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Abstract

Exponential stabilities of the Cohen—Grossberg neural network with and without delays are analyzed. By Liapunov functions/functionals,
sufficient conditions are obtained for general exponential stability, while by using a comparison result from the theory of monotone
dynamical systems, componentwise exponential stability is also discussed. All results are established without assuming any symmetry of
the connection matrix, and the differentiability and monotonicity of the activation functions. © 2002 Published by Elsevier Science Ltd.
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1. Introduction

Consider the Cohen—Grossberg neural network model
which is described by the system of ordinary differential
equations

5= =) | bix) = D> 1ysi(x)) | i=1,..,n (1.1
Jj=1

Here n = 2 is the number of neurons in the network, x;
denotes the state variable associated with the ith neuron,
a; represents an amplification function, and b; is an appro-
priately behaved function. The n X n connection matrix 7 =
(#;7) tells how the neurons are connected in the network, and
the activation functions s;s show how neurons respond to
each other. Functions g;s, b;s and s;s are subject to certain
conditions to be specified later. This model was initially
proposed and studied by Cohen and Grossberg, and as
pointed in Cohen and Grossberg (1983), it includes a
number of models from neurobiology, population biology,
evolutionary theory. System (1.1) also includes the Hopfield
neural network as a special case, which is an artificial neural
network and is of the form

. Xi C :
C,-x,»z _E +]:th’fs!(x/)+1” 1= 1,2,...,”1, (12)
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where the positive constants C;s and R;s are the neuron
amplifier input capacitances and resistances, respectively,
and [;s are the constant inputs from outside of the network
and x;s, 5;8 and T = (¢;) are the same as in Eq. (1.1).

Established in the pioneering work of Cohen and
Grossberg (1983) and Hopfield (1984) was the ‘global
limit property’ of systems (1.1) and (1.2), respectively,
meaning that given any initial conditions, the solution
of the system (1.1) (or (1.2)) will converge to some
equilibrium of the system. Such a global limit property
in Cohen and Grossberg (1983) and Hopfield (1984)
was obtained by considering some potential functions
under the assumption that the connection matrix 7T is
symmetric. This global limit property confirms the abil-
ity of global pattern formation which is crucial for a
network. However, the symmetry assumption is not
plausible in many network applications because it lays
a restriction on the connection topology of the
networks. Moreover, the global limit property does not
give a description or even an estimate of the region of
attraction for each equilibrium. In other words, given a
set of initial conditions, one knows that the solution
will converge to some equilibrium but does not know
exactly to which one it will converge. In terms of asso-
ciative memories, one does not know what initial condi-
tions are needed in order to retrieve a particular pattern
stored in the network.

On the other hand, in applications of neural networks
to parallel computation, signal processing and other
problems involving the solutions of optimization
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problems, it is required that there be a well-defined
computable solution for all possible initial states. In
other words, it is required that the network have a
unique equilibrium that is globally attractive. In fact,
earlier applications of neural networks to optimization
problems have suffered from the existence of a compli-
cated set of equilibria (see Tank and Hopfield (1986)).
Thus, the global attractivity of a unique equilibrium for
the system (1.1) or (1.2) is of great importance for both
practical and theoretical purposes, and has been the
major concern of many authors. See, e.g. Forti (1994),
Forti, Manetti, and Marini (1992), Hirsch (1989) and
Matsuoka (1992).

Due to the finite speeds of switching and transmission of
signals, time delays unavoidably exist in a working network
and thus should be incorporated into the model equations of
the network. For Eq. (1.2), Marcus and Westervelt (1989)
first introduced a single delay into the model and observed,
both numerically and experimentally, sustained oscillations
even still with symmetric connections. Such delay-induced
oscillations have stimulated further studies of global attrac-
tivity for Eq. (1.2) with various delays incorporated (Bélair,
1993; Cao & Wu, 1996; van den Driessche & Zou, 1998;
Gopalsamy & He, 1994; Guan, Chen, & Qin, 2000; Joy,
2000; Lu, 2000; Wu, 1999). For Eq. (1.1), Ye, Michel,
and Wang (1995) introduced delays into it by considering
the following system:

K n
X (1) = —a,-<xi)[bi(xi> =3 > 08— n))],

k=0 j=1 (1.3)

i=1,2,...,n,

where n X n matrix Tj, = (tg‘)) represents the interconnec-
tions which are associated with delay 7, and the delays 7,
k=0,1,...,K, are arranged such that 0 = 1) < 1) < --- <
Tx. They confirmed that the global limit property remains
for Eq. (1.3) provided: (i) the connection possesses some
kind of symmetry; and (ii) the delays are sufficiently small.
As for the global attractivity of Eq. (1.3), Wang and Zou
(2000) established some delay independent criteria, without
assuming monotonicity and differentiability of the activa-
tion functions and any symmetry of the connections.

In designing and implementing a network, it is preferable
and desirable that the neural network not only converge, but
also converge as fast as possible. It is well known that
exponential stability gives a fast convergence rate to the
equilibrium. The purpose of this paper is to obtain some
criteria for the exponential stability of a unique equilibrium
for the following system:

5 = —a,-(xi)[b[(x,-) = > ts(x(0) + J,],
j=1 (1.4

i=1,2,....n,

and

%) = —a;(x;) I:bi(xi) - Zfzjsj(xj(f — 7))t Ji],
j=1 (1.5)

i=1,2,...,n,

where J;s denote the constant inputs from outside of the
system, 7; = 0 are delays caused from switching and trans-
mission processes. We do not confine ourselves to the
symmetric connections and differentiable activation func-
tions and thus allow much broader connection topologies
for the network.

This paper is organized as follows. In Section 2, we intro-
duce some necessary notations and assumptions. In Section
3, we establish our main results on the exponential stability
of Egs. (1.4) and (1.5). We employ Liapunov functions/
functionals to obtain the general exponential stability, and
use a comparison result from the theory of monotone dyna-
mical systems to derive a criterion for componentwise expo-
nential stability. Some examples are also given in Section 3
to demonstrate the main results.

2. Preliminaries

Let R denote the set of real numbers and R" =
RXRX--XR .If x €R", then x' = (x1,...,,x,) denotes
the transpose of x, |lx, = (x"x)""*. Let R™" denote the set
of n X n real matrices. For Z € R™", the spectral norm of Z
is defined as

|Z|l, = (max{|A| : A is an eigenvalue of Z"Z})"?.

The initial conditions associated with Eq. (1.4) are of the
form

x;(s) = x;(0),

and the initial conditions associated with Eq. (1.5) are of the
form

xi(s) = ¢i(s) € C([—7,0],R),

i=1,2,..,n, @2.1)

s € [—T10],
2.2)
i=12,...,n,

where 7= max{7;, 1 =1i,j = n}.
We list some assumptions which will be used in the main
results.

(Hy) Foreachi € {1,2,...,n}, a; is bounded, positive and
locally Lipschitz continuous, furthermore we assume 0 <
o =a) = a,;

(H,) For each i € {1,2,...,n}, b; and b[l are locally
Lipschitz continuous.

For the activation functions s;(x), i = 1,2,...,n, they are
typically assumed to be sigmoid which implies that they are
monotone and smooth, that is, they are required to satisfy
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the following:

(A) 5; €ECIR), s/(x)>0 for xER and s/(0)=
SUp,eg Si(X) > 0,i=1,2,....n.
(A) 5;(0) = 0 and lim,_, + o, 5;(x) = *1.

We will give a modification of (A;) and (A;) to the
following

(Sy) For each i € {1,2,...,n}, s; : R— R is Lipschitz
continuous with a Lipschitz constant ;.

(Sy) For each i € {1,2,...,n}, |s;(x)] = M,, x ER for
some constant M; > 0.

3. Main results

We first give an existence result for the equilibrium of Eq.

(1.4) (or (1.5))

Theorem 3.1. [If (H))—(H,) and (S1)—(S,) hold, then for
every input J, there exists an equilibrium for system (1.4)

((1.5)).

Proof. Note that Egs. (1.4) and (1.5) have the same equi-
librium set. By (H,), we know that x* is an equilibrium of

Egs. (1.4) and (1.5) if and only if x* = (x},...,x))" is a

solution of equations

bi() = > tys() + =0, i=l.n. 3.1)
j=1

For every fixed J

n n
S tysix) + I = D |tyM; + |7 = P
=1 =1

j=

Now consider

Xi = hi(x1’x25 '“»xn) = b;1 (Ztljs(x]) + Ji)’
Jj=1

fori=1,2,...,n.
Then we have
|hi(x1, %2, ..., 5,)| = max{|b; '(s) |,s € [=P;, Pil}:= Dy,

fori=1,2,...,n.

It follows that (hy,h,, ...,hn)T maps D =[—D,,D] X
[—D,,D,] X - X[—D,,D,] into itself. Thus, by Brouwer’s
fixed point theorem, we get the existence of an equilibrium
located in D. The proof is complete. [J]

3.1. Exponential stability for Eq. (1.4)

Let x* be an equilibrium of Eq. (1.4) and u(t) = x(t) — x".

Substituting x(f) = u(¢) + x" into Eq. (1.4) leads to

Ml(t) = _Cli(ui + x;k)

X |:bi(u,» +xf) = bi(x)) = > t,»j(sj(uj) + xf) - sj-(x;f
=
(32)

Let oy(u;(1)) = aj(u;(t) + x7),  Bi(u;(1)) = bi(u;(t) + x7) —
bi(x;), &ui(1)) = s;(u;(t) + x;) — 5;(s;). Then Eq. (3.2)
further reduces to

(1) = —a;(u (1) I:.Bi(“i(t)) - Ztijgj(”j)il,
j=1 3.3)

i=1,2,..,n.

If we denote A(u)= diag{o(uy),...,a,(u,)}, u=
(Uy,...,u))" €R", Bu)= (By(uy), ..., B(u,) ER", T =

[ij1ixn> &) = (gl(ul),...,gn(un))T, then system (3.3) can
be rewritten as

= —Aw)(Bu) — Tg(u(1))). (34

Theorem 3.2. Assume that (H,)—(H,) and (S;)—(S,) hold.
Suppose there exists y; > 0 such that

uBiu) = yu®,  foru €R, i=1,2,...,n, (3.5)
and

8= L|T]hm < 1, (3.6)
where L =max,<;<, L; and 7N = max|<;j=,{ &@;}

/min;—,—, {a;v;}. Then, for any fixed input J, Eq. (1.4)
has a unique equilibrium x* which is exponentially stable
in the sense that every solution x(t) of Eq. (1.4) satisfies

n

> () —x)=e" Z (x:(0) — x7)’, (3.7)
i=1

i=1
where o= (1/2)(1 — )(min <=, { ;% }).

Proof. Existence of an equilibrium x* is guaranteed by
Theorem 3.1, and the uniqueness will be implied by the
estimate (3.7). So, we only need to prove Eq. (3.7), which
is equivalent to

le@)l> = &= |u(0)

2 (3.8)
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where u(r) = x(f) — x*. Let V(u) = (1/2)||u||*. Then

dvfj”;(t)) = —u"AW)B) + u"AGu)Te(w)
= = au)Biuu; + [l JAILIIT Mgl
i=1
== ayui +|lul, 111<1l?1<Xn{ a Tl el
i=1 -

n
— min {&;y;} ZM? + lfgfl}n{ & [T Lllull>
i=1 ==

1=i=n

= —(minjz=, {e; v} — maxlsiSn{di}LHTHZ)”M”%
= —(1 = &)(min ==, { ey llE () = =20V (u(@),

which leads to

V(u() = e 27"V (u(0), (3.9)
ie.

@)l = &= lu(0),.

This completes the proof. [

Motivated by Hirsch’s work (Hirsch, 1989) for the global
asymptotic stability of differentiable dynamic systems such
as the Hopfield neural networks, in which the negative
diagonal connection weights did contribution to the
stability, and by constructing a suitable Liapunov function,
we establish the following theorem.

Theorem 3.3. Suppose (H))—(H,) and (S;)—(S,) hold and
Eq. (3.5) is satisfied. In addition, if for each i = 1,2,...,n

ugi(u) > 0, u# 0, (3.10)
and
N
S| <2 (3.11)
11 ]#l Jl Ll

are satisfied, where [y]" = max{y,0}. Then, for every input
J, system (1.4) has a unique equilibrium x* which is expo-
nentially stable in the sense that every solution x(t) of Eq.
(1.4) satisfies

D) —xi|=ce ™Y 0~ x|, >0, (3.12)
i=1 i=1

where c¢= ala and
Sl L)

o = a min <<, {7y; — [t; —
Proof. Similar to the proof of Theorem 3.2, we only need

to prove that every solution u(z) of Eq. (3.4) satisfies

> ] = ce” > Ju0)]. > 0. (3.13)
i=1 i=1

Let

_~ (" sgn(s)
V() = ; JO ) ds. (3.14)
Then

dv < S
AL S (Bf“‘» - z“)
=1

i=1

In
™M

(_%|Mi| + 1 sgn(u;)gi(u;) + Zfijgj(uj))

i= i

=

= Z (_%‘|Mi| + 1;lg:(u)| + Z |tij||gj(”j)|)

i=1 =i

(Yi|’4i| + (tii + |tji|)|gi(ui)| )
i=1 Viall

N
- Z Yilwi| + Z I:tii -> |tji|:| lgi(u;)|

=

I

i=1 1 =

n n *
-> (Vi - I:tii + ijiil Li)|ui|~
5 =

Let v:= minlsis" {'yl - [tii + Z]"Z;éi |t]l|]+Lt}7 then we have

I

dV(u) i

— = _V;|ui|~ (3.15)
From Eq. (3.14) we get

1 1 &

— N ul=vay = = |u. (3.16)
@ = Q=

where @ =max;<;,—,{&;} and a=min<-,{a}.
Combining Eqgs. (3.15) and (3.16), we have

_dfl(t”) = —vaVu), (3.17)
which leads to
Vu@) < e "2'V(u(0)). (3.18)

Hence we can conclude from Eq. (3.16) that
n n

D @] = ce > [u0)].

i=1 i=1

This completes the proof. [J

Remark 3.1. By Gerschgorin’s circle theorem, we note
that the condition (3.11) implies that all eigenvalues of the
connection matrix 7 have real parts which are less than
max{vy,/L;, i=1,2,...,n}. A similar result was also
observed in Hirsch (1989).
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Theorem 3.4. Suppose that (H))—(H,) and (S,)—(S,) and
Eq. (3.5) hold. In addition, assume

n
Yi > Li Z Il
=

Then, for every input J, Eq. (1.4) has a unique equilibrium
X" which is exponentially stable is the sense that every solu-
tion x(t) of Eq. (1.4) satisfies

i=1,2,..,n (3.19)

n

D i) — x| = ce” > xi(0) — X, (3.20)

i=1 i=1

where ¢ = a@la and 0, = min;<;=, {v; — )

Proof. We only need to prove that every solution u(f) of
Eq. (3.4) satisfies

D luit)| = ce” t>0. (3.21)
=1 i=1
Let

_ i Sgn(S)
V() = Z J ~ (s) (3.22)
Then

dV
=1

I

i=1

n
(_%|ui| + Z |fij|Lj|“j|)
=1 =

n n
= — Z (')’i — L[Z |fj,|)|uz|
=

(_'Yi|”i| + Z |fij||gj(uj)|)

A

i=1

Let

vi= min {vi - Lij_i Irﬁl}, (3.23)
then we have
M = —VZ|M| (3.24)
Similar to the proof of the above theorem, we can obtain
i lu(t)] = ce™ ' i [x;(0) — x;]. (3.25)
i=1 i=1

O

Consequently, we have

Corollary 3.1. Suppose that (H,)—(H,), (S)—(S,) and Eq.
(3.5) hold. In addition, assume

n
oy, > L Z&jhji )
=

i=1,2,...,n (3.26)

Then for any input J, Eq. (1.4) has a unique equilibrium x*
which is exponentially stable in the sense that every solution
x(t) of Eq. (1.4) satisfies

n n

D) = x| =e” "> xi(0) — xi], (3.27)
i=1 i=1

where oy = min ==, {a;y; — aL; Y- |t;]}.

3.2. Exponential stability for Eq. (1.5)

Note that Egs. (1.4) and (1.5) have the same equilibrium
set. Thus, if all the conditions in Corollary 3.1 are satisfied,
then Eq. (1.5) also has an equilibrium x". With respect to the
exponential stability of x* for the delay system (1.5), we
have the following result which is independent of the delays.

Theorem 3.5. Suppose all conditions of Corollary 3.1
hold. Then there exist constants ¢, = 1 and o4 > 0 such
that every solution x(t) of Egs. (1.5) and (2.2) satisfies

Z|xi(t) —xi|=ce” Z sup  |i(s) — x

i=1 i=1 SE€[—7.0]

|- t>0.

(3.28)

Proof. From Eq. (3.26), we know that for any fixed values
of T = 0,i,j=1,2,...,n, we can find a positive constant
o4 such that

n
@y — 04 — L,-Zdj|tj,-|e"”f’ >0, fori=1,2,...,n

j=1
(3.29)

Combining Egs. (1.5) and (3.5), we can get

d * *

Elxi([) — x| = —aryle() — x|

Jj=1

t>0,

fori=1,...,n. Let
yi(H) = e”|xi () — x|, i=1,...,n, t € [0, o).

(3.31)
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Direct calculation shows

d z(t) - c T4 T
):it = —(a — 04y T @ Z |t5|L; €7+ Tiy;(t — 7)),
j=1

t>0, (3.32)
fori=1,...,n. Now let

n n t
Vi =) m0+m2hﬁmwﬂa yi(s)ds |,

i=1 ( j=1 1= (3.33)
t>0.

It follows from Eq. (3.32) that

dvi <
(t) — Z (a Yi — 0_[Ll Z |tji|eU4Tfi)yi(l‘), (3 34)
Jj=1 .

t>0.

This implies V(¢) = V(0) for r > 0, and hence

D i) = V(t) = V(0)
i=1
—ZG@HLZMwﬂLxWQ

sup |obi(s) — xj]
ol

SE[— T,

n n
=X (1 + 1Ly |tji|eU4T"’)
i=i =1

= C Z sup |¢1(S) |

i=1 SE[—7,0]
t>0,

where ¢; = max;<;=, (1 + 7L; D )=
(3.31), we finally obtain

1 |t;:e™*). Now by Eq.

Z|x(t)—x|<c e <r4fz sup |i(s) — xj], t>0.

i=1 SE[—7,0]
This completes the proof. []

3.3. Componentwise exponential stability

Under certain circumstances, one may want to estimate
the rate of convergence of each or some of the neurons in the
network. In this section, we will establish a criterion for the
componentwise exponential stability. The approach is by a
comparison result from the theory of monotone dynamical
system, which will be stated below. First we introduce some
notations. For x,y € R", we write x <y if x; <y, for 1 =
i=nletC={¢: 0= (¢,..., (pn)T, ¢ € C([—7,0],R)}.
For ¢, € C, we write ¢ = s if for each i € {1,2,...,n},
@i(s) = ;(s) for s € [—1,0]. Let 2 be an open subset of

RXCandf : 2 — R" be continuous. f is said to be quasi-
monotone in (2 if it satisfies the following.

(QM) For any (¢, @), (t, ) € , if ¢ = ¢ and ¢;(0) =
;(0) for some i, then fi(t, @) = fi(t, {).

Consider the functional differential equation

x'(t) = f(t,x,) (3.35)
with initial conditions
x;(s) = @i(s) € C([—T1,0],R), i=1,2,...,n. (3.36)

To emphasize the dependence of the solution on the right
hand side functional, we denote the solution of (3.35) and
(3.36) by x(t, @,f). The following comparison theorem is
from Smith (1987).

Theorem 3.6. Let g, h: 2 — R" and assume either g or h
satisfies (OM). Suppose that g(t, ) = h(t, o) for all (t, ) C
O If o, € C with ¢ =< i then

x(t, ¢, 8) = x(t, Y, h)
forallt = 0.

By applying Theorem 3.6, we can prove the following
result.

Theorem 3.7. Suppose that (H;)—(H,), (S1)—(S,) and Eq.
(3.5) hold. If

n
ay; > @y |lL,  i=i...n, (3.37)

then Eq. (1.5) has a unique equilibrium x”, and there exists a
constant o5 > 0 such that every solution x(t) of Egs. (1.5)
and (2.2) satisfies

[xi(H) — xj| = e %" max sup |¢’z(s) xil,
I=i=n SE[— 7,0

(3.38)
i=1,..,n
Proof. From Eq. (1.5) we know that
dlm—*<— (n—x;
dr X xi' = Qi‘)’i|xi xil
(3.39)

n
j=1

t>0,
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fori=1,...,n, or

s

d n
a|“i(t)| = —a;yilu (0] + diz |t5|Ljlu;(t — 7))
=
t>0, i=1,...,n, (3.40)

where  w;(t) =x,(t) —x, i=12,...n. Let h=
(hy hy,.. )" be  defined by /() = —a;¥,¢i(0) +
a; >y |tylLi@i(—7;), i =1,...,n. Then, h satisfies (QM).
Denote the solutions of

w' = h(w,),
w;, = max sup |¢(s) —x;/[,i=12,...,n (34D
I=i=n se[-70]
by w and let v be any solution of
- h(v,),
Vi, = max sup [i(s) — x7], i=1,2..,n
s€[— 7,0]
(3.42)
Then from Theorem 3.6, we have
(D] = wi(r) = vi(0) (3.43)

foreachi € {1,2,...,n}. Now, by Eq. (3.37), we know that
for fixed T = 0,i,j = 1,...,n, there exists o5 > 0 such that

n
— 05 = — ;%Y + dlz |tl]|LJ eTij(rS. (344)
J=1

For such o5 > 0, a direct verification shows that V=
(v1,...,v) with

Vi) =¢e 7 max sup |i(s) — xi], i=1,2,....,n,

si=n se[- 1]

(3.45)
is a solution of Eq. (3.42). Therefore, we should have

lu; (1)) = e 7" max  sup |pi(s) — xi, i=1,2,...,n,
1=i=

=N se[— 7,0]

(3.46)
which proves Eq. (3.38). U

Remark 3.2.  Although the assertions of exponential stabi-
lity in Theorems (3.5) and (3.7) are independent of the
delays, the convergence rate o, and o5 do depend on the
delays ;.

3.4. Examples

In this section, we give some examples to demonstrate
our results. As we will see, once a;, b; and s; are given, we
can adjust the connection weights matrix 7 so that our
criteria are applicable.

Example 3.1. Consider

X 2 + sin x; 0
X a 0 2 + cos x,

V2 2
009 I
X —
0 1 X

where s, and s, satisfy (S;) and (S,) with L= 1.

4 (Sl(xl(l)) )
ﬁ ﬂ $2(x2(2))
i 2
(3.47)

In this example, vy =y =1, @; =3, ¢s=1,i=1,2
and hence 1 =3, ||T|, = 1/4. Thus we have = 3/4 < 1.
It follows from Theorem 3.2 that Eq. (3.47) has a unique
equilibrium, which is exponentially stable in the sense of
Eq. (3.7) with o= 1/8.

Example 3.2. Consider

(xl) (2+sinx1 0 )
Xy B 0 2 + cos x,

1 1
o (1 0)()6;)_ 4 8 (sl(xl(t)))
0 1/\x 1 1T s
16 8
(3.48)

where s; and s, satisfy (S;) and (S,) with L = 1.

Since t;; + tp; = 5/16, t15 + t,, = 1/4, then the condi-
tions of Corollary 3.1 are satisfied. Therefore, Eq. (3.48)
has a unique exponentially stable equilibrium and Eq.
(3.27) holds with o3 = 1/16.

Example 3.3. Consider

1 1
0\ (a0 9 9 10
i =] x|+ 11—0 11—0 %
X —x5(1) 1 1 1
9 10 9
tanh(x;(t — 7))
x| tanh(xy(r — 7)) (3.49)

tanh(x3 (f - 73)).

In this example, a;(w) =1, I';=1,L;=1,i= 1,2,3, 7,
=14, m=2,andt;, = 1/9, t;, = 1/9, t;3 = 1/10; t,; =
1/10, tyy = 1/10, ty3 = 1/9; t5; = 1/9, t3, = 1/10, t33 = 1/9;
R; =t + tpts, i =1,2,3. Then, Ry = R3 =29/90 and
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T T T T
: : — %0
U — %00
: — %00
-2 1 1 1 !
-2 o] 2 4 6 8 10
time t

Fig. 1. Numeric simulation for componentwise exponential stability of system (3.49). Here we choose 7y = 1, 7, = 1.4, 73 = 2 and the initial data are: x;(s) =

1, x,(s) = —e**%3 and x3(s) = 0.5 for s € [—2,0].

R, = 28/90, and thus all conditions in Theorem 3.7 hold.
Therefore zero is the unique equilibrium of Eq. (3.49),
which is componentwise exponentially stable. An estima-
tion for the exponential decay rate o5 can be obtained from
Eq. (3.44). A numeric simulation for Example 3.3 is shown
in Fig. 1.
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