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Abstract
By employing Schauder’s fixed point theorem and a non-Liapunov method
(matrix theory, inequality analysis), we obtain some new criteria that ensure
existence and global exponential stability of a periodic solution to a class of
functional differential equations. Applying these criteria to a cellular neural
network with time delays (delayed cellular neural network, DCNN) under a
periodic environment leads to some new results that improve and generalize
many existing ones we know on this topic. These results are of great significance
in designs and applications of globally stable periodic DCNNs.

Mathematics Subject Classification: 34K20; 34K13; 92B20

1. Introduction

For fixed τ > 0 and ω > 0, let

X = C([−τ, 0], Rn) and Cω = {x ∈ C(R, Rn) : x(t + ω) = x(t), ∀ t ∈ R}.
Then X and Cω are two Banach spaces with the supremum norms:

(i) for x = (x1, . . . , xn)
T ∈ X,

||x|| =
n∑

i=1

|xi |∞, |xi |∞ = max
t∈[−τ,0]

|xi(t)|;
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(ii) for x = (x1, . . . , xn)
T ∈ Cω,

||x|| =
n∑

i=1

|xi |∞, |xi |∞ = max
t∈[0,ω]

|xi(t)|.

As is customary, for a function x : R → Rn, let xt denote the element in X defined by

xt (θ) = x(t + θ) for θ ∈ [−τ, 0].

Consider the following system of functional differential equations:

x ′
i (t) = −ci(t)xi(t) + fi(t, xt ), i = 1, 2, . . . , n, (1.1)

where x(t) = (x1(t), . . . , xn(t))
T gives the state variables, ci ∈ C(R, R), fi ∈ C(R×X, R),

ci(t + ω) = ci(t) and fi(t + ω, φ) = fi(t, φ) for φ ∈ X and i = 1, 2, . . . , n. A more general
system is the following one in vector form:

x ′(t) = −A(t)x(t) + f (t, xt ), (1.2)

where A ∈ C(R, Rn×n), f ∈ C(R × X, Rn), A(t + ω) = A(t) and f (t + ω, φ) = f (t, φ) for
φ ∈ X. When A = diag(c1(t), . . . , cn(t)), (1.2) reduces to (1.1) if written component-wise.
Initial conditions associated with system (1.1) (or (1.2)) are of the form

xi(s) = φi(s), s ∈ [−τ, 0], i = 1, 2, . . . , n, (1.3)

where φ = (φ1(t), φ2(t), . . . , φn(t))
T ∈ X.

The main motivation to consider (1.1) and (1.2) is from the study of cellular neural
networks (CNNs). A CNN is formed by many units called cells. A cell may contain
linear and nonlinear circuit elements, which typically are linear capacitors, linear resistors,
linear and nonlinear controlled sources and independent sources. The circuit diagram and
connection pattern modelling a CNN can be found in [2, 3]. Nowadays, CNNs are widely
used in signal and image processing, associative memories and pattern classification (see, for
instance, [3, 14, 18, 21, 23]. In the last decade or so, dynamic behaviours of CNNs have been
intensively studied because of the successful hardware implementations for their applications in
many real world problems. See, for example, [5, 7–11, 18–21, 23] for stability and periodicity
analysis for CNNs.

As pointed out in [21], processing of moving images requires introduction of delays for
signal transmission among the cells. Also, the delays in artificial neural networks are usually
time varying and sometimes vary violently with time, due to the finite switching speed of
amplifiers and faults in the electrical circuit. These justify a class of delayed cellular neural
network (DCNN) model described by the following system

x ′
i (t) = −ci(t)xi(t) +

n∑
j=1

aij (t)gj (xj (t)) +
n∑

j=1

bij (t)gj (xj (t − τij (t))) + Ii(t),

i = 1, . . . , n. (1.4)

Here n corresponds to the number of cells in the neural network; xi(t) denotes the potential
(or voltage) of the ith cell at time t ; gi(·) denotes a nonlinear activation; Ii(t) denotes the ith
component of an external input source introduced from outside the network to the ith cell at
time t ; ci(t) denotes the rate with which the ith cell resets its potential to the resting state
when isolated from other cells and inputs at time t ; aij (t) and bij (t) denote the strengths of
connectivity between the ith and j th cells at time t , respectively; τij (t) corresponds to the
time delay required in processing and transmitting a signal from the j th cell to the ith cell
at time t . Model (1.4) includes many frequently used neural network models studied in the
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literature (see, for instance, [6, 11, 19] and references therein), but is obviously a special case
of the more general system (1.1) and (1.2).

We point out that in most situations, the activation functions in neural networks are taken
to be bounded, smooth and monotone functions (usually sigmoidal). However, in some
applications, one often needs to use unbounded activation functions. For example, when a
neural network is designed for solving optimization problems in the presence of constraints
(linear, quadratic or more general programming problems), unbounded activations modelled
by diode-like exponential type functions are needed to impose constraints’ satisfaction (see,
e.g., [8]). Yet, the extension of the aforementioned results to DCNNs with unbounded activation
functions is not trivial at all. For example, in an autonomous network, when the activation
functions are unbounded, existence of an equilibrium for the network becomes a problem (see,
e.g., [8]), in contrast to the case with bounded activation functions where the existence of
an equilibrium point is always guaranteed [7]. Another fact we would like to mention is that
adoption of non-monotone and non-smooth activation functions may improve the performance
of a network (see, e.g., [2, 14, 20] and the references therein).

Keeping in mind the above facts about neural networks, it is desirable not to assume the
boundedness, smoothness and monotonicity of the functions gi(u) (i = 1, 2, . . . , n). Instead,
the following weaker conditions seem to be more admirable:

(H1) aij (t), bij (t), ci(t), τij (t) and Ii(t)(i, j = 1, 2, . . . , n) are continuous ω-periodic
functions on R with

∫ w

0 ci(s) ds > 0 for i = 1, 2, . . . , n.
(H2) There exist constants lj such that |gj (u) − gj (v)| � lj |u − v| for u, v ∈ R,

j = 1, 2, . . . , n.

Back to (1.1) and/or (1.2), (H1)–(H2) on (1.4) would suggest corresponding weaker
conditions for (1.1) and (1.2). A natural and important concern is the existence and stability
of an ω-periodic solution. The purpose of this paper is to address this concern. More
precisely, in section 2, by applying Schauder’s fixed point theorem, we will derive a set of
new sufficient conditions for the existence of an ω-periodic solution of (1.1); in section 3, we
use a non-Lyapunov method (matrix theory and inequality analysis) to establish some criteria
that guarantee the global exponential stability of the periodic solution of (1.1). In section 3,
we will also derive some conditions for existence and stability of an ω-periodic solution of the
more general system (1.2). Section 4 is dedicated to applications of the main results obtained
in sections 2 and 3 to the delayed neural network system (1.4). Our results on (1.1) and (1.2),
as well as on the neural networks (1.4), greatly improve and generalize many existing ones,
and are of significance in designs and applications of neural networks.

2. Existence of a periodic solution

For the sake of convenience in later sections, we first introduce some notations and definitions
needed in this paper. Throughout this paper, we always let En denote the identity matrix of
size n and will adopt the following notations:

wu = max
t∈[0,ω]

w(t), wl = min
t∈[0,ω]

w(t), w̄ = 1

ω

∫ ω

0
w(s) ds

and

�(a, b) = (1 − e−b̄ω)−1 max
t∈[0,ω]

∫ ω

0
a(s + t) exp

(
−

∫ ω

s

b(u + t) du

)
ds

for any ω-periodic functions w(t), a(t) and b(t) on R.
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Let A = (aij )m×n and B = (bij )m×n be two matrices. We say A � 0 if aij � 0,
i = 1, 2, . . . , m; j = 1, 2, . . . , n and A � B if A − B � 0.

For a matrix B = (bij )n×n, we write B � 0 (>0, �0, <0) if bij � 0 (>0, �0, <0) for all
i, j = 1, 2, . . . , n.

Definition 2.1. Let x∗(t) = (x∗
1 (t), x∗

2 (t), . . . , x∗
n(t))T be an ω-periodic solution of system

(1.1) (or (1.2)) and (1.3) with initial value φ∗(t) = (φ∗
1 (t), φ∗

2 (t), . . . , φ∗
n(t))

T ∈ X. If there
exist constants λ > 0 and M � 1 such that, for any solution x(t) of (1.1) (or (1.2)) and (1.3),

|x(t) − x∗(t)| � M||φ − φ∗||e−λt , ∀t � 0,

then x∗(t) is said to be globally exponentially stable.

Definition 2.2. A real invertible n × n matrix A = (aij )n×n is said to be an M-matrix if
aij � 0, i, j = 1, 2, . . . , n, i �= j and A−1 � 0.

The following three lemmas will be needed in the proofs of our results.

Lemma 2.1 ([4]). Assume that S is a convex compact set in a Banach space and that P : S → S

is continuous. Then P has a fixed point in S.

Lemma 2.2 ([1, 15]). Let A = (aij )n×n with aij � 0, i, j = 1, 2, . . . , n, i �= j . Then the
following statements are equivalent:

(I) A is an M-matrix;
(II) There exists a vector ξ = (ξ1, ξ2, . . . , ξn)

T > 0 such that Aξ > 0;
(III) aii > 0, i = 1, 2, . . . , n and there exists a diagonal matrix D = diag(d1, d2, . . . , dn)

with di > 0, i = 1, 2, . . . , n such that AD is strictly diagonally dominant.

Lemma 2.3 ([1, 15]). Let A � 0 be an n × n matrix and ρ(A) be the spectral radius of A. If
ρ(A) < 1, then En − A is an M-matrix.

Now we are in a position to state and prove the main result on the existence of a ω-periodic
solution of (1.1).

Theorem 2.1. Assume that the following conditions are satisfied:

(D1) c̄i = (1/ω)
∫ ω

0 ci(s) ds > 0, i = 1, 2, . . . n;
(D2) There exist constants Mj > 0 and non-negative continuous ω-periodic functions αij (t),

βj (t), i, j = 1, 2, . . . , n such that

|fi(t, φ)| �
n∑

j=1

αij (t)Mj + βi(t) for φ ∈ X with |φj |∞ � Mj, j = 1, 2, . . . , n,

and

(En − D)(M1, M2, . . . , Mn)
T > (β̂1, β̂2, . . . , β̂n)

T,

where D = (�(αij , ci))n×n, β̂i = �(βi, ci), i = 1, 2, . . . , n.

Then system (1.1) has at least one ω-periodic solution.

Proof. Define the operator P : Cω → Cω as follows:

(Px)i(t) = (1 − e−c̄iω)−1
∫ ω

0
fi(s + t, xs+t ) exp

(
−

∫ ω

s

ci(u + t) du

)
ds,

i = 1, 2, . . . , n. (2.1)
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Then for all t ∈ [0, ω], x ∈ Cω with |xi |∞ � Mi, i = 1, 2, . . . , n, we have

|(Px)i(t)| � (1 − e−c̄iω)−1
∫ ω

0
|fi(s + t, xs+t )| exp

(
−

∫ ω

s

ci(u + t) du

)
ds

� (1 − e−c̄iω)−1




n∑
j=1

Mj

∫ ω

0
αij (s + t) exp

(
−

∫ ω

s

ci(u + t) du

)
ds

+
∫ ω

0
βi(s + t) exp

(
−

∫ ω

s

ci(u + t) du

)
ds

}

�
n∑

j=1

�(αij , ci)Mj + β̂i

< Mi, i = 1, 2, . . . , n. (by D2) (2.2)

Let

S = {x(t) = (x1(t), x2(t), . . . , xn(t))
T ∈ Cω : |xi |∞ � Mi, i = 1, 2, . . . , n}. (2.3)

Then, we have shown that PS ⊆ S. Observe that

(Px)i(t) = (1 − e−c̄iω)−1
∫ t+ω

t

fi(s, xs) exp

(
−

∫ t+ω

s

ci(u) du

)
ds, i = 1, 2, . . . , n.

Differentiating the above and making use of the ω-periodicity of ci(t), xt and f (t, φ) in t , we
obtain

(Px)′i (t) = −ci(t)(P x)i(t) + fi(t, xt ), i = 1, 2, . . . , n. (2.4)

From (2.2) and (2.4), we know that for any (t, x) ∈ R × S,

|(Px)′i (t)| � |ci(t)||(Px)i(t)| + |fi(t, xt )|

� |ci(t)|Mi +
n∑

j=1

αij (t)Mj + βi(t)

� Ni, i = 1, 2, . . . , n,

where

Ni = max
t∈[0,ω]


|ci(t)|Mi +

n∑
j=1

αij (t)Mj + βi(t)


 , i = 1, 2, . . . , n.

Thus

|(Px)′i (t)| � Ni for any (t, x) ∈ R × S, i = 1, 2, . . . , n. (2.5)

Set

� = {x(t) ∈ S : |xi(t1) − xi(t2)| � Ni |t1 − t2|, t1, t2 ∈ R, i = 1, 2, . . . , n}. (2.6)

It is easy to verify that � is a convex and compact set. Moreover, by (2.5) and the fact that
PS ⊆ S, we have P� ⊆ �. In what follows, we show that P : � → � is continuous. Let
x(k), x̂ ∈ �, k = 1, 2, . . . with ||x(k) − x̂|| → 0 as k → ∞. Set

y(k)(t) = (Px(k))(t) − (P x̂)(t), k = 1, 2, . . . .

Then by (2.4), we have

d

dt
y

(k)
i (t) = −ci(t)y

(k)
i (t) + fi(t, x

(k)
t ) − fi(t, x̂t ), i = 1, 2, . . . , n. (2.7)
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It follows that

|y(k)
i (t)| =

∣∣∣∣(1 − e−c̄iω)−1
∫ ω

0
[fi(s + t, x

(k)
s+t ) − fi(s + t, x̂s+t )]

× exp

(
−

∫ ω

s

ci(u + t) du

)
ds

∣∣∣∣
� (1 − e−c̄iω)−1

∫ ω

0
|fi(s + t, x

(k)
s+t ) − fi(s + t, x̂s+t )|

× exp

(
−

∫ ω

s

ci(u + t) du

)
ds

� (1 − e−c̄iω)−1 max
s∈[0,ω]

|fi(s, x
(k)
s ) − fi(s, x̂s)|

∫ ω

0
exp

(
−

∫ ω

s

ci(u + t) du

)
ds

� ω(1 − e−c̄iω)−1e|ci |ω max
s∈[0,ω]

|fi(s, x
(k)
s ) − fi(s, x̂s)|, i = 1, 2, . . . , n. (2.8)

Note that [0, ω] × � ⊂ R × Cω is a compact set. It follows that fi(t, φ) is uniformly
continuous in [0, ω] × �, and so

max
t∈[0,ω]

|fi(t, x
(k)
t ) − fi(t, x̂t )| → 0 as k → ∞, i = 1, 2, . . . , n. (2.9)

Combining (2.8) and (2.9), we have

max
t∈[0,ω]

|y(k)
i (t)| → 0, as k → ∞, i = 1, 2, . . . , n

or

‖Px(k) − P x̂‖ → 0, as k → ∞.

Hence, P : � → � is continuous.
The above verifies the conditions of lemma 2.1 for P , concluding that P has a fixed

point x∗ = x∗(t) ∈ �. It is easy to show that x∗(t) is a periodic solution of equation (1.1),
completing the proof of the theorem.

Corollary 2.1. Assume that (D1) and the following conditions are satisfied:

(D3) There exist non-negative continuous ω- periodic functions αij (t) and βj (t), i, j =
1, 2, . . . , n such that for any φ = (φ1, φ2, . . . , φn)

T ∈ X,

|fi(t, φ)| �
n∑

j=1

αij (t)|φj |∞ + βi(t), i = 1, 2, . . . , n;

(D4) En − D is an M-matrix, where D = (�(αij , ci))n×n.

Then system (1.1) has at least one ω-periodic solution.

Proof. By (D4) and lemma 2.2, there exists a vector ξ = (ξ1, ξ2, . . . , ξn)
T > 0 such that

η = (η1, η2, . . . , ηn)
T = (En − D)ξ > 0.

Let β̂i = �(βi, ci), i = 1, 2, . . . , n. Choose γ > 0 such that γ ηi > β̂i, i = 1, 2, . . . , n and
set Mi = γ ξi, i = 1, 2, . . . , n. Then

(En − D)(M1, M2, . . . , Mn)
T > (β̂1, β̂2, . . . , β̂n)

T,
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and it follows from (D3) that

|fi(t, φ)| �
n∑

j=1

αij (t)Mj + βi(t) for φ ∈ X with |φj |∞ � Mj, j = 1, 2, . . . , n.

In view of theorem 2.1, system (1.1) has at least one ω-periodic solution. The proof is complete.

Remark 2.1. Corollary 2.1 shows that conditions (D3) and (D4) imply (D2). But (D2) and
(D4) cannot lead to (D3). For example, let αij (t) and βj (t), i, j = 1, 2, . . . , n be non-
negative continuous ω-periodic functions. Set D = (�(αij , ci))n×n and β̂i = �(βi, ci), i =
1, 2, . . . , n. By (D4) and lemma 2.2, there exists a vector ξ = (ξ1, ξ2, . . . , ξn)

T > 0 such that

η = (η1, η2, . . . , ηn)
T = (En − D)ξ > 0.

Choose γ > 0 such that γ ηj > β̂j , j = 1, 2, . . . , n, and set Mj = γ ξj , j = 1, 2, . . . , n and

fi(t, φ) =
n∑

j=1

αij (t)[φj (−τ)]2/Mj + βi(t), i = 1, 2, . . . , n,

where τ > 0. Then

|fi(t, φ)| �
n∑

j=1

αij (t)Mj + βi(t) for φ ∈ X with |φj |∞ � Mj, j = 1, 2, . . . , n

and

(En − D)(M1, M2, . . . , Mn)
T > (β̂1, β̂2, . . . , β̂n)

T.

This shows condition (D2) is satisfied, but condition (D3) does not hold.

3. Uniqueness and exponential stability

In this section, we explore the uniqueness and stability of the ω-periodic solution of (1.1). For
this purpose, we need the following condition related to (D3):

(D3’) There exist non-negative continuous ω-periodic functions αij (t), i, j = 1, 2, . . . , n

such that for any ϕ = (ϕ1, ϕ2, . . . , ϕn)
T, φ = (φ1, φ2, . . . , φn)

T ∈ X

|fi(t, ϕ) − fi(t, φ)| �
n∑

j=1

αij (t)|ϕj − φj |∞, i = 1, 2, . . . , n.

Theorem 3.1. Assume that (D1), (D3’) and (D4) are satisfied. Then system (1.1) has exactly
one ω-periodic solution. Moreover, it is globally exponentially stable.

Proof. By (D3’), we have for any φ = (φ1, φ2, . . . , φn)
T ∈ X

|fi(t, φ)| �
n∑

j=1

αij (t)|φj |∞ + |fi(t, 0)|, i = 1, 2, . . . , n.

This shows that (D3) holds. In view of corollary 2.1, system (1.1) has at least one
ω-periodic solution, say x∗(t) = (x∗

1 (t), x∗
2 (t), . . . , x∗

n(t))T with initial value φ∗(t) = (φ∗
1 (t),

φ∗
2 (t), . . . , φ∗

n(t))
T ∈ X. Let x(t) = (x1(t), x2(t), . . . , xn(t))

T be an arbitrary solution of
system (1.1) and (1.3) with initial value φ(t) = (φ1(t), φ2(t), . . . , φn(t))

T ∈ X. Set

yi(t) = |xi(t) − x∗
i (t)|, i = 1, 2, . . . , n. (3.1)
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Then, from (1.1) and (D3’), we have

D−yi(t) = lim sup
h→0−

yi(t + h) − yi(t)

h

= lim sup
h→0−

|xi(t + h) − x∗
i (t + h)| − |xi(t) − x∗

i (t)|
h

� sign(xi(t) − x∗
i (t))(xi(t) − x∗

i (t))′

� −ci(t)|xi(t) − x∗
i (t)| + |fi(t, xt ) − fi(t, x

∗
t )|

� −ci(t)|xi(t) − x∗
i (t)| +

n∑
j=1

αij (t) max
t−τ�s�t

|xj (s) − x∗
j (s)|

= −ci(t)yi(t) +
n∑

j=1

αij (t) max
t−τ�s�t

yj (s), i = 1, 2, . . . , n.

That is

D−yi(t) � −ci(t)yi(t) +
n∑

j=1

αij (t) max
t−τ�s�t

yj (s), i = 1, 2, . . . , n. (3.2)

It follows that

yi(t) � yi(0) exp

(
−

∫ t

0
ci(u) du

)
ds

+
n∑

j=1

∫ t

0
αij (s) max

s−τ�v�s
yj (v) exp

(
−

∫ t

s

ci(u) du

)
ds,

t � 0, i = 1, 2, . . . , n. (3.3)

Let t∗i ∈ [0, ω] such that

yi(t
∗
i ) = max

t∈[0,ω]
yi(t), i = 1, 2, . . . , n.

Then it follows from (3.3) that

yi(t
∗
i ) � yi(0) exp

(
−

∫ t∗i

0
ci(u) du

)
ds

+
n∑

j=1

∫ t∗i

0
αij (s) max

s−τ�v�s
yj (v) exp

(
−

∫ t∗i

s

ci(u) du

)
ds

� yi(0)e|ci |ω +
n∑

j=1

max
−τ�s�ω

yj (s)

∫ t∗i

0
αij (s) exp

(
−

∫ t∗i

s

ci(u) du

)
ds

� yi(0)e|ci |ω +
n∑

j=1

max
−τ�s�ω

yj (s)

∫ t∗i

t∗i −ω

αij (s) exp

(
−

∫ t∗i

s

ci(u) du

)
ds

� κ|φi − φ∗
i |∞ +

n∑
j=1

max
−τ�s�ω

yj (s)

∫ ω

0
αij (s + t∗i ) exp

(
−

∫ ω

s

ci(u + t∗i ) du

)
ds

� κ|φi − φ∗
i |∞ +

n∑
j=1

�(αij , ci) max
−τ�s�ω

yj (s)

� κ|φi − φ∗
i |∞ +

n∑
j=1

�(αij , ci)[|φj − φ∗
j |∞ + yj (t

∗
j )], i = 1, 2, . . . , n,
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where

κ = max{e|c1|ω, e|c2|ω, . . . , e|cn|ω}.
Thus,

(En − D)(y1(t
∗
1 ), . . . , yn(t

∗
n ))T � (κEn + D)(|φ1 − φ∗

1 |∞, . . . , |φn − φ∗
n|∞)T,

and so

(y1(t
∗
1 ), . . . , yn(t

∗
n ))T � (En − D)−1(κEn + D)(|φ1 − φ∗

1 |∞, . . . , |φn − φ∗
n|∞)T. (3.4)

(3.4) shows that there exists a constant A > 1 independent of φ and φ∗ such that

max
−τ�t�ω

yi(t) � A‖φ − φ∗‖, i = 1, 2, . . . , n. (3.5)

Since En − D is an M-matrix, it follows from lemma 2.2 (III) that there exist mi > 0, i =
1, 2, . . . , n such that

mi >

n∑
j=1

�(αij , ci)mj , i = 1, 2, . . . , n. (3.6)

Then, there exist constants σ > 0 and λ (0 < λ < min{c̄i : i = 1, 2, . . . , n}) such that

− mi + eλ(τ+ω)(1 − e−ωc̄i )(1 − e−ω(c̄i−λ))−1
n∑

j=1

�(αij , ci)mj < −σ, i = 1, 2, . . . , n.

(3.7)

Set zi(t) = yi(t)eλt , i = 1, 2, . . . , n. Then from (3.3), we have

zi(t) � zi(0) exp

(
−

∫ t

0
(ci(u) − λ) du

)

+ eλτ

n∑
j=1

∫ t

0
αij (s) max

s−τ�v�s
zj (v) exp

(
−

∫ t

s

(ci(u) − λ) du

)
ds,

t � 0, i = 1, 2, . . . , n. (3.8)

Set

w(t) = max{m−1
i zi(t) : i = 1, 2, . . . , n}. (3.9)

Choose tk ∈ [−τ, k] such that

w(tk) = max{w(t) : −τ � t � k}. (3.10)

Then t1 � t2 � t3 � · · ·. For k = 1, 2, . . ., let rk be the integer such that rkω � tk < (rk + 1)ω.
Then by (3.5), (3.7)–(3.10), we have

zi(tk) � zi(0) exp

(
−

∫ tk

0
(ci(u) − λ) du

)

+ eλτ

n∑
j=1

∫ tk

0
αij (s) max

s−τ�v�s
zj (v) exp

(
−

∫ tk

s

(ci(u) − λ) du

)
ds

= zi(0)eλtk exp

(
−

∫ tk

0
ci(u) du

)

+ eλτ

n∑
j=1

∫ tk−rkω

0
αij (s) max

s−τ�v�s
zj (v) exp

(
−

∫ tk

s

(ci(u) − λ) du

)
ds
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+ eλτ

n∑
j=1

∫ tk

tk−rkω

αij (s) max
s−τ�v�s

zj (v) exp

(
−

∫ tk

s

(ci(u) − λ) du

)
ds

� zi(0)eλtk exp

(
−

∫ tk

tk−rkω

ci(u) du +
∫ ω

0
|ci(u)| du

)

+ eλ(τ+tk) exp

(
−

∫ tk

tk−rkω

ci(u) du +
∫ ω

0
|ci(u)| du

) n∑
j=1

max
−τ�s�ω

zj (s)

∫ ω

0
αij (s) ds

+ eλτw(tk)

n∑
j=1

mj

∫ tk

tk−rkω

αij (s) exp

(
−

∫ tk

s

(ci(u) − λ) du

)
ds

= eλ(tk−rkω)−rkω(c̄i−λ)+ω|ci |


zi(0) + eλτω

n∑
j=1

αij max
−τ�s�ω

zj (s)




+ eλτw(tk)

n∑
j=1

mj

∫ tk

tk−rkω

αij (s) exp

(
−

∫ tk

s

(ci(u) − λ) du

)
ds

� e(λ+|ci |)ω


1 + Aeλ(τ+ω)ω

n∑
j=1

ᾱij


 ‖φ − φ∗‖

+ eλτw(tk)

n∑
j=1

mj

rk∑
ν=1

∫ tk−(ν−1)ω

tk−νω

αij (s) exp

(
−

∫ tk

s

(ci(u) − λ) du

)
ds

= e(λ+|ci |)ω


1 + Aeλ(τ+ω)ω

n∑
j=1

ᾱij


 ‖φ − φ∗‖

+ eλτw(tk)

n∑
j=1

mj

rk∑
ν=1

exp

(
−

∫ tk

tk−(ν−1)ω

(ci(u) − λ) du

)

×
∫ tk−(ν−1)ω

tk−νω

αij (s) exp

(
−

∫ tk−(ν−1)ω

s

(ci(u) − λ) du

)
ds

= Ri‖φ − φ∗‖ + eλτw(tk)

n∑
j=1

mj

rk∑
ν=1

e−(ν−1)ω(c̄i−λ)

×
∫ ω

0
αij (s + tk) exp

(
−

∫ ω

s

(ci(u + tk) − λ) du

)
ds,

where

Ri =

1 + Aeλ(τ+ω)ω

n∑
j=1

ᾱij


 e(λ+|ci |)ω, i = 1, 2, . . . , n.
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The second term in the above estimate can be further estimated as

eλτw(tk)

n∑
j=1

mj

rk∑
ν=1

e−(ν−1)ω(c̄i−λ)

∫ ω

0
αij (s + tk) exp

(
−

∫ ω

s

(ci(u + tk) − λ) du

)
ds

�eλ(τ+ω)w(tk)

n∑
j=1

mj

rk∑
ν=1

e−(ν−1)ω(c̄i−λ)

∫ ω

0
αij(s+tk)exp

(
−

∫ ω

s

ci(u+ tk) du

)
ds

� eλ(τ+ω)(1− e−ωc̄i )w(tk)

n∑
j=1

mj�(αij , ci)

rk∑
ν=1

e−(ν−1)ω(c̄i−λ)

� eλ(τ+ω)(1 − e−ωc̄i )(1 − e−ω(c̄i−λ))−1w(tk)

n∑
j=1

�(αij , ci)mj

� (mi − σ)w(tk), i = 1, 2, . . . , n,

Here, we have used (3.7) and the fact that

rk∑
ν=1

e−(ν−1)ω(c̄i−λ) =
rk−1∑
ν=0

[e−ω(c̄i−λ)]ν �
∞∑

ν=0

[e−ω(c̄i−λ)]ν = (1 − e−ω(c̄i−λ))−1.

It follows that

m−1
i zi(tk) � m−1

i Ri‖φ − φ∗‖ + (1 − m−1
i σ )w(tk), i = 1, 2, . . . , n. (3.11)

Set

m = max{mi : i = 1, 2, . . . , n}, R = max{m−1
i Ri : i = 1, 2, . . . , n}.

From (3.9), (3.10) and (3.11), we have

w(tk) � (1 − m−1σ)w(tk) + R‖φ − φ∗‖, k = 1, 2, . . . ,

and so

w(tk) � mσ−1R‖φ − φ∗‖, k = 1, 2, . . . . (3.12)

Set M = m2σ−1R. From (3.9), (3.10) and (3.12), we have

zi(t) � M‖φ − φ∗‖, t � 0. (3.13)

It follows that

|xi(t) − x∗
i (t)| = |yi(t)| � M‖φ − φ∗‖e−λt , t � 0, i = 1, 2, . . . , n. (3.14)

Thus, if x(t) is also ω-periodic, then we must have x(t) ≡ x∗(t). Furthermore, (3.14) also
implies that x∗(t) is globally exponentially stable. This completes the proof.

Combining lemma 2.3 and theorem 3.1, we have the following corollaries.

Corollary 3.1. Assume that (D1) and (D3’) hold, and that ρ(D) < 1, where D =
(�(αij , ci))n×n. Then system (1.1) has exactly one ω-periodic solution. Moreover, it is globally
exponentially stable.
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Note that if cl
i � 0, i = 1, 2, . . . , n, then

�(αij , ci) = (1 − e−c̄iω)−1 max
t∈[0,ω]

∫ ω

0
αij (s + t) exp

(
−

∫ ω

s

ci(u + t) du

)
ds

� (1 − e−c̄iω)−1 max
t∈[0,ω]

∫ ω

0
αij (s + t) ds

= (1 − e−c̄iω)−1
∫ ω

0
αij (s) ds

= (1 − e−c̄iω)−1ωᾱij , i, j = 1, 2, . . . , n. (3.15)

Also if cl
i > 0, i = 1, 2, . . . , n, then by the ω-periodicity of ci(t), we have

�(αij , ci) = (1 − e−c̄iω)−1 max
t∈[0,ω]

∫ ω

0
αij (s + t) exp

(
−

∫ ω

s

ci(u + t) du

)
ds

� (1 − e−c̄iω)−1

(
αij

ci

)u

max
t∈[0,ω]

∫ ω

0
ci(s + t) exp

(
−

∫ ω

s

ci(u + t) du

)
ds

= (1 − e−c̄iω)−1

(
αij

ci

)u

max
t∈[0,ω]

[
1 − exp

(
−

∫ ω

0
ci(u + t) du

)]

= (1 − e−c̄iω)−1

(
αij

ci

)u

max
t∈[0,ω]

[
1 − exp

(
−

∫ ω

0
ci(u) du

)]

= (1 − e−c̄iω)−1

(
αij

ci

)u

(1 − e−c̄iω)

=
(

αij

ci

)u

, i, j = 1, 2, . . . , n. (3.16)

Let

U = ((1 − e−c̄iω)−1ωᾱij )n×n, V =
((

αij

ci

)u)
n×n

. (3.17)

Then 0 � D � U and 0 � D � V . In view of Ky Fan theorem in [4], we have

ρ(D) � ρ(U), ρ(D) � ρ(V ). (3.18)

This and corollary 3.1 lead to the following two corollaries.

Corollary 3.2. Assume that (D1) and (D3’) hold and ci(t) � 0, i = 1, 2, . . . , n, and that
ρ(U) < 1. Then system (1.1) has exactly one ω-periodic solution. Moreover, it is globally
exponentially stable.

Corollary 3.3. Assume that (D1) and (D3’) hold and ci(t) > 0, i = 1, 2, . . . , n, and that
ρ(V ) < 1. Then system (1.1) has exactly one ω-periodic solution. Moreover, it is globally
exponentially stable.

In the rest of this section, we deal with the existence and global exponential stability
of periodic solutions for equation (1.2), and obtain some results of the same nature as those
established for (1.1). To this end, we need to use the notion of matrix measure for an n × n

real matrix A, denoted by µ(A), which is defined by

µ(A) = lim
θ→0

|En + θA| − 1

θ
.

Here for an n × n real matrix, |A| denotes the matrix norm induced by a vector norm
|x| = ∑n

i=1 |xi |. Thus, both |A| and µ(A) indeed depend on which vector norm is adopted.
We first quote an existence result from theorem 2.1 in [22].
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Lemma 3.1 ([22]). Assume that there exists M > 0 such that for any t ∈ [0, ω]

1

M

∫ ω

0
exp

(
−

∫ ω

s

µ(A(t + u)) du

)
max

x∈Cω(M)
|f (t + s, xt+s)| ds

� 1 − exp

(
−

∫ ω

0
µ(A(s)) ds

)
, (3.19)

where Cω(M) = {x ∈ Cω : maxs∈[0,ω] |x(s)| � M}. Then system (1.2) has at least one
ω-periodic solution.

Theorem 3.2. Assume that there exist a non-negative continuous ω-periodic function L(t)

such that for any φ, ψ ∈ X

|f (t, φ) − f (t, ψ)| � L(t) max
s∈[−τ,0]

|φ(s) − ψ(s)| (3.20)

and for any t ∈ [0, ω]∫ ω

0
L(s + t) exp

(
−

∫ ω

s

µ(A(u + t)) du

)
ds < 1 − exp

(
−

∫ ω

0
µ(A(s)) ds

)
. (3.21)

Then system (1.2) has exactly one ω-periodic solution. Moreover, it is globally exponentially
stable.

Proof. It follows from (3.21) that there exists γ > 1 such that∫ ω

0
L(s + t) exp

(
−

∫ ω

s

µ(A(u + t)) du

)
ds <

1

γ
− exp

(
−

∫ ω

0
µ(A(s)) ds

)

for t ∈ [0, ω]. (3.22)

Choose M > 0 sufficiently large such that

1

M

∫ ω

0
|f (t + s, 0)| exp

(
−

∫ ω

s

µ(A(t + u)) du

)
ds <

γ − 1

γ
. (3.23)

By (3.20), for any x ∈ Cω(M), we have

|f (t, xt )| � |f (t, 0)| + L(t) max
s∈[0,τ ]

|x(t − s)| � ML(t) + |f (t, 0)| for t ∈ [0, ω].

(3.24)

From (3.22), (3.23) and (3.24), we have

1

M

∫ ω

0
exp

(
−

∫ ω

s

µ(A(t + u)) du

)
max

x∈Cω(M)
|f (t + s, xt+s)| ds

� 1

M

∫ ω

0
(ML(t + s) + |f (t + s, 0)|) exp

(
−

∫ ω

s

µ(A(t + u)) du

)
ds

=
∫ ω

0
L(t + s) exp

(
−

∫ ω

s

µ(A(t + u)) du

)
ds

+
1

M

∫ ω

0
|f (t + s, 0)| exp

(
−

∫ ω

s

µ(A(t + u)) du

)
ds

� 1 − exp

(
−

∫ ω

0
µ(A(s)) ds

)
.
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This shows that (3.19) holds, in view of lemma 3.1, system (1.2) has at least one ω-periodic
solution, say x∗(t) with initial value φ∗ ∈ X. Let x(t) be an arbitrary solution of system (1.2)
and (1.3) with initial value φ ∈ X. Set y(t) = x(t) − x∗(t). Then by (1.2), we have

y ′(t) = −A(t)y(t) + f (t, xt ) − f (t, x∗
t ). (3.25)

Let X(t, t0) be the fundamental matrix solution of the following system:

x ′(t) = −A(t)x(t) (3.26)

satisfying that X(t0, t0) = En. Then by [22, lemma 2.3], we have

|X(t, t0)| � exp

(
−

∫ t

t0

µ(A(s)) ds

)
, t � t0. (3.27)

It follows from (3.25) that

y(t) = X(t, 0)y(0) +
∫ t

0
X(t, s)[f (s, xs) − f (s, x∗

s )] ds, t � 0. (3.28)

From (3.20), (3.27) and (3.28), we have

|y(t)| � |X(t, 0)||y(0)| +
∫ t

0
|X(t, s)||f (s, xs) − f (s, x∗

s )| ds

� |y(0)| exp

(
−

∫ t

0
µ(A(s)) ds

)

+
∫ t

0
L(s) max

θ∈[−τ,0]
|y(s+θ)| exp

(
−

∫ t

s

µ(A(u)) du

)
ds, t � 0. (3.29)

Let t∗ ∈ [0, ω] such that

|y(t∗)| = max
t∈[0,ω]

|y(t)|, i = 1, 2, . . . , n.

It follows from (3.22) and (3.29) that

|y(t∗)| � |y(0)| exp

(
−

∫ t∗

0
µ(A(u)) du

)

+
∫ t∗

0
L(s) max

θ∈[−τ,0]
|y(s + θ)| exp

(
−

∫ t∗

s

µ(A(u)) du

)
ds

� κ|y(0)| + max
−τ�s�ω

|y(s)|
∫ t∗

0
L(s) exp

(
−

∫ t∗

s

µ(A(u)) du

)
ds

� κ|y(0)| + max
−τ�s�ω

|y(s)|
∫ t∗

t∗−ω

L(s) exp

(
−

∫ t∗

s

µ(A(u)) du

)
ds

� κ‖φ − φ∗‖ + max
−τ�s�ω

|y(s)|
∫ ω

0
L(s + t∗) exp

(
−

∫ ω

s

µ(A(u + t∗)) du

)
ds

� κ‖φ − φ∗‖ +
1

γ
max

−τ�s�ω
|y(s)|

� κ‖φ − φ∗‖ +
1

γ

(‖φ − φ∗‖ + |y(t∗)|) ,

where κ = exp(
∫ ω

0 |µ(A(s))| ds). It follows that

|y(t∗)| � κγ + 1

γ − 1
‖φ − φ∗‖,
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which implies that

max
−τ�t�ω

|y(t)| � κγ + 1

γ − 1
‖φ − φ∗‖. (3.30)

Since γ > 1 and
∫ ω

0 µ(A(s)) ds > 0, so we can choose λ ∈ (0, 1
ω

∫ ω

0 µ(A(s)) ds) such that

η = eλτ

[
1

γ
− exp

(
−

∫ ω

0
µ(A(s)) ds

)] [
e−λω − exp

(
−

∫ ω

0
µ(A(s)) ds

)]−1

< 1.

(3.31)

Set z(t) = y(t)eλt . Then it follows from (3.29) that

|z(t)| � |z(0)| exp

(
−

∫ t

0
[µ(A(s)) − λ] ds

)

+ eλτ

∫ t

0
L(s) max

θ∈[−τ,0]
|z(s + θ)| exp

(
−

∫ t

s

[µ(A(u)) − λ] du

)
ds,

t � 0. (3.32)

Choose tk ∈ [−τ, k] such that

|z(tk)| = max{|z(t)| : −τ � t � k}. (3.33)

Then t1 � t2 � t3 � · · ·. Let rk be an integer such that rkω � tk < (rk + 1)ω, k = 1, 2, . . ..
Then by (3.22), (3.30), (3.31), (3.32) and (3.33), we have

|z(tk)| � |z(0)| exp

(
−

∫ tk

0
[µ(A(s)) − λ] ds

)

+ eλτ

∫ tk

0
L(s) max

θ∈[−τ,0]
|z(s + θ)| exp

(
−

∫ tk

s

[µ(A(u)) − λ] du

)
ds

= |z(0)| exp

(
−

∫ tk

0
[µ(A(s)) − λ] ds

)

+ eλτ

∫ tk−rkω

0
L(s) max

θ∈[−τ,0]
|z(s + θ)| exp

(
−

∫ tk

s

[µ(A(u)) − λ] du

)
ds

+ eλτ

∫ tk

tk−rkω

L(s) max
θ∈[−τ,0]

|z(s + θ)| exp

(
−

∫ tk

s

[µ(A(u)) − λ] du

)
ds

� |z(0)|eλtk exp

(
−

∫ tk

0
µ(A(s)) ds

)
+ eλ(τ+tk) exp

(
−

∫ tk

tk−rkω

µ(A(u)) du

)

×
∫ tk−rkω

0
L(s) max

θ∈[−τ,0]
|z(s + θ)| exp

(
−

∫ tk−rkω

s

µ(A(u)) du

)
ds

+ eλτ |z(tk)|
rk∑

i=1

exp

(
−

∫ tk

tk−(i−1)ω

[µ(A(u)) − λ] du

)

×
∫ tk−(i−1)ω

tk−iω

L(s) exp

(
−

∫ tk−(i−1)ω

s

[µ(A(u)) − λ] du

)
ds

�
[
|z(0)| + ωL̄eλτ max

s∈[−τ,ω]
|z(s)|

]
eλtk exp

(
−rk

∫ ω

0
µ(A(s)) ds +

∫ ω

0
|µ(A(s))| ds

)
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+ eλτ |z(tk)|
rk∑

i=1

exp

(
−

∫ tk

tk−(i−1)ω

[µ(A(u)) − λ] du

)

×
∫ tk−(i−1)ω

tk−iω

L(s) exp

(
−

∫ tk−(i−1)ω

s

[µ(A(u)) − λ] du

)
ds

�
[

1 +
κγ + 1

γ − 1
ωL̄eλ(τ+ω)

]
‖φ − φ∗‖ exp

(
λω +

∫ ω

0
|µ(A(s))| ds

)

+ eλτ |z(tk)|
rk∑

i=1

exp

(
−

∫ tk

tk−(i−1)ω

[µ(A(u)) − λ] du

)

×
∫ tk−(i−1)ω

tk−iω

L(s) exp

(
−

∫ tk−(i−1)ω

s

[µ(A(u)) − λ] du

)
ds

= R‖φ − φ∗‖ + eλτ |z(tk)|
rk∑

i=1

exp

(
−(i − 1)

∫ ω

0
[µ(A(u)) − λ] du

)

×
∫ ω

0
L(s + tk) exp

(
−

∫ ω

s

[µ(A(u + tk)) − λ] du

)
ds

� R‖φ − φ∗‖ + eλ(τ+ω)|z(tk)|
[

1

γ
− exp

(
−

∫ ω

0
µ(A(s)) ds

)]

×
rk∑

i=1

exp

(
−(i − 1)

∫ ω

0
[µ(A(u)) − λ] du

)

� R‖φ − φ∗‖ + eλτ |z(tk)|
[

1

γ
− exp

(
−

∫ ω

0
µ(A(s)) ds

)]

×
[

e−λω − exp

(
−

∫ ω

0
µ(A(s)) ds

)]−1

= R‖φ − φ∗‖ + η|z(tk)|, (3.34)

where

R =
[

1 +
κγ + 1

γ − 1
ωL̄eλ(τ+ω)

]
exp

(
λω +

∫ ω

0
|µ(A(s))| ds

)
.

It follows from (3.31) and (3.34) that

|z(tk)| � (1 − η)−1R‖φ − φ∗‖, k = 1, 2, . . . . (3.35)

It follows that

|x(t) − x∗(t)| = |y(t)| � (1 − η)−1R‖φ − φ∗‖e−λt , t � 0. (3.36)

Thus, if x(t) is also ω-periodic, then we must have x(t) ≡ x∗(t). Furthermore, (3.36) also
implies that x∗(t) is globally exponentially stable. This completes the proof.

If

L(t) < µ(A(t)), ∀ t ∈ [0, ω], (3.37)

then there exists a θ ∈ (0, 1) by the periodicity of L(t) and µ(A(t)), such that

L(t) � θµ(A(t)), ∀ t ∈ [0, ω].
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It follows that for any t ∈ [0, ω]∫ ω

0
L(s + t) exp

(
−

∫ ω

s

µ(A(u + t)) du

)
ds � θ

[
1 − exp

(
−

∫ ω

0
µ(A(s)) ds

)]

< 1 − exp

(
−

∫ ω

0
µ(A(s)) ds

)
.

This shows that (3.21) is implied by the simpler yet stronger condition (3.37). Thus, we have

Corollary 3.4. In theorem 3.2, if condition (3.21) is replaced by (3.37), then the conclusion
still holds.

Remark 3.1. In theorem 3.1, we only require the conditions c̄i > 0, i = 1, 2, . . . , n,
which may allow ci(t) � 0 for some t ∈ [0, ω], not the usually used condition ci(t) > 0,
i = 1, 2, . . . , n.

Remark 3.2. Corollary 3.4 reproduces one of the main results, theorem 3.1, in [22].

4. Applications in CNNs

In this section, we apply the general results obtained in sections 2 and 3 to the DCNNs system
(1.4) given in the introduction. Firstly, we note that very recently, Huang et al [13] studied the
existence and exponential stability of the periodic solutions for system (1.4) under (H1) and
(H2), and derived some sufficient conditions among which is the following harsh condition:

(H0) cl
i−

∑n
j=1(|āij |+|b̄ij |)lj ecu

j τ > 0, i = 1, . . . , n, where τ = max{τu
ij : i, j = 1, 2, . . . , n}.

Applying theorem 3.1 to system (1.4), we have the following theorem:

Theorem 4.1. Assume that (H1), (H2) and the following condition are satisfied:

(H3) En − D is an M-matrix, where D = (�((|aij | + |bij |)lj , ci))n×n.

Then system (1.4) has exactly one ω-periodic solution. Moreover, it is globally
exponentially stable.

Proof. Set

τ = max{τu
ij : i, j = 1, 2, . . . , n}

and

fi(t, φ) =
n∑

j=1

aij (t)gj (φj (0)) +
n∑

j=1

bij (t)gj (φj (−τij (t))) + Ii(t), i = 1, 2, . . . , n.

(4.1)

Then by (H2) and (4.1), for any φ = (φ1, φ2, . . . , φn)
T, ψ = (ψ1, ψ2, . . . , ψn)

T ∈ X

|fi(t, φ) − fi(t, ψ)| �
n∑

j=1

lj (|aij (t)| + |bij (t)|)|φj − ψj |∞, i = 1, 2, . . . , n. (4.2)

Let

αij (t) = (|aij (t)| + |bij (t)|)lj , i, j = 1, 2, . . . , n. (4.3)

Then (4.2) and (H3) imply (D3’) and (D4), respectively. In view of theorem 3.1, system
(1.4) has exactly one ω-periodic solution which is globally exponentially stable. The proof is
complete.

Similarly, by corollaries 3.1–3.3, we have the following corollaries.
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Corollary 4.1. Assume that (H1) and (H2) hold, and that ρ(D) < 1, where D = (�((|aij | +
|bij |)lj , ci))n×n. Then system (1.4) has exactly one ω-periodic solution. Moreover, it is globally
exponentially stable.

Corollary 4.2. Assume that (H1) and (H2) hold and ci(t) � 0, i = 1, 2, . . . , n. Let

U = ((1 − e−c̄iω)−1ω(|aij | + |bij |)lj )n×n.

If ρ(U) < 1, then system (1.4) has exactly one ω-periodic solution which is globally
exponentially stable.

Corollary 4.3. Assume that (H1) and (H2) hold and ci(t) > 0, i = 1, 2, . . . , n. Let

V =
((

(|aij | + |bij |)lj
ci

)u)
n×n

.

If ρ(V ) < 1, then system (1.4) has exactly one ω-periodic solution. Moreover, it is globally
exponentially stable.

Remark 4.1. When ci(t) ≡ ci > 0, i = 1, 2, . . . , n, corollary 4.3 reproduces the main result
of theorem 4.1 in [17].

Remark 4.2. References [12, 13] also deal with the network system (1.4), which is a special
case of (1.1). The general forms of (1.1) and (1.2) are not covered by [12, 13]. In methods,
both [12] and [13] use coincidence degree theory to derive their main results, while here in this
paper, we use matrix theory and inequality analysis. In the results, [12] requires a smoothness
condition on the delay which is not feasible in many applications. Most significantly, we
have removed the conditions (H0) in theorem 3.3 in [13], and hence have shown that it is
unnecessary. Finally, we point out that the condition ρ(U) < 1 in corollary 4.2 is weaker than
the condition ρ(K) < 1 in theorem 3.3 in [13], where

K =
((

1

c̄i

+ ω

)
(|aij | + |bij | )lj

)
n×n

.

To see this, we first note that

ex > 1 + x +
x2

2
, x > 0.

It follows that

(1 − e−x)−1 <

1 + x +
x2

2

x
(

1 +
x

2

) = 1 +
2

x(2 + x)
, x > 0.

Thus, we have

(1 − e−c̄iω)−1ω(|aij | + |bij | ) <

(
2

c̄i (2 + c̄iω)
+ ω

)
(|aij | + |bij | ), i, j = 1, 2, . . . , n.

Set

W =
((

2

c̄i (2 + c̄iω)
+ ω

)
(|aij | + |bij | )lj

)
n×n

.

Then 0 � U � W � K and therefore ρ(U) � ρ(W) � ρ(K).
In the following, we give two more specific examples to illustrate our results.
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Example 4.1. Consider the following scalar delay differential equation:

x ′(t) = −ax(t) + b(a − sin t)g(x(t − τ)) + p(t), (4.4)

where a ∈ [1, +∞), τ ∈ (0, +∞), b ∈ R, p ∈ C2π and g ∈ C1(R, R). Let
ω = 2π, A(t) = a and f (t, φ) = b(a − sin t)g(φ(−τ)) + p(t). If |g′(x)| � 1, then
(3.20) holds with L(t) = |b|(a − sin t). By a calculation, we have∫ ω

0
L(s + t) exp

(
−

∫ ω

s

µ(A(u + t)) du

)
ds

= |b|e−2aπ

∫ 2π

0
eas[a − sin(s + t)] ds

= |b|(1 − e−2aπ )

(
1 − a sin t − cos t

1 + a2

)

� |b|(1 − e−2aπ )

(
1 +

1√
1 + a2

)
, ∀t ∈ [0, 2π ].

In view of theorem 3.2, if

|b| <
√

1 + a2/(1 +
√

1 + a2), (4.5)

then (4.5) has exactly one 2π -periodic solution and it is globally exponentially stable. However,
the condition in corollary 3.4 corresponding to (4.5) is

|b| < a/(1 + a). (4.6)

Obviously, condition (4.5) is weaker than (4.6).

Example 4.2. Consider the following BAM neural networks

x ′
1(t) = −c1(t)x1(t) +

2∑
j=1

a1j (t)gj (xj (t)) +
2∑

j=1

b1j (t)gj (xj (t − τ1j (t))) + I1(t),

x ′
2(t) = −c2(t)x2(t) +

2∑
j=1

a2j (t)fj (xj (t)) +
2∑

j=1

b2j (t)gj (xj (t − τ2j (t))) + I2(t), (4.7)

where c1(t) = 2 + sin t, c2(t) = 2 + cos t , I1(t) = sin t, I2(t) = cos t , a11(t) = a12(t) =
a sin t, a21(t) = a22(t) = a cos t , b11(t) = b12(t) = b sin t, b21(t) = b22(t) = b cos t ,
g1(x) = x

3 + sin 2x
3 , g2(x) = x

2 + cos x
2 , τ11(t) = τ21(t) = sin t, τ12(t) = τ22(t) = cos t .

Then the functions ci(t), aij (t), bij (t) and Ii(t) are 2π -periodic solutions; the functions gj (x)

satisfy the condition (H2) with l1 = l2 = 1. By a simple calculation, we have(
(|aij | + |bij |)lj

ci

)u

= |a| + |b|,

V =
(

|a| + |b| |a| + |b|
|a| + |b| |a| + |b|

)
,

and

ρ(V ) = 2(|a| + |b|).
By corollary 4.3, if |a| + |b| < 0.5, then system (4.7) has exactly one 2π -periodic solution and
it is globally exponentially stable.
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