNA. The new parametersnp andnrt measure
the efficacies of the protease inhibitor and the reverse transcriptase inhibitor, respectively. As mentioned
in Nelson & Perelson(2002), the kernelsf1(ξ) and f2(ξ) are the results of incorporating probability
functions for the two processes and the death rate factors of the form e−μτ . When ‘only one discrete
delay’ is present in (1.2), i.e. eitherf1(ξ) = e−μτ δ(ξ−τ1) and f2(ξ) = δ(ξ−0) or f1(ξ) = δ(ξ−0) and
f2(ξ) = e−μτ δ(ξ −τ2), whereδ(∙) is the Dirac delta function, by analysing the characteristic equations,
Nelson & Perelson(2002) were able to obtain some local stability results showing the impact of the
delay on the virus dynamics.

When both delays are present in (1.2), the analysis of the model becomes harder and the dynamics
of (1.2) in such a general case still remains an open problem. The purpose of this paper is to analyse
(1.2) when there are two delays. In order to avoid the key ideas to be hidden behind too complicated
analysis due to the general form of the two general probability distribution functionsf1 and f2, we only
consider two ‘discrete delays’. In addition, we prefer to retrieve the death factors inf1(ξ) and f2(ξ). In
other words, we take

f1(ξ) = e−μξ δ(ξ − τ1) and f2(ξ) = e−μ2ξ δ(ξ − τ2).

Then, (1.2) reduces to





dT(t)
dt = s − μT T(t) − (1 − nrt)kV(t)T(t),

dT∗(t)
dt = (1 − nrt)k e−μτ1V(t − τ1)T(t − τ1) − μT∗(t),

dV(t)
dt = (1 − np)μN e−μ2τ2T∗(t − τ2) − cV(t).

(1.3)
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Here,τ1 can be regarded as the average time for a viral particle to go through the eclipse phase (or
average latent period) andτ2 may be treated as the average time between the entry of a virion into a
cell and the creation and release of new virions from this cell. Realistically,μ2 may differ fromμ. For
convenience of notations, we set

k̄ = (1 − nrt)k,

N̄ = (1 − np)N, (1.4)

which further reduces (1.3) to the following system:





dT(t)
dt = s − μT T(t) − k̄V(t)T(t),

dT∗(t)
dt = k̄ e−μτ1V(t − τ1)T(t − τ1) − μT∗(t),

dV(t)
dt = μN̄ e−μ2τ2T∗(t − τ2) − cV(t).

(1.5)

In the rest of this paper, we will analyse system (1.5). In Section2, we address the well-posedness
of the model by proving the positivity and boundedness of solutions. We also identify the basic
reproduction numberR0 which determines whether or not there is an infected equilibrium. Section3
is dedicated to the stability of the infection-free equilibrium. In addition to local stability under the
conditionR0 < 1, which is obtained by analysing the characteristic equation, we also obtain the global
stability by employing the fluctuation lemma and the asymptotically autonomous system theory, the lat-
ter being in contrast to the previous work (Nelsonet al., 2000; Nelson & Perelson, 2002). In Section4,
we show that under the conditionR0 > 1, the infected equilibrium is asymptotically (locally) stable.
Simulations are provided in Section5 to confirm our analytical theory. Conclusion and discussion will
be given in Section6.

2. Well-posedness and basic reproduction number

Let X = C([− max(τ1, τ2), 0]; R3) be the Banach space of continuous functions from [− max(τ1, τ2), 0]
to R3 equipped with the sup-norm. It is biologically reasonable to consider the following initial condi-
tions for (1.5):

{
(T(θ), T∗(θ), V(θ)) ∈ X,

T(θ) > 0, T∗(θ) > 0, V(θ) > 0, θ ∈ [− max(τ1, τ2), 0].
(2.1)

By the fundamental theory of functional differential equations (see, e.g.Hale & Verduyn Lunel, 1993),
we know that there is a unique solution(T(t), T∗(t), V(t)) to system (1.5–2.1). The following theorem
establishes the non-negativity and boundedness of solutions to (1.5–2.1).

THEOREM 2.1 Let (T(t), T∗(t), V(t)) be any solution of system (1.5–2.1). Then, we have the
following:

(i) T(t) > 0, T∗(t) > 0 andV(t) > 0 for t > 0.

(ii) There exists anM > 0 such thatT(t) 6 M, T∗(t) 6 M, V(t) 6 M for sufficiently large timet .

Proof. From the first equation in (1.5), it follows that

T(t) = T(0)e−
∫ t

0 (μT +k̄V(ξ))dξ +
∫ t

0
se−

∫ t
η (μT +k̄V(ξ))dξ dη,
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which indicates thatT(t) > 0 for all t > 0 . Similarly, by the second and the third equations in (1.5),
we have, respectively,

T∗(t) = T∗(0)e−μt +
∫ t

0
k̄ e−μ(t−ξ)T(ξ − τ1)V(ξ − τ1)e

−μτ1 dξ

and

V(t) = V(0)e−ct +
∫ t

0
N̄μ e−c(t−ξ)T∗(ξ − τ2)e

−μ2τ2 dξ,

confirming T∗(t) > 0, V(t) > 0 for t ∈ [0, max{τ1, τ2}]. By a recursive argument, we then obtain
T∗(t) > 0, V(t) > 0 for all t > 0, proving (i).

To prove (ii), let

G(t) = N̄ e−μτ1−μ2τ2T(t) + N̄ e−μ2τ2T∗(t + τ1) +
1

2
V(t + τ1 + τ2)

and denoteq = min{μT , μ/2, c}. Simple calculation leads to

d

dt
G(t) = N̄ e−μτ1−μ2τ2[s − μT T(t) − k̄V(t)T(t)] + N̄ e−μ2τ2[k̄V(t)T(t)e−μτ1 − μT∗(t + τ1)]

+
1

2
N̄μT∗(t + τ1)e

−μ2τ2 −
c

2
V(t + τ1 + τ2)

= N̄se−μτ1−μ2τ2 − μT N̄ e−μτ1−μ2τ2T(t) −
μ

2
N̄ e−μ2τ2T∗(t + τ1) −

c

2
V(t + τ1 + τ2)

6 N̄se−μτ1−μ2τ2 − qG(t),

which shows thatG(t) < N̄se−μτ1−μ2τ2

q +1 for all larget . This in turn implies, by the non-negativity con-
firmed in (i), thatT(t), T∗(t) andV(t) are ultimately bounded by some positive constantM , completing
the proof of the theorem. �

System (1.5) has the infection-free equilibriumE0 = (T0, T∗
0 , V0) = (s/μT , 0, 0). This is the only

biologically meaningful equilibrium if

R0 , k̄ e−μτ1−μ2τ2
sN̄

cμT
< 1.

However, ifR0 > 1, in addition toE0, there is also an infected equilibrium

E1 = (T1, T∗
1 , V1) =

(
ce−μτ1−μ2τ2

N̄k̄
,

s

μ eμτ1
− eμ2τ2

μT c

μN̄k̄
,

sN̄

ce−μτ1−μ2τ2
−

μT

k̄

)
.

The parameterR0 can be rewritten as

R0 =
s

μT
∙

k̄ e−μτ1

μ
∙

N̄μ e−μ2τ2

c
, (2.2)

with the first term being the average number of healthy cells available for infection, the second term
giving the average number of cells that each virion infects, while the last term accounting for the average
number of virions that an infected cell produces. Therefore,R0 is indeed the basic reproduction number.
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3. Stability of the infection-free equilibrium

Let r = τ2
τ1

. Then, system (1.5) can be reduced to the following one with dimensionless timet
τ1

,
which, for simplicity, we again denote byt :






dT(t)
dt = τ1[s − μT T(t) − k̄V(t)T(t)],

dT∗(t)
dt = τ1[k̄V(t − 1)T(t − 1)e−μτ1 − μT∗(t)],

dV(t)
dt = τ1[ N̄μT∗(t − r )e−μ2τ2 − cV(t)].

(3.1)

The linearization of (3.1) at E0 is





dT
dt = τ1

[
− μT T(t) − k̄s

μT
V(t)

]
,

dT∗

dt = τ1
[ k̄s

μT
V(t − 1)e−μτ1 − μT∗(t)

]
,

dI
dt = τ1[ N̄μT∗(t − r )e−μ2τ2 − cV(t)],

(3.2)

from which we obtain the characteristic equation as below:

(
λ + μT

τ2

r

) [(
λ + μ

τ2

r

) (
λ + c

τ2

r

)
−

sk̄N̄μ

μT

(τ2

r

)2
e−μ

τ2
r

(
r

μ2
μ +1

)
e−λ(r +1)

]
= 0. (3.3)

Letting

μ̃T = μT
τ2

r
, μ̃ = μ

τ2

r
, c̃ = c

τ2

r
, s̃ = s

τ2

r
, k̃ = k̄

τ2

r
, τ̃ = r

μ2

μ
+ 1 and τ = r + 1,

(3.4)
(3.3) can be rewritten as

(λ + μ̃T )

[

λ2 + (μ̃ + c̃)λ + μ̃c̃ − N̄
k̃s̃μ̃

μ̃T
e−μ̃τ̃ e−λτ

]

= 0. (3.5)

Hence, the stability ofE0 is totally determined by the roots of

λ2 + (μ̃ + c̃)λ + μ̃c̃ − N̄
k̃s̃μ̃

μ̃T
e−μ̃τ̃ e−λτ = 0. (3.6)

Note that whenτ = 0, (3.6) becomes the following quadratic equation:

λ2 + (μ̃ + c̃)λ + μ̃c̃ − N̄
k̃s̃μ̃

μ̃T
e−μ̃τ̃ = 0, (3.7)

whose roots all have negative real parts under the conditionμ̃c̃ − N̄k̃s̃μ̃ e−μ̃τ̃ /μ̃T > 0, which is equiv-
alent toR0 < 1. Note also that all roots of (3.6) depend continuously onτ (seeBusenberg & Cooke,
1993), and whenτ increases, roots can only possibly enter the right half plane by crossing the imaginary
axis in the complex plane (see, e.g.Beretta & Kuang, 2002). Sinceλ = 0 is not a root of (3.6) when
R0 < 1, the roots of (3.6) can cross the imaginary axis only through a pair of non-zero purely imaginary
roots. Assume thatλ = iw is a purely imaginary root of (3.6) with w > 0. Then,

−w2 + iw(μ̃ + c̃) + μ̃c̃ = N̄
k̃s̃μ̃

μ̃T
e−μ̃τ̃ e−iwτ .
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Rewriting the above equation and taking moduli give

| − w2 + iw(μ̃ + c̃) + μ̃c̃| = N̄
k̃s̃μ̃

μ̃T
e−μ̃τ̃ .

Letting y = w2 yields

y2 + (μ̃2 + c̃2)y + μ̃2c̃2 −

(

N̄
k̃s̃μ̃

μ̃T
e−μ̃τ̃

)2

= 0, (3.8)

which has no positive solution whenR0 < 1. This is a contradiction, showing that all roots of (3.7)
remain in the left half plane for allτ > 0 as long asR0 < 1.

On the other hand, whenR0 > 1, (3.6) has a positive root. This can be easily seen by looking at

the properties of the two functionsf (λ) = λ2 + (μ̃ + c̃)λ + μ̃c̃ andg(λ) = N̄ k̃s̃μ̃
μ̃T

e−μ̃τ̃ e−λτ .
From the above analysis, we see thatR0 = 1 plays a role of threshold: ifR0 < 1, the infection-free

equilibriumE0 is locally asymptotically stable; ifR0 > 1, the infection-free equilibriumE0 is unstable.
Indeed, we can show that ifR0 < 1, the infection-free equilibrium is globally asymptotically stable. To
prove this, we only need to show thatE0 is also globally attractive ifR0 < 1.

Following the convention, we use the following notations: for a continuous and bounded function
f (t) defined on [0, ∞),

f ∞ , lim sup
t→∞

f (t) and f∞ , lim inf
t→∞

f (t).

Now, let(T(t), T∗(t), V(T)) be any solution of (1.5) and (2.1). By Theorem2.1, we know

06 T∞ 6 T∞ < ∞,

06 T∗
∞ 6 T∗∞ < ∞,

06 V∞ 6 V∞ < ∞. (3.9)

By the fluctuation lemma (see, e.g.Hirschet al., 1985), there is a sequencetn with tn → ∞ asn → ∞
such that

T(tn) → T∞ and T ′(tn) → 0 asn → ∞.

Substituting the sequence{tn} into the first equation of (1.5) and taking limit give

μT T∞ 6 s. (3.10)

Applying a similar argument to the second and third equations of (1.5), we have

μT∗∞ 6 k̄ e−μτ1V∞T∞ (3.11)

and

cV∞ 6 N̄μ e−μ2τ2T∗∞. (3.12)

Combining with (3.10), (3.11) and (3.12), we obtain

cV∞ 6 N̄μ e−μ2τ2T∗∞ 6 N̄k̄ e−μτ1−μ2τ2V∞T∞ 6
sN̄k̄ e−μτ1−μ2τ2

μT
V∞.
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Now, if V∞ > 0, then the above inequality yields

c 6
sN̄k̄ e−μτ1−μ2τ2

μT
,

contradictingR0 < 1. Therefore,V∞ = 0, implying limt→∞ V(t) = V∞ = V∞ = 0 by (3.9). By
(3.11), this in turn impliesT∗∞ = 0, and hence limt→∞ T∗(t) = T∗∞ = T∗∞ = 0 by (3.9). Finally,
applying the theory of asymptotically autonomous system (see, e.g.Castillo-Chavez & Thieme, 1995)
to the first equation of (1.5), we conclude that limt→∞ T(t) = s/μT .

Summarizing the above, we have proved the following theorem.

THEOREM 3.1 LetR0 be the basic reproduction number given by (2.2).

(i) If R0 < 1, then the infection-free equilibriumE0 is globally asymptotically stable.

(ii) If R0 > 1, then the infection-free equilibriumE0 is unstable.

4. Stability of the infected equilibrium

WhenR0 > 1, we know thatE0 becomes unstable and (1.5) also has an infected equilibriumE1, in
addition toE0. In this section, we discuss the stability of this infected equilibrium. To this end, we find
the linearization of (3.1) at E1 as below:






dT
dt = τ1[−(μT + kV1)T(t) − k̄T1V(t)],

dT∗

dt = τ1[k̄V1T(t − 1)e−μτ1 + kT1V(t − 1)e−μτ1 − μT∗(t)],

dI
dt = τ1[ N̄μT∗(t − r )e−μ2τ2 − cV(t)].

(4.1)

The characteristic equation for (4.1) is

[
λ + (μT + k̄V1)

τ2

r

] (
λ + μ

τ2

r

) (
λ + c

τ2

r

)
− k̄T1N̄μ

(τ2

r

)2 (
λ + μT

τ2

r

)

× e−(μτ1+μ2τ2) e−λ(r +1) = 0. (4.2)

Using the expressions forE1 = (T1, T∗
1 , V1) obtained in Section2, (4.2) can be reduced to

(

λ + N̄
k̃s̃

c̃eτ̃ μ̃

)

(λ + μ̃)(λ + c̃) − (λ + μ̃T )c̃μ̃ e−λτ = 0, (4.3)

where the re-scaling (3.4) of parameters has been preserved. Obviously, (4.3) is equivalent to

λ3 + a2λ
2 + a1λ + a0 − (b1λ + b0)e

−λτ = 0, (4.4)

where

a2 = N̄
k̃s̃

c̃eτ̃ μ̃
+ μ̃ + c̃,

a1 = μ̃c̃ + N̄
k̃s̃

c̃eτ̃ μ̃
(μ̃ + c̃),
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a0 = N̄μ̃
k̃s̃

eτ̃ μ̃
,

b1 = μ̃c̃,

b0 = μ̃c̃μ̃T .

We first prove that whenτ = 0, then all roots of (4.4) have negative real parts. Indeed, ifτ = 0,
(4.4) can be written as

h(λ) := λ3 + a2λ
2 + (a1 − b1)λ + a0 − b0 = 0. (4.5)

Note that ifR0 > 1,

a2 = N̄
k̃s̃

c̃eτ̃ μ̃
+ μ̃ + c̃ > 0,

a0 − b0 = N̄μ̃
k̃s̃

eτ̃ μ̃
− μ̃c̃μ̃T = μ̃c̃μ̃T (R0 − 1) > 0,

a2(a1 − b1) − (a0 − b0) =

(

N̄
k̃s̃

c̃eτ̃ μ̃

)2

(c̃ + μ̃) + N̄
k̃s̃

c̃eτ̃ μ̃
(μ̃2 + c̃2 + μ̃c̃) + μ̃c̃μ̃T > 0.

By the Routh–Hurwitz theorem (see, e.g.Gantmacher, 1959), all roots ofh(λ) have negative real
parts, i.e. all roots of (4.5) have negative real parts.

Note that all roots of (4.4) depend continuously onτ (seeBusenberg & Cooke, 1993), and asτ
increases, a root of (4.4) may enter the right half plane only by crossing the imaginary axis (see, e.g.
Beretta & Kuang, 2002). Clearly, ifR0 > 1, thenλ = 0 is not a root of (4.4) sincea0 − b0 > 0. Thus,
asτ > 0 increases, roots of (4.4) may cross the imaginary axis only through a pair of non-zero purely
imaginary roots. Assume thatλ = iw, with w > 0, is a purely imaginary root of (4.4). Then,

−w3i − a2w
2 + a1wi + a0 = (b1wi + b0)e

−τwi . (4.6)

Grouping the real part and pure imaginary part of (4.6) and taking moduli give

w6 + (a2
2 − 2a1)w

4 + (a2
1 − 2a0a2 − b2

1)w
2 + a2

0 − b2
0 = 0. (4.7)

Thus,z = w2 satisfies the following cubic equation:

H(z) , z3 + pz2 + qz+ r = 0, (4.8)

where

p = a2
2 − 2a1,

q = a2
1 − 2a0a2 − b2

1,

r = a2
0 − b2

0. (4.9)

Simplifying (4.9), we can easily verify that whenR0 > 1,

p = μ̃2
T R2

0 + μ̃2 + c̃2 > 0,

q = μ̃2
TR

2
0(c̃

2 + μ̃2) > 0,

r = μ̃2c̃2μ̃2
T (R0 − 1)(R0 + 1) > 0.
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It follows that

d

dz
H(z) = 3z2 + 2pz+ q > 0, for all z > 0,

and hence,H(z) is increasing forz > 0. This together with the fact thatH(0) = r > 0 shows that (4.8)
has no positive solutions, implying that (4.4) has no pure imaginary roots forτ > 0 as long asR0 > 1.
Therefore, all roots of (4.4) have negative real parts forτ > 0 providedR0 > 1. Thus, we have proved.

THEOREM 4.1 IfR0 > 1, then the infected equilibriumE1 is asymptotically stable.

5. Numeric simulations

In this section, we perform some numeric simulations to demonstrate the theoretical results obtained in
Sections3 and4, by using the delay differential equation solver dde23 built in the Matlab 7.0. We have
seen in previous sections that the basic reproduction numberR0 plays a decisive rule in determining the
virus dynamics. Thus, for convenience of computations, we substitute (1.4) back into (2.2) to obtain an
explicit formula ofR0 in terms of the original parameters in (1.3):

R0 =
(1 − nrt)(1 − np)skNe−μτ1−μ2τ2

cμT
. (5.1)

Takeτ1 = 1.5, τ2 = 0.5, μ = 0.33, μ2 = 0.28, N = 250, k = 0.0028906, c = 3, μT = 0.2, s = 5,
np = 0.6 andnrt = 0.5. Straightforward calculations show that the infection-free equilibriumE0 =
(25, 0, 0) and the basic reproduction numberR0 = 0.63 < 1. Simulation shows thatE0 is asymptoti-
cally stable, meaning that virus dies out eventually (see Fig.1). This confirms the result in Theorem3.1.

Next, we take another set of values for the parameters:τ1 = 1.5, τ2 = 0.5, μ = 0.33, μ2 =
0.28, N = 1200, k = 0.0028906, c = 3, μT = 0.2, s = 5, np = 0.6 andnrt = 0.5. For these values,
R0 = 3.05 > 1, and in addition to the infection-free equilibriumE0 = (25, 0, 0), there is an infected
equilibriumE1 = (8.2, 2.280, 5). Simulation shows thatE0 is unstable andE1 is asymptotically stable,
confirming the results in Theorems3.1and4.1(see Fig.2).

FIG. 1. Solutions of system (1.5) with τ1 = 1.5, τ2 = 0.5, μ = 0.33, μ2 = 0.28, k = 0.0028906, c = 3, μT = 0.2, s = 5, np =
0.6, nrt = 0.5 andN = 250 givingR0 = 0.63. Initial conditions areT(θ) = 80, T∗(θ) = 20, V(θ) = 20; T(θ) = 36, T∗(θ) =
16, V(θ) = 16 andT(θ) = 10, T∗(θ) = 6, V(θ) = 6, respectively, forθ ∈ [−1.5, 0].
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FIG. 2. Solutions of system (1.5) with τ1 = 1.5, τ2 = 0.5, μ = 0.33, μ2 = 0.28, k = 0.0028906, c = 3, μT = 0.2, s = 5,
np = 0.6, nrt = 0.5 andN = 1200 givingR0 = 3.05. Initial conditions areT(θ) = 1, T∗(θ) = 30, V(θ) = 200; T(θ) = 5,
T∗(θ) = 40, V(θ) = 1000 andT(θ) = 30, T∗(θ) = 10, V(θ) = 500, respectively, forθ ∈ [−1.5, 0].

FIG. 3. Solutions of system (1.5) with τ1 = 1.5, τ2 = 0.5, μ = 0.33, μ2 = 0.28, N = 320, k = 0.0028906, c = 3, μT = 0.2
ands = 5. (a)np = 0.5 andnrt = 0.6 leading toR0 = 0.81 < 1. Initial conditions areT(θ) = 50, T∗(θ) = 2, V(θ) = 2;
T(θ) = 40, T∗(θ) = 1, V(θ) = 1 andT(θ) = 2, T∗(θ) = 1, V(θ) = 1, respectively, forθ ∈ [−1.5, 0]. (b) np = 0.2 andnrt =
0.3 leading toR0 = 2.28 > 1. Initial conditions areT(θ) = 16, T∗(θ) = 10, V(θ) = 180;T(θ) = 12, T∗(θ) = 6, V(θ) = 200
andT(θ) = 2, T∗(θ) = 10, V(θ) = 160, respectively, forθ ∈ [−1.5, 0].

In Fig. 3, we observe the impact of the two efficacy constantsnp andnrt on the dynamics. To this
end, we fixτ1 = 1.5, τ2 = 0.5, μ = 0.33, μ2 = 0.28, N = 320, k = 0.0028906, c = 3, μT = 0.2
ands = 5. Then, we takenp = 0.5 andnrt = 0.6, givingR0 = 0.81 < 1. The solutions all converge
to the infection-free equilibriumE0 = (25, 0, 0) as is shown in Fig.3(a). Next, we decreasenp andnrt
to 0.2 and 0.3, respectively, givingR0 = 2.28 > 1. In this case, solutions converge to the infection
equilibrium E1 = (12.5, 5.5, 128), as is shown in Fig.3(b).

In Fig.4, we numerically investigate the impact of the two delaysτ1 andτ2 on the dynamics. For this
purpose, we fixμ = 0.33, μ2 = 0.28, N = 500, k = 0.0028906, c = 3, μT = 0.2, s = 5, np = 0.6
andnrt = 0.5. Then, we chooseτ1 = 3.2 andτ2 = 2.2 givingR0 = 0.35 < 1. The solutions converge
to the infection-free equilibriumE0 = (25, 0, 0), as is shown in Fig.4(a). Decreasingτ1 andτ2 to 1.5
and 0.5, respectively, givesR0 = 1.27 > 1, and this destroy the stability ofE0 and solutions now
converge to the infection equilibriumE1 = (19.7, 1.9, 45.1) as is shown in Fig.4(b).
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FIG. 4. Solutions of system (1.5) with μ = 0.33, μ2 = 0.28, N = 500, k = 0.0028906, c = 3, μT = 0.2, s = 5, np = 0.6
andnrt = 0.5. (a)τ1 = 3.2 andτ2 = 2.2 givingR0 = 0.35 < 1. Initial conditions areT(θ) = 50, T∗(θ) = 10, V(θ) = 12;
T(θ) = 30, T∗(θ) = 10, V(θ) = 12 andT(θ) = 5, T∗(θ) = 15, V(θ) = 20, respectively, forθ ∈ [−3.2, 0]. (b) τ1 = 1.5 and
τ2 = 0.5 givingR0 = 1.27 > 1. Initial conditions areT(θ) = 10, T∗(θ) = 15, V(θ) = 60; T(θ) = 40, T∗(θ) = 8, V(θ) = 80
andT(θ) = 5, T∗(θ) = 5, V(θ) = 25, respectively, forθ ∈ [−1.5, 0].

6. Conclusion and discussion

We have analysed an HIV-1 infection differential equation model with two concentrated delays, one
accounts for the average latent period for cell infection (time between the contact of a cell by a virus
particle and the entry of the virion into the cell) and the other explains the average time needed for
the virus production after a virion enters a cell. We have identified the basic reproduction numberR0,
and proved that ifR0 < 1, the infection-free steady state is globally asymptotically stable; ifR0 >
1, the infection-free steady state becomes unstable and there occurs an infected steady state which is
asymptotically stable. Thus,R0 = 1 plays a role of threshold value that determines whether or not the
HIV-1 virus in host will be persistent or will go to extinction.

From our results, we conclude that to control the concentrations of the virus and the infected cells,
a strategy should aim to reduce the value of the basic reproduction number to below one. By the ex-
plicit formula (5.1) for R0, we see thatR0 can be decreased by increasing the efficacy of the protease
inhibitor and the reverse transcriptase inhibitor (i.e. increasingnp andnrt). Another way to reduceR0
is to increase the latent period and/or postponing the production period (i.e. increaseτ1 andτ2). While
increasing the efficacy of drugs for HIV has been the goal of scientists, the ‘biological significance’ of
the latter is that it suggests a new direction for new drugs. In other words, any drugs that can prolong
the latent period or slow down virus production process may also help control the HIV-1 infection.

We point out the essential differences between our results and the results inNelson & Perelson
(2002) by which this work is motivated. Firstly, whileNelson & Perelson(2002) proposed the model
with two delayed terms, the analysis was done only for the situation when one delay vanishes. Our results
allow both delays to be present, and it is well known that the analysis of equations with multiple delays
is in general much more challenging. Secondly, our results are in contrast to those inNelson & Perelson
(2002) as well in the following two aspects: (i) All theoretic results inNelson & Perelson(2002) (also
other existing works known by us) are for ‘local’ stability, but we have obtained a ‘global’ stability result
for the infection-free equilibrium by applying the fluctuation lemma. It is well known that local stability
generally does not imply global stability in systems of higher dimensions, let alone infinite-dimensional
systems (delay differential equations are infinite-dimensional systems), and coexistence of a local stable
equilibrium and other asymptotic structure is also possible. (ii) The main theoretic result inNelson &
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Perelson (2002, Theorem 1) claims that when ‘only one single discrete delay’ is present, this delay will
not affect the stability of the equilibrium determined in the non-delay case, as long as the delay is small
or large. For the stability of the infection-free equilibriumE0, our corresponding result shows that the
restrictions of ‘a single delay’ and ‘small delay or large delay’ are indeed not needed. As for the stability
of infected equilibrium, our corresponding result would ‘exclude’ the ‘large’ part, even for a single delay
case. To see this, we considerR0 = R0(τ1, τ2) as a function ofτ1 andτ2 given by (5.1). Obviously,
R0(τ1, τ2) is continuous and decreasing inτ1 andτ2. We choose values of all parameters other thanτ1
andτ2 such that

R0(0, 0) =
(1 − nrt)(1 − np)skN

cμT
< 1, (6.1)

implying that the infection-free equilibriumE0 is stable whenτ1 = 0 andτ2 = 0. The decreasing
property ofR0(τ1, τ2) ensures thatR0(τ1, τ2) < 1 for all τ1 > 0 andτ2 > 0, implying thatE0 remains
stable for allτ1 > 0 andτ2 > 0. Next, we choose another set of values for all parameters other thanτ1
andτ2 such thatR0(τ1, τ2) > 1 ensuring existence and stability ofE1. By the continuity ofR0(τ1, τ2)
onτ1 andτ2, we know that for smallτ1 andτ2,R0(τ1, τ2) > 1 still holds and thusE1 is still stable. But
for largeτ1 and/orτ2,R0(τ1, τ2) < 1 and thusE1 does not exists, let alone its stability.
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