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Analysed is a mathematical model for HIV-1 infection with two delays accounting, respectively, for
(i) a latent period between the time target cells are contacted by the virus particles and the time the virions
enter the cells and (ii) a virus production period for new virions to be produced within and released from
the infected cells. For this model, the basic reproduction nugis identified and its threshold prop-

erty is discussed: the uninfected steady state is proved to be globally asymptotically sible if and
unstable ifRg > 1. In the latter case, an infected steady state occurs and is proved to be locally asymp-
totically stable. The formula foRg shows that increasing either of the two delays will decreRge

This may suggest a new direction for new drugs—drugs that can prolong the latent period and/or slow
down the virus production process.

Keywords HIV-1; cells; virus; delays; stability.

1. Introduction

In the last decade or so, it has been realized that mathematical modelling can provide valuable insight
into HIV-1 pathogenesis. By using differential equations to quantitatively model the dynamics of the
HIV-1 virus, target cells (infected and uninfected) and even possibly the immune responses, researchers
have gained much knowledge about the mechanism of the interactions of these components in the im-
mune system and have thereby enhanced the progress in understanding the HIV-1 infecGotstsae
et al, 2003 Herzet al, 1996 Nowak & May, 200Q Perelson & Nelson1999 Perelsoret al, 1996
1993. Such understanding may offer guidance for developing new drugs and for designing optimal
combination of therapies available (see, &lglsonet al,, 2001, 200Q Nelson & Perelso2002 Kepler
& Perelson 1998 and the references therein).

Most existing mathematical models for HIV infection are by systems of ordinary differential equa-
tions (ODES) (see, e.dNowak & May, 200Q Perelson & Nelsonl999. A standard and classic one of
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this type is the following ODE system:

a0 — s— urT (1) — kVOT (),
a0 — kVO)T(t) — £ T*(), (1.1)

T2 = uNT*(t) — eV (D),

whereT (t), T*(t) and V (t) are the densities of uninfected target cells, infected target cells and the
free virus, respectively. The constant parameters in the equations are explained as below. The positive
constants is the rate at which new target cells are generatedjs their specific death rate andis

the constant rate at which a T-cell is contacted by the virus. It is assumed that once cells are infected,
they may die instantaneously at ratedue to the action of either the virus or the immune system, and

in the mean time, they each produddsnew virus particles during their life, which on average has
Iength%. Thus, on average, virus is instantaneously produced ajdteAlternatively, one can view

virus as being produced in a burst Nf particles when an infected cell dies via lysis, thus producing
virus at rateN u. Lastly, virus particles are cleared from the system at cafehere are other similar
versions of this model in which target cells proliferate logistically or virus also disappears by infecting
cells Perelsoret al, 1993 Kepler & Perelson1998. Other variations can also be considered in which
virus spreads by cell-to-cell infectio@(lshawet al, 2003, infected cells can proliferate or an explicit
immune response is followed. Here, we only consider the variants. §f @An underlying assumption

in such an ODE model is that infection of cells by virions is instantaneous and the production of new
virions by infected cells is also instantaneous.

However, in the real situation, there may be a lag between the time target cells are contacted by the
virus particles and the time the contacted cells become actively affected meaning that the contacting
virions enter cells. This can be explained by the initial (or eclipse) phase of the virus life cycle, which
include all stages from viral attachment until the time that the host cell contains the infectious viral
particles in its cytoplasm. Attachment is a specific binding between the two sets of proteins (also known
as anti-receptors) called gp120 and gp41 on the surface of the HIV and the two sets of proteins (known
as receptors), i.e. CD4 receptor and a beta-chemokine receptor (either CCR5 or CXCR4), on the surface
of the T-cell. After the attachment is completed, the virus seeks to penetrate into the cell via fusion.
Penetration allows the genetic core of virus (called the nucleocapsid) to be injected directly into the cell’s
cytoplasm. gp120 actually contains three sugar-coated proteins (glycoproteins) and once gp120 attaches
itself to CD4 receptor, these three proteins spread apart, allowing the gp41 protein, which is normally
hidden by the gp120 proteins, to become exposed and bind to the chemokine receptor. Once this has
occurred, the viral envelope and the cell membrane are brought into direct contact and essentially melt
into each other, completing the penetration. The above-stated processes take time. Realizing this time
lag, Kirschneret al. (1997 divided infected cells into two classes: inactively infected cells and actively
infected cells, and the 3D ODE system of the forinl] was accordingly modified into a 4D ODE
system. This is equivalent to assuming that the probability that a cell still remains inactively infected
t time units after being contacted by the virus obeys an exponentially decay probability density function.

In addition to the above time lag, there is also a period between the time the virus has penetrated
into a cell and the time the new virions are created within the cell and are released from the cell. This
is because the virus production process within a cell consists of several stages as well: (i) uncoating of
viral RNA, (i) reverse transcription of viral RNA into DNA, (iii) transport of the newly made DNA into
the nucleus, (vi) integration of the viral DNA into the chromosome, (v) production of viral RNA and
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protein and finally (vi) creation of new virus from these newly synthesized RNA molecules and proteins;
seeMittler et al. (1998 for details.

Mittler et al. (1998 combined the aforementioned two lags into a single one and used a gamma
probability distribution function to describe all the above multiple stages. Note that not every contacting
viral particle can get through the eclipse phase, meaning that viral attachment is sometimes reversible.
That is, some virions may not attach to the cell successfully. This happens in particular when drugs (or
vaccines) called attachment inhibitors and/or fusion inhibitors such as T-20 (enfuvirtide, Fuzeon) are
applied. Therefore, before entering the cell, a contacting virion should still be considered a free virion
because it may fail to enter the cell and may contact other cells. Thus, in modelling the HIV-1 infection
dynamics, the latent period and the virus production period within cells should be treated differently.
Recently, in studying the efficacy of a protease inhibitor didglsonet al. (2000 incorporated into
(1.1) a discrete delay to account for the lag between inactively infected and actively infected. Assuming
a constant uninfected T-cell density and an imperfect drug efficacy, their analysis to the delayed model
shows that the delay does affect the rate of decline in plasma virus concentration. As a continuation of
Nelsonet al. (2000 and in studying the efficacy of ‘two drugs’—the protease inhibitor and the reverse
transcriptase inhibitor-Nelson & Perelsoj2002 further generalized the model ielsonet al. (2000
by including two delays for the aforementioned ‘two periods’. The general modéglison & Perelson
(2002 is given by the following system of differential-integral equations:

T = s— urT (1) — (- nkVOT ),
IO = @ =k f5° FLEOV (- T — O — uT* (V). (1.2)
MO _ (1 )N [§° 1Tt - OHd — V(D).

Here, the meanings of the variables and parameters appeared)inefnain the same except that
now stands for the density of cells with ‘integrated’ HIV-1 DNA. The new parametgasidn,; measure
the efficacies of the protease inhibitor and the reverse transcriptase inhibitor, respectively. As mentioned
in Nelson & Perelsorf2002, the kernelsf1(¢) and f2(¢) are the results of incorporating probability
functions for the two processes and the death rate factors of the foffm ¥hen ‘only one discrete
delay’ is presentini.2), i.e. eitherf1(&) = e #76(&—11) and (&) = (& —0) or f1(¢) = 6(E—0) and
f2(&) = e #74(¢ — 12), whered(+) is the Dirac delta function, by analysing the characteristic equations,
Nelson & Perelsorf2002 were able to obtain some local stability results showing the impact of the
delay on the virus dynamics.

When both delays are present ), the analysis of the model becomes harder and the dynamics
of (1.2) in such a general case still remains an open problem. The purpose of this paper is to analyse
(1.2) when there are two delays. In order to avoid the key ideas to be hidden behind too complicated
analysis due to the general form of the two general probability distribution funcfioasd f,, we only
consider two ‘discrete delays’. In addition, we prefer to retrieve the death factdi&inand f2(&). In
other words, we take

fi(&) =0 —m) and fa&) = €4%6(E — 12).
Then, (L.2) reduces to
IO — s— urT(®) — (L - nkVOT ),
T = (1 - npke 1V (t — t)T(t — 1) — uT*(0), (1.3)
MO _ (1 —np)uN e 22T*(t — ) — cV(1).
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Here, 71 can be regarded as the average time for a viral particle to go through the eclipse phase (or
average latent period) and may be treated as the average time between the entry of a virion into a
cell and the creation and release of new virions from this cell. Realistiggllypay differ fromx. For
convenience of notations, we set

R = (1 - nrt)ks
N=(1-npN, (1.4)

which further reducesl(3) to the following system:

T =s—urT® —kVOT ),
a0 — ke 1V (t — o) T(t — 1) — uT*(1), (1.5)
MO — 4N e #22T*(t — 1) — cV(b).

In the rest of this paper, we will analyse systelrbf. In Section2, we address the well-posedness
of the model by proving the positivity and boundedness of solutions. We also identify the basic
reproduction numbeRg which determines whether or not there is an infected equilibrium. Se8tion
is dedicated to the stability of the infection-free equilibrium. In addition to local stability under the
conditionRg < 1, which is obtained by analysing the characteristic equation, we also obtain the global
stability by employing the fluctuation lemma and the asymptotically autonomous system theory, the lat-
ter being in contrast to the previous wolkglsonet al., 2000 Nelson & Perelsoj2002. In Sectiord,
we show that under the conditidRg > 1, the infected equilibrium is asymptotically (locally) stable.
Simulations are provided in Secti&to confirm our analytical theory. Conclusion and discussion will
be given in Sectio®.

2. Well-posedness and basic reproduction number

Let X = C([— max(t1, 72), 0]; R®) be the Banach space of continuous functions fremmfix(z1, 72), 0]
to R3 equipped with the sup-norm. It is biologically reasonable to consider the following initial condi-
tions for (L.5):

[(T(e), T*©),V(©)) € X, 2

TO®) >0,T*©0)>0,V(©) >0, 0e[—maxz,r),0].
By the fundamental theory of functional differential equations (seeHafp & Verduyn Lunel 1993,

we know that there is a unique solutigh(t), T*(t), V(1)) to system {.5-2.1). The following theorem
establishes the non-negativity and boundedness of solutiotsHte? (1).

THEOREM 2.1 Let (T(t), T*(t), V(t)) be any solution of systeml(5-2.1). Then, we have the
following:

(i) Tt) >0, T*(t) >0andV(t) > 0fort > 0.
(i) There exists artM > 0 such thafl (t) < M, T*(t) < M, V(t) < M for sufficiently large timd.

Proof. From the first equation inl(5), it follows that

P S S
T(t) ZT(O)e_jo(,UT-‘rkV(f))dg +/O ge JyluT+HkV(E)de d,
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which indicates thal (t) > O for allt > 0. Similarly, by the second and the third equationslirb),
we have, respectively,

t
T =T O 4+ [ ket ITE - v - et ds
0
and
t
V(t) = V(e ™ +/ Ny e St=)T*(E — rp)e #2%2 ¢,
0

confirming T*(t) > 0,V (t) > 0 fort e [0, maxXr1, 72}]. By a recursive argument, we then obtain
T*(t) > 0,V(t) > 0forallt > 0, proving (i).
To prove (i), let

- - 1
G(t) = Ne #1722 T (t) + N e #“22T*(t + 1) + EV(t + 11+ 12)
and denotg = min{uT, /2, c}. Simple calculation leads to

%G(t) = Ne #1r22[s — 41T (t) —kV(O)T ()] + N e #22[kV ()T (t)e “™ — uT*(t + 11)]

1 c
+ EN,uT*(t + 11)e 22 — EV(t + 11+ 12)

_ _ - C
= Nse #i—Her2 _ o N e Ai—Hen2T (t) — %N €RT (L4 1) — SVt 11t )

< Nse #i—Ham2 _ qG(t),

which shows thaG(t) < w +1 for all larget. This in turn implies, by the non-negativity con-
firmed in (i), thatT (t), T*(t) andV (1) are ultimately bounded by some positive constdntompleting
the proof of the theorem. O
System (.5 has the infection-free equilibriury = (To, Ty, Vo) = (S/u7, 0, 0). This is the only
biologically meaningful equilibrium if
Ro & kewa—nzz SN g
cur

However, ifRg > 1, in addition toEg, there is also an infected equilibrium

C e HTI—H2T2 S c SN
E1= (T, TS, V) = — _guen 1 _HTY
Nk ueHTL uNK  ce #m—Ham2 k

The parameteR can be rewritten as

s ke HTL Ny e Her
Ro= — - (oA
uT u c

with the first term being the average number of healthy cells available for infection, the second term
giving the average number of cells that each virion infects, while the last term accounting for the average
number of virions that an infected cell produces. TherefRigis indeed the basic reproduction number.

: 2.2)
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3. Stability of the infection-free equilibrium

Let r = 2. Then, system1(5 can be reduced to the following one with dimensionless t'brt‘-pe
which, for simplicity, we again denote ly

9O — pfs— urT(t) —KVOT M),
O — o[kV(t — DTt — e ™ — uT*1)], (3.1)
PO = [NaT*(t - r)er22 — cV(1)].
The linearization of3.1) at Eg is
F=n[-wTO - Evo),
O =n[fVt - nern — uT* )], (3.2)
%' = 7[NuT*(t —r)e 4222 —cV(t)],

from which we obtain the characteristic equation as below:

72 72 72 skN 2\2 _,2( 2 .
(,1 + ut r_) [(/1 +u7) (/1 +CT) - ﬂT# (T) g ? (7+1) ‘(“fl)} =0. (3.3)
Letting
Gt =ur2, p=u, c=c?, 5=s2, k=kZ2, i=r"241 and t=r+1
r r r r r u
(3.4)
(3.3) can be rewritten as
A+ aT) |:/12+(ﬁ+6)/1+[¢(:— Nﬂ—fe"”e‘“} =0. (3.5)

Hence, the stability oEy is totally determined by the roots of

_ksn .-
224 (i+ 04+ a6 — NHeitgit g, (3.6)
AT
Note that whenr = 0, (3.6) becomes the following quadratic equation:
_ksn .-
24 (A4 064+ ae— NHe it —q (3.7)
At

whose roots all have negative real parts under the condition Nk3z e #% /it > 0, which is equiv-

alent toRp < 1. Note also that all roots o3(6) depend continuously on (seeBusenberg & Cooke
1993, and wherr increases, roots can only possibly enter the right half plane by crossing the imaginary
axis in the complex plane (see, eRgretta & Kuang2002. SinceA = 0 is not a root of 8.6) when

Ro < 1, the roots of8.6) can cross the imaginary axis only through a pair of non-zero purely imaginary
roots. Assume that = iw is a purely imaginary root of3.6) with w > 0. Then,

—w? +iw(it + €) + & = N——g AT g7lvr,
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Rewriting the above equation and taking moduli give

| — w2+ iw(i +8) + id] = N g
MT
Lettingy = w? yields
. 2
y2+(ﬂ2+62)y+[e262—(Nf—fe‘“) =0, (3.8)

which has no positive solution wheRg < 1. This is a contradiction, showing that all roots 8f%)
remain in the left half plane for all > 0 as long asRg < 1.
On the other hand, wheRg > 1, (3.6) has a positive root. This can be easily seen by looking at

the properties of the two functioris(1) = 12 + (i + €)4 + i€ andg(1) = N ks"e it @it

From the above analysis, we see tRat= 1 plays a role of threshold: iRg < 1, the infection-free
equilibrium Eg is locally asymptotically stable; iRo > 1, the infection-free equilibriunkg is unstable.
Indeed, we can show thatRy < 1, the infection-free equilibrium is globally asymptotically stable. To
prove this, we only need to show th&g is also globally attractive iR < 1.

Following the convention, we use the following notations: for a continuous and bounded function
f (t) defined on [Qc0),

f° 2 10imsup f(t) and fy £ lim inf f(t).
t—oo

t—o0

Now, let(T (), T*(t), V(T)) be any solution of1.5) and @.1). By Theoren®.1, we know

0< Too < T® < 00,
0<TL ST < o0,
0 < Vyo V= < 0. (3.9

By the fluctuation lemma (see, eldirschet al, 1985, there is a sequendg with t, — oo asn — oo
such that

Tn) - T and T'(tn) » 0 asn — co.
Substituting the sequenét} into the first equation ofl(.5) and taking limit give
urT® <s. (3.10)
Applying a similar argument to the second and third equation.5f,(we have
uT* < ke Hry o™ (3.11)
and
cV® < Ny e HamaT*o, (3.12)
Combining with 8.10, (3.11) and @.12), we obtain
SNk g #m—#am2

CV™® < Ny @ #2RT*® ¢ Nke HitmHeny T « 2 7 >,
MHT
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Now, if V*° > 0, then the above inequality yields

SNR @ HT1I—H2T2
~ —7

MUT

contradictingRg < 1. ThereforeV>° = 0, implying lim_ V() = V*® = V, = 0 by 3.9. By
(3.11), this in turn impliesT **° = 0, and hence lig, o T*(t) = T**° = T.oc = 0 by (3.9). Finally,
applying the theory of asymptotically autonomous system (seeCagjillo-Chavez & Thiemel995
to the first equation ofl(.5), we conclude that ligy, oo T () = S/uT.

Summarizing the above, we have proved the following theorem.

THEOREM3.1 LetRg be the basic reproduction number given By2J.

() If Ro < 1, then the infection-free equilibriurdg is globally asymptotically stable.
(i) If Ro > 1, then the infection-free equilibriufdg is unstable.

4. Stability of the infected equilibrium

WhenRp > 1, we know thatEy becomes unstable andl.$) also has an infected equilibriui,, in
addition toEg. In this section, we discuss the stability of this infected equilibrium. To this end, we find
the linearization of3.1) at E; as below:

dL — o[ —(ut + KVD)T (1) — KTV (1)),

ddT—t* = 1[kKVIT(t — e # + KTV (t — 1)e 4™ — uT*(1)], 4.1)

%' = 1[NuT*({ —r)e #22 —cV(1)].
The characteristic equation fot.Q) is

- 72 72 72 - - 72\2 72
[z +(uT + kvl)T] (x + ”T) (z + cT) — kTN (T) (z + ”TT)
x @~ wntper) o=+l _ (4.2)

Using the expressions f&, = (Ty, T;", V1) obtained in Sectiod, (4.2) can be reduced to

(z +N leﬂ ) G+ i) (A +06) — (h+ )6 e ™ =0, (4.3)

where the re-scaling3(4) of parameters has been preserved. Obvioudl9) (s equivalent to

23+ apa? +aph +ag — (b + bo)e™* =0, (4.4)
where
S
ap=N—— + 746
D ceik M
ks
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ké

tz

by = #C,
bo = uCit.
We first prove that whem = 0O, then all roots of4.4) have negative real parts. Indeedzit= 0,
(4.4) can be written as

h(1) := 2% + a4 + (a1 — b1)A + ag — by = 0. (4.5)
Note that ifRy > 1,
R iseso
a = (:eff+ﬂ+c> X
- ks .
ag—bo = Nii— — a€at = a€at(Ro—1) > 0,

2
az(al—bl)—(ao—bo):( )(C+ﬂ)+N (# + & + ji6) + Gt > 0.

By the Routh—Hurwitz theorem (see, e@antmacherl959, all roots ofh(1) have negative real
parts, i.e. all roots 0f4.5) have negative real parts.

Note that all roots of4.4) depend continuously on (seeBusenberg & Cookel993, and asr
increases, a root ofi(4) may enter the right half plane only by crossing the imaginary axis (see, e.g.
Beretta & Kuang20032. Clearly, if Rg > 1, theni = 0 is not a root of 4.4) sinceag — bg > 0. Thus,
ast > 0 increases, roots ofi(4) may cross the imaginary axis only through a pair of non-zero purely
imaginary roots. Assume that= iw, with w > 0, is a purely imaginary root ofi(4). Then,

—w3i — apw? + a1wi + ag = (biwi + bp)e™ ol (4.6)
Grouping the real part and pure imaginary parth6) and taking moduli give
w® + (85 — 2a1)w* + (8% — 2apay — b?)w? + af — b = 0. 4.7)
Thus,z = w? satisfies the following cubic equation:
H(z) 222+ pZ2+qz+r =0, (4.8)
where
p= a3 — 2ay,

q = a2 — 2apap — b?,
r=a3—bj (4.9)
Simplifying (4.9), we can easily verify that wheRg > 1,
p=aiRi+ i*+& >0,
q=ji3 o( + i) > 0,

= i*@iF(Ro— D(Ro+1) > 0.
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It follows that

d

ZH@= 322 +2pz+q>0, forallz>0,

and henceH (2) is increasing foz > 0. This together with the fact th&t(0) =r > 0 shows that4.8)
has no positive solutions, implying that.§) has no pure imaginary roots fer> 0 as long askg > 1.
Therefore, all roots 0f4.4) have negative real parts fer> 0 providedRg > 1. Thus, we have proved.

THEOREM4.1 If Rg > 1, then the infected equilibriur; is asymptotically stable.

5. Numeric simulations

In this section, we perform some numeric simulations to demonstrate the theoretical results obtained in
Sections3 and4, by using the delay differential equation solver dde23 built in the Matlab 7.0. We have
seen in previous sections that the basic reproduction nuRpetays a decisive rule in determining the

virus dynamics. Thus, for convenience of computations, we substitufeb@ack into @.2) to obtain an

explicit formula of R in terms of the original parameters ih.§):

(1 =np)(1 — np)skNe#rmrzm
h cur '

Takery = 1.5, = 0.5, u = 0.33, u2 = 0.28 N = 250, k = 0.0028906c = 3, ut = 0.2,s =5,
np = 0.6 andny = 0.5. Straightforward calculations show that the infection-free equilibriegn=
(25, 0, 0) and the basic reproduction numhb®p = 0.63 < 1. Simulation shows th&Eg is asymptoti-
cally stable, meaning that virus dies out eventually (seelfid-his confirms the result in TheoreBnil

Next, we take another set of values for the parametars= 1.5,z = 05 u = 033, u2 =
0.28, N = 120Q k = 0.0028906¢c = 3, ut = 0.2,s = 5,ny = 0.6 andny = 0.5. For these values,
Ro = 3.05 > 1, and in addition to the infection-free equilibriuy = (25, 0, 0), there is an infected
equilibriumE; = (8.2, 2.280, 5). Simulation shows theg is unstable andk; is asymptotically stable,
confirming the results in Theoremsl and4.1 (see Fig2).

Ro

(5.1)

1000 -

800

600

FiG. 1. Solutions of systemil(5) with 71 = 1.5, 7p = 0.5, u = 0.33, up = 0.28 k = 0.0028906¢ = 3, u1 = 0.2, =5,np
0.6, nit = 0.5 andN = 250 givingRg = 0.63. Initial conditions ard (#) = 80, T*(0) = 20, V(0) = 20, T(0) = 36, T*(9)
16,V (9) = 16 andT (#) = 10, T*(@) = 6, V (9) = 6, respectively, fod € [-1.5, O].
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FIG. 2. Solutions of systeml(5) with 77 = 1.5, 70 = 0.5, # = 0.33, up = 0.28 k = 0.0028906¢c = 3, ut = 0.2,s = 5,
np = 0.6, nrg = 0.5 andN = 1200 givingRg = 3.05. Initial conditions ar& (§) = 1, T*(0) = 30,V (0) = 200;T(9) =5,
T*(©) = 40, V(0) = 1000 andT (9) = 30, T*(0) = 10, V (9) = 500, respectively, fof € [—1.5, 0].

1000
800
600
400
200

0
40

FiG. 3. Solutions of systenil(5) with 1 = 1.5, 7p = 0.5, u = 0.33, u» = 0.28 N = 320,k = 0.0028906c = 3, u7 = 0.2
ands = 5. (@)np = 0.5 andnyt = 0.6 leading toRg = 0.81 < 1. Initial conditions areT (¢) = 50, T*() = 2,V(9) = 2;
T =40,T*©@) =1LV@) =1andT (@) =2,T*@) =1, V() = 1, respectively, fod e [-1.5,0]. (b) np = 0.2 andn; =
0.3 leading toRg = 2.28 > 1. Initial conditions arél (f) = 16, T*(0) = 10, V(9) = 180;T(0) = 12, T*(#) = 6, V() = 200
andT (0) = 2, T*(#) = 10, V(#) = 160, respectively, fof e [-1.5, 0].

In Fig. 3, we observe the impact of the two efficacy constamtsindn,; on the dynamics. To this
end, we fixty = 1.5,72 = 0.5, 4 = 0.33, u2 = 0.28 N = 320 k = 0.0028906¢c = 3, ut = 0.2
ands = 5. Then, we take, = 0.5 andn = 0.6, givingRo = 0.81 < 1. The solutions all converge
to the infection-free equilibriuniEg = (25, 0, 0) as is shown in Fig3(a). Next, we decreasg, andn
to 0.2 and 0.3, respectively, givifgg = 2.28 > 1. In this case, solutions converge to the infection
equilibriumE; = (125, 5.5, 128), as is shown in Fig3(b).

In Fig. 4, we numerically investigate the impact of the two delayandz, on the dynamics. For this
purpose, we fixy = 0.33, up = 0.28, N = 500, k = 0.0028906¢Cc = 3, ut = 0.2,s =5,np = 0.6
andny = 0.5. Then, we choose; = 3.2 andr; = 2.2 giving Rg = 0.35 < 1. The solutions converge
to the infection-free equilibriunkg = (25, 0, 0), as is shown in Figd(a). Decreasing; andzy to 1.5
and 0.5, respectively, giveRg = 1.27 > 1, and this destroy the stability d&&y and solutions now
converge to the infection equilibriu; = (19.7, 1.9, 45.1) as is shown in Fig4(b).
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FiG. 4. Solutions of systeml(5) with x = 0.33, up = 0.28, N = 500 k = 0.0028906¢c = 3, u1 = 0.2,s = 5,np = 0.6
andnrt = 0.5. (&)1 = 3.2 andrp = 2.2 giving Rg = 0.35 < 1. Initial conditions areT (9) = 50, T*(#) = 10,V (9) = 12;
T@) =30,T*@©®) =10,V(@) = 12 andT (@) = 5 T*(©®) = 15, V() = 20, respectively, foé € [-3.2,0]. (b) 1 = 1.5 and
79 = 0.5 givingRg = 1.27 > 1. Initial conditions arel (9) = 10, T*(0) = 15, V(0) = 60; T(9) = 40, T*() = 8,V (0) = 80
andT (9) =5, T*(#@) =5, V(0) = 25, respectively, fof e [-1.5, 0].

6. Conclusion and discussion

We have analysed an HIV-1 infection differential equation model with two concentrated delays, one
accounts for the average latent period for cell infection (time between the contact of a cell by a virus
particle and the entry of the virion into the cell) and the other explains the average time needed for
the virus production after a virion enters a cell. We have identified the basic reproduction rigmber
and proved that ifRg < 1, the infection-free steady state is globally asymptotically stabl®pif>
1, the infection-free steady state becomes unstable and there occurs an infected steady state which is
asymptotically stable. Thu&o = 1 plays a role of threshold value that determines whether or not the
HIV-1 virus in host will be persistent or will go to extinction.

From our results, we conclude that to control the concentrations of the virus and the infected cells,
a strategy should aim to reduce the value of the basic reproduction nhumber to below one. By the ex-
plicit formula (5.2) for R, we see thaRRg can be decreased by increasing the efficacy of the protease
inhibitor and the reverse transcriptase inhibitor (i.e. increaspgndny;). Another way to reduc®g
is to increase the latent period and/or postponing the production period (i.e. ineresas#r,). While
increasing the efficacy of drugs for HIV has been the goal of scientists, the ‘biological significance’ of
the latter is that it suggests a new direction for new drugs. In other words, any drugs that can prolong
the latent period or slow down virus production process may also help control the HIV-1 infection.

We point out the essential differences between our results and the resilidsion & Perelson
(2002 by which this work is motivated. Firstly, whilBlelson & Perelsorf2002 proposed the model
with two delayed terms, the analysis was done only for the situation when one delay vanishes. Our results
allow both delays to be present, and it is well known that the analysis of equations with multiple delays
is in general much more challenging. Secondly, our results are in contrast to thbslsdm & Perelson
(2002 as well in the following two aspects: (i) All theoretic resultsNielson & Perelsorf2002 (also
other existing works known by us) are for ‘local’ stability, but we have obtained a ‘global’ stability result
for the infection-free equilibrium by applying the fluctuation lemma. It is well known that local stability
generally does not imply global stability in systems of higher dimensions, let alone infinite-dimensional
systems (delay differential equations are infinite-dimensional systems), and coexistence of a local stable
equilibrium and other asymptotic structure is also possible. (ii) The main theoretic redidtson &
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Perelson2002 Theorem 1) claims that when ‘only one single discrete delay’ is present, this delay will
not affect the stability of the equilibrium determined in the non-delay case, as long as the delay is small
or large. For the stability of the infection-free equilibriuBy, our corresponding result shows that the
restrictions of ‘a single delay’ and ‘small delay or large delay’ are indeed not needed. As for the stability
of infected equilibrium, our corresponding result would ‘exclude’ the ‘large’ part, even for a single delay
case. To see this, we consid@p = Ro(r1, 72) as a function ofr; andzz given by 6.1). Obviously,
Ro(r1, t2) is continuous and decreasingdnandzz. We choose values of all parameters other than
andr, such that
(1 —np)(1 = np)skN B
cur
implying that the infection-free equilibriunkg is stable wherr; = 0 andz; = 0. The decreasing
property ofRo(z1, 72) ensures thako(z1, 72) < 1 for all 73 > 0 andzz > 0, implying thatEg remains
stable for allz; > 0 andz, > 0. Next, we choose another set of values for all parameters othetthan
andzz such thatRo(z1, 72) > 1 ensuring existence and stability Bf. By the continuity ofRq(z1, 72)
ont; andry, we know that for smalt; andzo, Ro(z1, 72) > 1 still holds and thugk; is still stable. But
for larger1 and/orzy, Ro(r1, 72) < 1 and thusE; does not exists, let alone its stability.

Ro(0,0) =

1, (6.1)
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