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Abstract

In this paper, we study a very general non-local lattifferential equation with delay. We obtain the
exigence of he asymptotic speed of propagation, the existence and uniqueness of the traveling wavefront
and the minimal speed of the traveling wavefronttfe system. We also confirm that the asymptotic speed
of propagation and the minimal speed of the traveling wavefront coincide.
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1. Introduction

Lattice differential equations are infinite systems of ordinary differential equations indexed
by points on spatial lattices. Such systems arise, on one hand, from practical backgrounds, such
as modeling population growth over patchy environmebf$732] and nodeling the phase
transitions (see, e.g.3/4]). On the dher hand, they are also natural results of discretizing the
corresponding models of partial differential etjoas in which continuous spatial variables are
used.
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For nonlinear reaction—diffusion equations models describing a variety of physical and
biological phenomena, traveling wave solutions are an important class of solutions since in many
situations they (i) determine the long term behavior of other solutions, and (ii) account for phase
transitions between different states of physical systems, propagation of patterns, and domain
invasion of species in population biology.

A simple but typical lattice differential system is

Up (1) = D[Un+1(t) + Un-1(t) — 2un(®O] + f(un(t)), nez t=>0, 1.1

which was initially used in Bell and Cosnéf][and Keener 7] to model myelinated axons

in nerve ystems. For such a system and its various generalizations, when the nonlinear
term f (u) is of bistable type the study on traveling wavefronts of such lattice differential
equations has been extensive and intensive, and has led to many interesting and significant
results, some of which, have revealed some essential difference between a discrete model anc
its continuous version. For details, see, for exampbe;8[12,3-517,22,24,26,27,34,35], and

the references therein. Hower, when thenonlinearterm f (u) is monostable that is, f (u)

satisfies

(A) f(0) = f(k) =0forsomek > 0; andf (w) > 0 forw € (0, k),

results are still very limited. Zinner et al3f] addressed the existence and minimal speed of
traveling wavefront for the discrete Fisher equation. Recently, Chen and¥®id][discussed
a more gearal class of system

Up (1) = g(Un41(t)) 4+ g(un—1(t)) — 2g(Un(t)) + f (Un(t)), nez t>0 (1.2

where g(u) is increasing andf (u) is monostable. Established i1(,11] are suchresuts as
existence, unigueness and stability (in some sense) as well as minimal wave sp@e8)féiso

in a very recent paper, Carr and Chnjjéstatbisheduniqueness of traveling wavefronts for the
nonlocalmonostableéDDE system

Up= > J(Uni—Un+f(un), nNeZ, (1.3)
1€Z\{0}

which reduces to the discrete reaction—diffusion syqterh)when tking J(1) = J(—1) = 1/2
andJ(i) = 0 elsewhereSystem(1.3)was deried in [4] for anl, gradient flow for a Helmholtz
free energy functional with gere long range linear coupling.

On the aher hand, in modeling population growth and transmission of signals in the nerve
systems, temporal delays seem to be inevitable accounting for the maturation time of the species
under consideration and the time needed for the signals to travel along axons and to cross
synapses. The existence of traveling wave solutions of delayed lattice differential equations
with monostable nonlinearities was initially studied by Wu and Z8§ gnd Zou B7], later
by Hsu and Lin 15 and Maet al. 21], and recently by Huang and Zoud§]. We point
out that not addressed i83,37,15,21,16] were poblems of minimal wave speed, uniqueness
and stability of traveling wave solutions to delayed lattice differential equations. It is well
known that the presence of delay in an ODE changes a finite dimensional system to an infinite
dimensional one, and this increases the difficulty level in addressing the above problems.
Encouraged by the work of Chen and GU®,[11], and Carr and Chmaj9], more recently,

Ma and Zou 23 obtained the minimal wave speed for the following delayed lattice differential
system



1860 S. Ma et al. / Nonlinear Analysis 65 (2006) 1858-1890

Up() = D[Un+1(t) + Un—1(t) — 2un(H)] — dun(®) +b(Un(t —1)), NneZ, t>0,
(1.4)

and established some results on uniqueness and asymptotic stability of its traveling wavefronts,
under thamonostableassumption.

Note that the coupling in syste(t.4)is only through linear diffusion, meaning that each unit
in the latticeZ only interacts with its nearest (adjacengighbors in the form of linear diffusion.
This may not be true in some situations. Indeed, in their recent work, Weng &2ptidrived
a discete nonlocalmodel parallel to the continuous nonlocal model 28][ which takes the
form

Un(t) = D[Uny1(t) 4 Un—1(t) — 2un(t)] — dun(t) + Z I, p)bujt —r)),
j=—00

nez, t>0, (1.5)

and includeq1.4) as a special case. In addition to the isotropic property of solutions and the
asymptotic speed of propagatioBZ] also aldressed the existence of traveling wavefronts, and
the existence and uniqueness of the associated initial value probl@nbjandermonostable

and somejuasi-monotoniconditions orb(u). However, they @l not consider the uniqueness of
the traveling wavefronts, and the existencehs minimal wave speed, let alone the relation of
the two speeds.

We may sy that(1.3) hasnon-local diffusionandlocal interaction while (1.5) haslocal
diffusion and non-local interaction In this pagr, instead of addressing the above remaining
problems for any of the systeni.1)—(1.5) we will consider the following more general lattice
differentid system

Up® =D Y J([)[Un-i () — Un(t)] — dun(t) + D K(i)b(un-i(t 1)), (1.6)

ieZ\{0} ieZ

wherex € R, t > 0,D,d > 0,r > 0, b(-) is a Lipsditz continuous function on any compact
interval andb(0) = dK — b(K) = 0 for someK > 0. Obviously,(1.6) contains botmon-
local diffusionand non-local interaction and ircludes(1.1)—(1.5)as special cases. Our main
concern is the existence of the asymptotic speed of propagation, the existence and uniqueness of
traveling wavefronts, and the minimal wave speed and its relation with the asymptotic speed of
propagation.

We point out that the asymptotic speed of propagation is an important notion in population
biology and for a quite general reaction—diffusiEuation or an integralguation, the symptotic
speed of propagation coincides with the minimal wave speed of the equation (seel,8,83 [
14,1819,25,29-31). One naturally would like to know if this is also true for lattice differential
equations.

Throughout this paper, we always assume that the kernel funcli@ms K satisfy J(i) =
J(—i)>0andK (i) = K(—i) > Oforalli € Z\ {0}, and

Z Ji)=1, Z Jie ™M < +00,

i€Z\ (0} i€Z\(0}

ZK(i):l, ZK(i)e’“<+oo,

ieZ ieZ



S. Ma et al. / Nonlinear Analysis 65 (2006) 1858-1890 1861

foranyx > 0. We also assume that the supporfiafontains either = 1 or two rdatively prime
integersj = pandi =q.
We also red the following assumptions:

(H1) b'(0) > d;

(H2) min{b’(O)u, dK*} > b(u) > 0 for someK* > K and allu € (0, K*];

(H3) b(u) > duforallu € (0, K);

(H4) b'(u) > 0 forallu € (0, K);

(H5) b’(0)u — b(u) < Mul*” forallu € (0, K), someM > 0 and some ¢ (0, 1];
(H6) b'(K) < d.

In the albve assumptions, by’ (0) > d, we mean thatb(u) is differentiable au = 0 and
b’(0) > d, and the thers can be treated similarly. It is easily seen that & C2([0, K1), then
(H5) holds spontaneously. A prototype of such functions which has been widely used in the
mathematical biology literature ib(u) = pue~®Y for a wide range of parameteps > 0 and
a > 0.

In the present paper, in addition to the asymptotic speed of propagation, we are also interested
in finding monotonic traveling wavesg, (t) = U (n + ct) of (1.6), with U saturating at 0 an& .
To this end, we need to find an increasing functioni¢), where¢ = n + ct, for the fllowing
associated wave equation

~cU' (&) +D Y IOIUE —1) —U@E]—dUE + Y K@HbUE i —cr) =0,

i#0 i
@.7)
subject to the boundary conditions
U(—o0):= lim U(E) =0, U(4+o0) = lim U(¢) =K. (1.8)
E——00 E—+4o00

We now simmarize our main maults in the following two theorems.

Theorem 1.1. Assume thatH1) and (H2) hold. Then there exists,c> 0 such hat ¢, is the
asymptotic speed of propagation fdr.6)in the sense that for any initial data= {¢n}nez With
on € C([—r, 0], [0, K*]), the fdlowing statements hold true:

(i) if limsup,_, _o MaXe(—r.0] ¥n(S)€*" < +o0 for somer > A1(c) with ¢ > c,, then
lim supun(t,¢)|n < —ct} =0,
t—+o00 p
(ii) if limsup,_, o MaX%e[—r,0) en(S)E"" < +o0 for somer > A1(c) with ¢ > c,, then
lim supgun(t, @) n > ct} =0,
t—+o00 p
(iii) if ¢ny(0) > Ofor some g € Z, then brany ce (0, c,),

liminf min{un(t, @)| In| < ct} > K,,
t—>+oc0 n

where K, = %infue(o,K*]{b(u)| b(u) < du} > 0andA = A;1(c) is the smallest solution to the
equation & — D ¥ o J( et £+ D4+d—b(0) Y K(i)e i+ =0
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Theorem 1.2. Assume thatH1)—(H6) hold and let ¢ > 0 be as inTheoreml.1l Then ¢ is
also the nmimal wave speed fofl1.6) in the sense that for = (0, c,), (1.6) has no non-
constant traveling wave Uh + ct) with U(&) e [0, K] for all ¢ € R, and for ¢ > c,, the
equation admits a strictly increasing traveling wavefrontit ct) with U satirating at 0 and
K. Furthemore, fa each c> c,, the traveling wavefront WYn+-ct) is unique (up to a translation)
under the additional conditioim sup. _, _,, U ()e=MO% ~ 40, wheredy(c) is defined as in
Theorenil. 1

Remark 1.1. In Weng et al. B2], in addition to the existence of traveling wavefronts, the authors
also obtained some results on the asymptotic speed of propagatidnSpOur Theorem 1.1s

a dharp extension of the corresponding results3i# [In particular, among the other assumptions,
Weng etal. [32] assume that the birth functids(-) is non-decreasing. In contrast to the existing
literature [1,2,13,14,29,30,32], in our Theorem 1.1we donot assume tt the birth functiorb(-)

is non-decreasing.

Remark 1.2. In our Theorem 1.2the asumption (H4) is a cruciaine by which, the delayed
termb(u) is increasing on the intervgd, K]. Thus, we can apply the upper—lower solutions and
monotonic iteration technique established38][or use anargument similar to that ir20] and

the Shauder’s fixed point theorem to establish the existence of monotonic traveling wavefronts.
WhenK is such thab(u) is not increasing oii0, K], the problem becomes much harder due

to lack of quasi-monotonicity. For such delayeguations without quasi-monotonicity, some
exigence results for travelingaves havéeen obtained in33] by using the idea d the socalled
exponential ordering for delayed differential egjwas. Application of these results to particular
model equations is not trivial as it requiresnstruction of very demanding upper—lower
solutions. Uniqueness and stability of traveling waves of such systems seem to be very interesting
and challenging problems.

The rest of this paper is organized as follows. In Secflphy using the squeezing tech-
nique [1,2,13,14,29,32], we show that there exists an asymptotic speed of propagatidqm.®yr
In Sedion 3, we estalish the existence of a traveling wavefront by using an argument as used
in [20] and the Schuder’s fixed point theorem, and prove that the traveling wavefront is unique
up to a transldon in some sense. The results in Sectidand3 also confirm the coincidence of
the asymptotic speed of propagation and the minimal speed of traveling wavefrofitSfor

2. Asymptotic speed of propagation

In this section, we shall show that there exists a congtant 0 so thatfc, is the asymptotic
speed of propagation.
Assume thab’(0) > d. Defire a new functia as fdlows

inf  b(n), foru=<K*,
b, (u) = {nelu.K*]
b(u), foru > K*.

Thenb(u) > b,(u) for all u € R andb,(:) is non-decreasing irf—oo, K*]. Furthermore,
b,(0) = dK, — b,(Ky) = 0 andb,(u) > duforallu € (0, K,), here and in wht follows,
Ky = Finfueo,k+{b(w)] b(u) < du} > 0.
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Consider the following initial value problems

Up(t) = —(D + d)un(t) + H[unl(t), neZz, t>0, 2.1)

Un(S) = ¢n(S), neZ, sel[-10] )
and

v},(t) = —(D + d)vn(t) + Hy[vn]®), neZ, t>0, 2.2)

vn(S) = ¥n(S), neZ, sel-r,0], )
where

Hlunl() =D ) I()un-i(®) + Y K(@Hb(Un-i(t —1)),
i£0 i

and

H.[vnl(t) = D Z J(Hvn-i (V) + Z K (@)b(vn—i (t —1)).
i#£0 i
For theinitial value problemg2.1)and(2.2), we have the following eéstence and comparison
restit.

Lemma 2.1. Assume thafH1) and (H2) hold. Then for all initial datag = {¢n}nez. ¢n €

C([-r, 0], [0, K*]), (2.1)admits a unique solution & {un}nez With u, € C([0, +00), [0, K*]).

Moreover, the sameonclusion holds for(2.2) and if ¢n(s) > v¥n(s) for all n € Z and
€ [—r, 0], then

Z (Dt)nal+n2|

m [J( p)]|n1| [J (Q)]|n2\ I/Ik(O)e_(D"'d)t’

Un(t) > vn(t) >
ni,N2€Z,n1 p+nzgq=n—k

(2.3)

foreverynk € Z and t > 0, hereand in whatfollows, p=q = 1or p and g are two relatively
prime integers.

Proof. Clearly,(2.1)is equivalent to
t
Un(t) = gn(0)e O+t 4 / D+ O [y ](7) dr.
0
Foru = {up} with uy € C([—r, +00), [0, K*]) andun(t) = ¢n(t) fort € [—r, 0], define

t
Gnlul(t) = gn(0)e (DO +/ eP+OEOH [y |(r)dr, forne Zandt > 0.
n - 0
on(t), forn e Z andt € [—r, O].

Then fort > 0, we have
t
0 < Gplul(t) < K*e P+t 4 k*(p 4 d)/ P gr — K*,
0

and henceG = {Gp}nhez : S— Sis well-defined, where

S:= {U = {Un}nez | Un € C([—T, +00), [0, K*]), Un(t) = ¢n(t) fort e [—r, O]}
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Forix > 0, let
X3, = {U={Un}nez | Un € C([—T,+00),R),  sup |un(t)le™*" < +o0},
t>—r,neZ
lully == sup |ua(t)|e™ < +oo.
t>—r,neZ

Then(X,, || - |I,) is a Banach space ai8lc X, is a closd subset ofX; .
Foranyu,U € S, letw = {wn}nez, wn(t) = up(t) — Gn(t) forn € Z, thenfort > 0, we
have

|Gnlul(t) — Gn[al(t) e

t
< g (Dtda /0 eP+IT H [up](z) — H[On](x)| de

t
- / e(D+d+1)(r-1) {D Z J(0)wn—i(z)|e*"
0 i£0

T+ Lse ™M Z K (i) |wni(t — r)|e—“f—”} dr
i

IA

t
lwll; (D + LK*e‘“)/ gD+d+1)(T-0) g
0

_D+ Li+e

- D+d+A
where and in what followd, g+ is the Lipschitz constant df(-) on [0, K*]. Therdore, we can
chooser > 0 large enough so th& : S — Sis a contracting map. I€arly, theunique fixed
pointu € Sis a solution 0f(2.1)on [0, 4-00).

Assume thatyn(s) < ¢n(s) for n € Z ands € [—r, 0]. Putwp(t) := vn(t) — un(t) for

n e Z andt > —r. Thenwn(t) is continuous and bounded. Therefoggl) := sug,cz wn(t) is
continuous orf—r, +00). Let Mg > 0 be such thaMp > d + Lg+e Mor, Suppose that there
exigsty > 0 such thatu(tg) > 0 and

w(tg)e Mo = sup{w(t)e Mot} > o (r)e Mo, for all T € [0, to). (2.4)
t>—r

lwllx,

Let {n; }‘J?Ozl be a sequence such thag; (to) > 0 forall j > 1 andlim;_, 4o wn; (to) = w(to).
Let {t; }‘J?O:l be a sequence i, tg] suchthat

e Moliyn (1)) = max {e"Motwy (1)) (2.5)

! tel0,to] !
It follows from (2.4)that limj_, ;o tj = to. Since

e Mooy (t) < e Mlwn, (tj) < e Mlw(t)) < e MMu(t),
we have

e Moy (to) < wn; (t)) < &M@ W),
which yields limj _, .o wn; (tj) = w(to).

In view of (2.5), for eachj > 1, we obtain

d .
0 = e 0w (O} = — = &0 [wp (t) — Mown; (t))],



S. Ma et al. / Nonlinear Analysis 65 (2006) 1858-1890 1865

and hence
Mown; (tj) < wy, (t))
= —(D +d)wn;(t}) + D Y I)wn;-i(t))
i#0

+ D K(O)Ibe(ony—i(tj 1)) = b(Un; —i (tj = )]
< —(D + d)wn; (tj) + Do(tj)

+ Y K@OIba(vn;~i (tj =) — bulun, —i (tj —1))]

i

< —(D +dywn, (tj) + Do(tj) + Lk max0, o(tj —r)}.

Sendingj — 400 we get
Mo (to) < dw(to) + Li+e M w(to),

which together withw(tg) > 0 implies thatMg < d + Lk+e~Mo" which contradictsMg >
d + Lk+e Mo' This mntradiction shows thain(t) = vn(t) — un(t) < 0 forn € Z and
t > 0.

Sine(2.2)is equivalent to

t
vn(t) = yYn(0)e~PFt 4 / e PHDEOH, [vn](7) dr,
0

it follows that
un(t) = yn(@e P4 DY " I0d) f POy (1) dr. (2.6)
i£0 0
Therefore, we have
vn(t) = Yn(0)e PVt >0,
which together witH2.6) yields

vn(t) > e P+ o) + Dt Y i 1)wna1(0)} :
i1#0

An induction argument shows that

|
iz im0

from which (2.3)follows, and the proof is complete. O

> (D)™ . :
vn(t) > e (O wn(0)+m2:jl(m) > J(u)J(uz)---J(lm>1/fn_i1_i2_..._im(0>},

We set

Ac. 1) =cr—DY Ji)e™ +D+d—b(0) ) K(i)e ™+, (2.7)
i£0 i
If b'(0) > d, we haveA(c,0) = d — b'(0) < Oforallc > 0 andlim;_ 1o, A(C, A) = —o0.
For fixedc > 0, and anyi1, A2 > O with A1 # A2, we have
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A A ] e*)hli e*)hzi
zc% - DZJ(l)[% —1}
i£0

+d—b/(O)ZK(i)
i

e*)hl(i +cr) + esz(i +cr)
2

- CM -12— A2 D Z Ja) [e_(xl+;\2)i/2 _ 1] +d—b) Z K (i)e~Gatr)i+en/2
i#0 i

AL+ A2
=Alc,———).
(=27%)

Differentiating A(c, A) with respect tcc, we get
0 / i\ a—Ai+cr)
%A(c,k):k+krb(0)iZK(|)e > 0, forall » > 0.

Furthermore, for each fixed > 0, we have lig_, 1~ A(C, 1) = +o00 and

A0, =-D) J@He™ —b(©) ) Kie™ <o.
i£0 i
Therefore, we have the following observations:

Lemma 2.2. Assume that1§0) > d. Then tlere exists a unique,c> 0 suchthat

(i) if ¢ > c,, then there exst two positive numberds(c) and A2(c) with A1(c) < Az(c) such
that

A(e, 41(0)) = A(c, A2(0)) = 0;

(i) if ¢ < ¢4, thenA(c, 1) < Oforall A > 0;
(i) if ¢ = ¢4, thenAy(c) = A2(c) .= A4, andif ¢> c,, thenA1(c) < A, < Az(c) and

A(c,-) > 0 in (41(c), 42(0)), A(c,) <0 inR\ [41(c), 42(0)],
(iv) Ax(c) is strictly decreasing andi2(c) is strictly increasing in(c, +00).
In what follows we al® write A(c, A) =0 as
1 . :
1=—"——|D) Jie"+b0)) Kie**t |,
D+d+m[ ;(I)e + ()Z (e
Let

— 1 iy a— Al / s\ a—A(i+cr)
Le(h) == b TdTo |:D§J(|)e +b(0)2i:K(|)e . (2.8)

Then the constartt, > 0 defined inLemma 2.2Zan also be written as

¢y = inf{c > 0] L¢(A) < 1 for somer > 0}.
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Theorem 2.1. Assume thatH1) and (H2) hold, and let ¢c> c, and ¢, € C([—r, 0], [0, K*]).
Then the following sttements hold true:

@) If

lim sup max (pn(S)e < 400 (2.9
n——oo S€[-r,0

for somex > A1(c), then
JTOO Sgﬂun(t» p)In<—ct}=0
(i) If
lim sup max (pn(s)é < 400 (2.10)

n—+o0 SE[—

for somei > Al(c), then

lim sugun(t,@)| n>ct} =0.
t—>+00 n

Proof. Define a squence as follows

UD = uMnez, U ® = Galui V1), t >,
© _ 11,0 © 4 _ Jon(0), t>0,
u™ = {uy”Inezs uy’ () = {(Pn(t), t € [r.0].

Then an argument similar to that 6Emma 2.1shows thatuﬁ,j)(t) € [0, K*] for all j, and
U = {Un}nez With

un® = lim u’t), nezZ t>-—r
J—>—+o0

is a solution of(2.1).

For anyc > c,, takec; € (¢, €). If (2.9) holds then by the definition of u(o)(t), we can
chooseM > 0 so that

uQ e et < M, foralln € Z andt > —r. (2.11)

Without loss of generality, we may assume that (A1(c), A,) and choose; € (¢, C) in
such a vay thatA(cy, A) = 0. ThenL¢ (1) = 1, and fort > 0, by(2.4)and(2.11)and the fact
thatb(w) < b’ (0)w for w € [0, K*], we have

— ef)\(I‘H»Clt) {(pn(O)e(D+d)t +/ e(D+d)(‘L’ —t) [DZJU)U(O) (7,')
0 i#£0

+Z K ()b, (r — r))] dr,

< e—(D+d+kC1)t {(pn(o)e—kn + D/ (D+d+)nC1)‘L’ Z J(l)U(O) (7)
0 i£0
% e—A(n—i+c1r) . e—Ai dr
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+ b/ (0) e*)\clr /

t
e+t $ i (1 )yO, (r — e HI-HeE-n) g dt}
0 i

J

M A Al / —AC1r P\ oAl
57D+d+ml{D;)J(u)e +b'(0)e ZK(l)e

- |:D +d+2rc1— D) Jie™ —b@e Y K )e—“] e—<D+d+A°1>t}
i

i£0
_ M
S D+d+ ACyL
x { DY J(e™ +b'@e Y Ki)e™ + Ay, A)e_(DJFd“Ci)t}
i#0 i
< MLe,()
=M,

and fort € [—r, 0], we also have

ugl) (t)e—x(n—i-clt) _ ugO)(t)e—A(n+c1t) <M.
By using an induction argument, we may obtain

u et < M, forall j e Nandt > —r. (2.12)
Therefore, fom < —ct, we have

0 < up(t) < MetMFe < \eg?(Cc—ct _,

ast — +o0, from which (i) follows. The statemeniil can be proved in a similar way and the
proof is canplee.

As a direct consquence ofheorem 2.1we have thdollowing
Corollary 2.1. Assume thatH1) and (H2) hold. Then for any & c,, (1.6)has no nonconstant
traveling wave solution h + ct) satisfying U¢) € [0, K*] for all £ € R, and
limsupU (6)e™*¢ < 400

E——00
for somex > A1(C).

Remark 2.1. Instead of (H2), v assume that O< b(u) < min{Lu, dK*} for all u € (0, K*],
someL > b/(0) andK* > K. Define

1 Al yq—A(i+cr)
7D+d+cx|:DZJ(I)e +LZK(I)e

c* = inf {c >0
i£0 i

IA

1 for somex > O} .

Thenc* > c,, and forc > c*, the same @nclusion ofTheorem 2.holds.
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ForanyT > 0 and¢ = {¢n}nez With ¢ € C([—T, +00), [0, K,]), define
T
Eq [¢1(1) = / s { DY JGi)pn-it—1)
0 i#£0

+ Y K@bu(@noit—7 — r))} dr, (2.13)
i

wheren € Z andt > T. Then we have thiollowing comparison principle.

Lemma2.3. Let¢ = {¢n}nez With ¢n € C([—r, +00), [0, K,]) be such that for any > T, the
set{n € Z| ¢n(t) # 0for some te [T, t]} is bounded and

ErT[qb](t) > ¢n(t), foralln e Zandt>T. (2.14)
If there existsg > 0 such hat the solutiorv, (t) of (2.2) satisfies
vn(tg) > 0 foralln € Z,
and
un(to + 1) > ¢n(t) fort e [-r, T].
Then
vn(to +1t) > Pn(t) forallt > —r.
Proof. Let
t' = supt > T|vn(to +t) > ¢n(t), foralln e Z}.

If t < +o0, then here eists{(n;, tj)}]?ozl suchthatt; N\ t" and 0< wvp; (to + tj) < én; (tj).
Therefore {n; }‘J?Ozl is bounded, and hendaj }‘J?Ozl is composed of finite iregers and @ntains a
constant sub-sequenf®}. Thus, we have

vy (to +t') < ¢ (). (2.15)

Notice thatt’ > T, tg > 0 andvn(tg) > O for all n € Z, it follows from the definition ot’ and
(2.14)that

vy (to +1')

, to+t’ ,
= vy (tg)e~ (PO +/ gPHdE=1) {D > I)vg—i(r)
to i#£0

+ Z K (i)by(vy—i (zr — r)), dr
t/
> / gD+ (z+to-t) {D D Ivw—i(r +10) + > K(Hba(wy—i(r +1o — r)), dr
0 i£0 i

t/
> / gD+ E-t) {D Z J()vy_i(t +to) + Z K (i)bs(vpy—j (T + 1o — r)), dr
0 i£0 i
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/

- / g~ (D+d)z :D Z J(vy_itto+t — 1)
0

i20

+ ZK(i)b*(Un’i(t0+t/—f—r))} dr

.
> / g (D+d)r {D Z J)vy—i(to+t' — 1)
0 i£0

+ Z K@i)by(vy_i(tg+t — 1 — r)), dr

T
z/o e (DFdr {DZJ(i)qsn/_i ' =)+ Y K[bulpy_i(t' =t —1) | dr
i#£0 i
= Ep[81(t) = ¢n (1)),
which mntradictg2.15) This ontradiction shows thdt = 400 and the proof is complete.

Define a function with two parameteise R andg > 0 as fdlows

e “Ysin(gy), forye [0, %] ,

f(y;o,B) = (2.16)

0, foryeR\[O,z]
B
Then we have the following lemma.

Lemma?24. Let c € (0,c,), then here exist T> 0, h € (d,b’'(0)), N > 0, Bop > Oand a
continuous functio® = &(B) defined ori0, Bo] suchthat

T
/ e—(D+d)r{D Z J(i)f(y+cf—i)+h2K(i)f(y+CT+C|’—i) dr
0

0<li|<N lil<N
> f(y), (2.17)

forally € R, where f(y) = f(y; o(8), B).
Proof. Define

T .
LA =Lx, T,N,h) :=/ e—<D+d>f{D Z J(i)e et
0

O<|i|<N

+h )" K(i)e*(cf“fi)} dr

lil<N

= :D > JMe +h ) K(i)e“ic”}

O<|i|<N li|l<N

)
X/ o (DH+AH0T g
0
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Firstly, we assert that there existe (d,b’(0)), T > 0 andN € N with b’(0) —h > 0
sufficiently small, T > 0 andN > O sufficiently large, such that

L) =L, T,N,hy>1,  forallxeR. (2.18)

SinceL(—x) > L()) for A > 0, we only need to show that(A) > 1 for A > 0. We observe that

foranyT > 0,h € (d, b/(0)) and anyN € N with J(ig) > 0 for someg € {1, 2, ..., N},

D Y J@i)e
O<i<N
D+d+Ac,

Sowe can choosélyg > 0, Np > 0 andigp > 0 so thatL(A) = L(A, T,N,h) > 1 for all

A > X0, T > To, N > Np andh € (d, b/'(0)).

If the assertion is not true, then there e>(l$;}‘j’°:1, {T; }‘j”:l, {N;j }‘J?‘;l and{Aj }j"’:l satisfying
hj b (0), Tj / +oo, Nj 7 400, Aj € [0, Ag] suchthat

Ly, Tj, Nj, hj) <1, forall j € N. (2.19)

L) =LA, T,N,h) > [1-e @] 5 oo, asi — +o0.

Without loss of generality, we assurhg — % € [0, Ag]. Passing to the limit ag — oo in (2.19)
gives

1< Lch) = lim L(xj, Tj, Nj, hj) <1,
J~>OO
which leads® a @ntradiction and establishes the assertion.
LetA = w + 1B, then
Lw+ip) =R[L(w+iB)]+iJ[L(w+ip)],
where

T .
R[L(w+iB)] = / g~ (D+d)z :D Z J@i)e @D cosp(ct —i)
0

0<[i|<N
+h Z K (i)e @+ =D cosB(ct + cr — i)} dr, (2.20)
lil<N

and

T .
S[L(a)+i,8)]=—/ e—<D+d>f{D Z J(ie T Dsingcr —1i)
0

0<li|<N
+h Z K (i)e @™+ D sing(ct +cr — i)} dr. (2.21)
li<N

SinceL” (%) > Oforallx € R and lim | 40 L(X) = 400, it follows thatL (1) can achieve its
minimum, say ak = Ag. Therdore, we have

T .
L/(a)o) = _/(; e*(D+d)t {D Z J(i)(ct — i)efwo(thl)

O<|i|<N

+h > Ki)er +cr — i)e‘“O(C”C”)} dr = 0.
lil<N
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We now cefine a functiorH = H (w, 8) by

H. f) = ZAIL@+IAL  forp£0,
H(w, 0) = /SIEimO H(w, B) = L' (w).

ThenH (wg, 0) = 0 and

oH
— (wo, 0) = L"(wp) > 0.
Jw

The Implicit Function Theorem then implies that there egist> 0 and a continuous function
o = @(pB) defined o0, B1] with @(0) = wo suchthatH (&(B), B) = 0 for B € [0, B1]. Herce,
we have

S[L(@(B) +i8)] =0, for B € [0, B1l. (2.22)
Sincel (wg) > 1, we can choosg, > 0 sufficiently small so that
RIL@B) +ip)] > 1, for g € [0, B2]. (2.23)
Let
. T
0< B =po:=min {,317 B2, m} . (2.24)

Then fory € [0, %], lil < Nandt € [0, T], we have

T . . T 2
—E<—N§y+Ct—l <y+4crt+cr—i §E+c*(T+r)+N§?.

Since sinBz < 0forze [—%, OluU[ %], it follows from (2.20)—(2.24}hat fory < [O, %],

ELS
ﬂ ’

.
g (D+dr ) p Ji)f(y+crt—i)+h KGi)f(y+cr+cr—i)td
| : S IO fy+er—+h S Ki)f(y+er e

O<li|<N liI<N

T ] .
z/ e—<D+d>f{D > e P PUteTDsing(y + cr —i)
0 0<[il<N

+h Z K (i)e~ @B y+er+er=h ging(y 4+ cr + cr — i)} dr
lil<N

= e “PYsingy - RIL@(B) +iB)] — e P cospy - S[L@(B) +1B)]
> e P singy = f(y).
This completes the proof. O
Define

Ry; @, B, x) = max f(y+n; . f)

w, fory < x +o,

b
f(y_x’a),ﬂ), fOI‘x+QSYSX+E’ (225)

T
0, fory > x + —.,
B
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where
@ =ww p) = max{f(y;w,ﬁnoSys%}, (2.26)
ando = o(w, B) is the pont where the above maximua is achieved.

Lemma 2.5. Let ce (0, c,) be given, then there exist ¥ 0,8 > 0,w € R, B > 0andog > 0
such hat for anyo € (0, og) and for any t> T,

Eplop]t) > opn(t), (2.27)
wheregn(t) = R(|n|; w, 8, B+ ct),ne Z,t > —r.

Proof. By Lemma 2.4wecan choosd > 0,h € (d, b’(0)), N > 0,8 > 0 andw = @(B) such
that(2.17)holds.

TakeB = 2N + c,r + 1. Letoy be the smallest positive root of the equatiiw) = hw.
Thenb,(w) > hw for w € (0, wh). Chooseog € (0, %). Leto € (0,00) andt > T, then we
have

Eflo¢](t)

T
= / g~ (D+d)r {O’D Z J()pn_i(t — 1) + Z K (i)by(opn_i(t — 7 — r))} dr
0 i£0 i

.
20/0 e_(D+d)f:D Z Ji)pn_it —7) +h Z K(i)q)n_i(t—t—r)} dr.

O<|i|<N lil<N
(2.28)

We now distinguish between two cases:

Case(i). In| < B+o+c(t—T—r)—N. Inthiscase,we havgn—i| < B+c(t—t—r)+po <
B+ct—1)+poforr [0, T]and|i| < N, andhence, it fdlows from (2.28)and the definition
of ¢n(t) that

.
aw{D Z J(i)+h2 K(i)}/ g (D+dr gp
0

Elloglt) >
0<fi[=N =N
1
_ 7 H - _ a(D+d)T
_ow{Do<2NJ(I)+h“|X§;\IK(I)} D+d[1 e ]

>ow =odn(t),

provided thatT > 0 andN > O are large enough.

Case (i) B+o+c(t—T—-r)—N <|n| < B+ct+%. Inthiscase|n| > N + 1. Therefore,
forlil < N,wehavgn—i|=n—i=|n|—iifn>0andn—i|=-n+i=|n+iifn<0O0.
Hence, it follows from(2.17)and(2.28) theddfinition of ¢, (t) and the evenness dfi) andK (i)
that
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.
Ello ](t)za/ e D+ I p Ji) max f(n|—i+n
alog A MZM L max f(nl—i+n
+h K(i max f(n| —i+ dr
‘”XSjN (i)  gmax fn n)}
T —(D+d)
- - “ID Jd f(n| —i
U/o e oZ (|)ﬂzn_"|g>_<Ct (n| —i +ct+1n)
<li|<N
+h K@) max f(n|—i+ct+ecr+ dr
M;N (i) max fni n)}
>

o max f(n|+n) =oen(l).
n>—B—ct
Combining (i) and (ii), we obtai2.27)and complete the proof. O

Theorem 2.2. Assume that(H1) and (H2) hold. Assume thaty = {gn}hez With ¢n €
C([-r, 0], [0, K*]) satisfiesgn,(0) > O for some i € Z. Then ér any c € (0, c,), there
holds

liminf min{un(t, )| In| < ct} > K,, (2.29)
t—>4o00 n

where K, = % infue(o,k+{b(u)| b(u) < du} > 0.

Proof. Take ¥ = {ymlnez Whereyy, € C([—r, 0], [0, K,]) satisfiespn(s) > ¥n(s) for all
neZ,se[-r 0] andyn,(0) > 0. Then by virtue oLemma 2.1 we haveun(t, ¢) > vn(t, ¥)
foralln € Z andt > 0. So it sufficego show that

liminf min{un(t, ¥)| |In| < ct} > K,, (2.30)

t—>400 n

wherev(t) := v(t, ) = {vn(t, ¥)}nez is the unique solution af2.2).
For anyc € (0, c,), choosec; € (c, ¢,). By Lemma 2.5there exisconstantsT > 0, 8 >
0,w € R, B > 0 andog > 0 such thafor anyo € (0,00) andanyt > T,

ET[0g](t) > an(t), (2.31)

wheregn(t) = R(n|; w, 8, B+cit),n e Z,t > —r.

By Lemma 2.1 we seethat vh(t) = wvp(t,y) > Oforalln € Z andt > 0. Choose
to > r and denotep(n,t) = ¢n(t) forn € Z andt > —r. Since for anyt € [—r, T],
suppe (-, t) C suppe (-, T) are bounded sets, we can chogse (0, op) suchthat

s < Ky (2.32)
and

vn(to +1t) > con(t), forn e suppe (-, T) andt € [—r, T]. (2.33)
It then follows fromLemma 2.3hat

vn(to +1t) > con(t), foralln € suppg (-, T) andt > —r,
from which and the definition ap, (t), we obtain

o +1t) > cow fort > —r and|n| < B + ¢t + 0.
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By (2.2), we find
vn(to+1) = /t e(Der)t:DZJ(i)Uni (to+t—1)
0 i£0
+ Y K@)bu(nitto+t—1 — r))} dr. (2.34)
i

Leta = ¢w = Qp(t, N),t > —r and forj € N, let

t
Qjt, N):/ e<D+d>t{D > IHQjat—1.N)
0

O<lJi|<N
+ ) KHbu(Qjat —7 -, N))}, fort > 0,
lil<N
and
Qjt, N) =0, fort € [—r, O].
Then fort > 0 and|n| < B+ c1t + ¢ — N, we have

t
Un(t0+t)2/ e—<D+d>f{D Y JOHQot -7, N)
0

O<|i|<N

+ > K(@)bu(Qot — 7 —, N))} dr = Qu(t, N).

lil<N

By an induction argument, it is easily seen that

vn(to +1) = Qj(t, N), fort > —r and|n| < B+cit+0 — jN. (2.35)
We claim that for any > 0, there exist(e) > 0, N(¢) € NandJ(¢) € N suchthat
Qj(t,N) = Ky —e,  for N = N(e), j = J(e) andt > j(f(e) +r1). (2.36)

To see ths, we firstly observe that

O<a=Qut,N) <K, and 0<1—e P+t 1 fort> 0.
and an induction argument shows that

0< Qjt,N) <K, forallt > 0, j, N € Nwith N large enough

For smalle > 0. Sinceb(0) = b’(0) > d andDw + b, (w) > (D 4+ d)w for w € (0, K,), we
have

A(e):inf{w O<w< K*—e} > 1.
(D+dyw
Choosex(e) € (75, 1)- Then
a(e) 1
D +d[Dw + by (w)] > m[Dw + be(w)] > w, forw e (0, Ky — €].

(2.37)
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Define a sequece as follows

a(e)
D+d

Then we have the following observations:

Mo = a, Mj = —=[DMj_1+b.(Mj_1], j=1

() if0 < Mj < Ky —€,thenMj 1 > Mj;
(i) if Mj > K, — ¢, then

Mj+l > D( )d[D(K —)+b(Ky—e)] > Ky —e.

If Mj < K, —eforall j e N, thenly (i) limj_. Mj = M exids and satisfies

0<|\7I_D(—)d[DM+b(M)]<K — e,

which contradictg2.37) Therdore, there exists (¢) € N suchthatMj, > K. —¢, andhence,
it follows from (i) thatM; > K, — e forall j > J(e).
ChooseN(¢) > 0 andi(e) > 0 sufficiently large so that

[1—e(D+d>f<f>]-min{ doodi), Y K(i)}z(x(e).

0<li]<N(e) lil<N(e)
For N > Ne), if Qj(t,N) > M; for somej and everyt > j(t(e) + r), then Dr all
t > (j + 1 (f(e) +r), we have

t
Qjta(t, N):/ e—<D+d>f{D Z JHQjt —17,N)
0

0<lil<N

+ ) KOb(Qjt —7 . N))} dr

lil<N

v

f(e)
/ e(D+d>f{D Z J(HQj(t — 1, N)
0

O<lJi|<N

+ > Kib(Qjt—7 -, N))} dr

lil<N

1 — e~ (D+d)i(e) _ _
O<li|=N(e) [I[=N(e)
_ @
~ D+d
SinceQo(t, N) = a > Mo, t > 0, by induction, we conclude th&; (t, N) > M; forall j > 0,
N > N(e) andt > j(f(e) +r). Therdore, Qjt,N) > Ky —eforj > J(e), N > N(e) and
t > j(f(e) +r). This estalishes he assertion.

[DM] + b, (M)] = Mj41.
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So it follows from(2.35)and(2.36)that

o) > Ky —e, fort > tg+ J(e)(E(e) + 1) and
In| < B+ cy(t —tg) + 0 — J(€)N(e). (2.38)

Define

ty = max{to + J(O)(e) +1), JN@© el = B¢ } .
cp—¢C
Sincec; > ¢, it follows from (2.38)that
vp(t) > Ky — ¢, fort >ty and|n| < ct,
from which (2.30)follows and the poof is compete. O

As a direct consquence o heorem 2.2we hae the fdlowing

Coroallary 2.2. Assume thatH1) and (H2) hold. Then for any & (0, c,), (1.2)has no traveling
wave solution Un + ct) satisfying U&) € [0, K*] for all ¢ € R and U(&) € (0, K,) for some
& e R.

3. Existence and uniqueness of traveling waves

In this section, we first show the existence of traveling wave$ld) by using the sub-
supersolution technique and an iteration scheme.
For any absolutely continuous functiagh: R — R, we set

—olim 8@ G~ o
Nel¢1(€) = clim . D%J(l)w(s D)~ ¢ +dg €)
— D_Kb@E —i —cn). (3.1)

Defintion 3.1. An absolutely continuous functiop : R — [0, K] is called a supersolution (a
subsolution, resp.) of1.7)if for almost everyt € R, N¢[¢](¢) > 0 (< 0, resp.).

Lemma 3.1. Assume thatH1)—(H5) hold. Let ¢ > ¢, and A1(c), 42(c) be defined as in
Lemma2.2 Then br everyg € (1, min{l + v, ﬁfg}) there eists Q(c, B) > 1, sud that
for any > Q(c, B) and anyt* e R, the unctionsp™ defined by

¢+(§) = min{K, eAl(C)(§+E+) + qeﬂAl(C)(f+§+)}’ £eR (3.2)
and

$~ (&) := maxo, el ©G+ET) _ qeﬁAi(C)(E+E_)}’ EecR (3.3)
are a supersolution and a subsolution(a7), respectively.

Proof. It is easily seen that there exis{§ < —&+ — m In %, such hat¢™ (&) = K for

£>E*andgT (&) = M ©E+s™) + qeﬁAi(C)(E+E+) for& < g*.
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For& > &£*, we have
NelpT1(6) = =D ) JMIp™ (€ —i) —KI+dK =Y K()b(pT (€ —i —cr))
i#0 i
> —DY JMI¢TE—1)—KI= D K@)Ib@"(E—i—cr) —b(K)]
i#0 i
> 0.

For& < &*, we have

NC[¢+]($) > eAl(C)(§+E+) |:C/11(C) -D Z J(i)ef/ll(C)i + D+ d]
i20
+qeﬂA1(C)(S+E+) |:C,3/11(C) -D Z J(i)e*ﬂAl(C)i +D+ d]
i20
— D _ Kb —i—cn)

> g 1OCHED A, BA1(0) +D'(0) Y K()gT (5 —i —cn)

— Y K()b(¢*(E —i—cn)
i
> 0.

Thereforeg™ is a sipersolution o{1.7).
Letg, = —&6— — (/STl/ll(C) Ing. If q > 1, theng, < —&~. Clearly,¢— (&) = O for& > &,
and¢—(€:) — eAl(C)(E‘i‘E_) _ qeﬁAl(C)(f‘i‘&'_) foré: < &,.
For& > &, we have
Ne[¢~1(6) = =D ) J()¢~ (€ —i) — Y _K(i)b(@ (¢ —i —cr) <0.
i£0 i

Foré <&, wehavet + £~ < Ing, andhence

1
~B-DA©
Nelp™1(5) < e/1©E+D) [cmc) ~-D) Jie M9 +D+ d:|

i#0
— qeﬂAl(C)(f+§7) |:C,3/11(C) -D Z J@i)e PhOi 4 p 4 d]
i£0
— D _Kb@ (¢ —i-cr)

< —qePMOEHD A(c, BA1(C)) +b'(0) Y K ()¢ (€ —i —cr)
— 2_Kb@ (¢ —i-cr)
< —qefMOEHED A, A1) + M Y K(Dp~(E —i — et
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_qeﬁAl(C)(E-i-&'_)A(c’ BA1(C)) + M Z K(i)e(l-i-v)/ll(c)(&'-i-f_—i)
i

IA

IA

—gA(c, fA1(0)) + M Z K (i )e(l+v)A1(C)ie(l+vﬂ)Al(C)(SJré)}

|
% PO E+ET)

i

<0
provided thatq > Q(c, B) = max[l, m 3, K (i)ett Ao } Therdore, ¢~ is a
subsolution of(1.7). Theproofis canplee. O
The following theorem is our main result for the existence of traveling waves.
Theorem 3.1. AssumgH1)—(H5) hold. Let ¢ > 0 be as inLemma2.2 Then br each c> c,,

(1.6)admits a travéing wave solution 4(t) = U (n + ct) satisfying U—oc) = 0, U(+00) = K
and U > 0onR. Furthermore, for c> ¢, U alsosatisfies

lim U&)e 110F = 1, lim U’&)e 11Of = A(c), (3.4)
£——o00 £——o00

wherel = A;1(c) is the smallest solution to the equation
Ac.))=cr—D) Jie M +D+d-b'(0) > K " =o.
i#£0 i
Proof. Forc > c,, by virtue ofLemma 3.1¢* and¢~ with £* = 0 are a supesolution and a
subsolution to(1.7), respectively. For any. € (0, A1(c)), let

X=1¢cCR,R) | suﬂ§|¢(s>|e—kf < —i—oo} . el = suﬂ§|¢(é)|e‘“.
ée te

Then (X, || - ||) is a Banach space. Singe (§) < ¢1() forall € € R and¢™ (&) is
nondecreasing oR, by using a ggument as used irRf], it is easily known that the set

I'=1¢ecC®,[0,KI

)] ¢ (&) isnondecreasing oOR;
(i) $7(€) < 9(§) <ot (&) forall§ e R;
2K (D +d)
(i) |pE) —@(E2)| < f@l —&|forall &, & e R.
is nonempty, convex and compactin
DefineF : I' — I' by

+ & +
F($)(&) = %e—DT"f f e”c"TH(¢)(r) dr,
whereH (¢)(¢é) = D Z#O J¢E —i)+ Y Ki)b(g(E —i —cr)), & € R. Itis easily seen
thatF is well-defined ad a fixedpoint of F is a solution of1.7)and(1.8).
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Since branye, v € I,

IF(@) (&) — F(y)(@E)e™

+ § +
Lot / %7 |H (¢) (1) — H(Y) (o) dr

C

1 § . )
< _e—<°+"+x>s/ e {DZJ(i)Irﬁ(r —i) = Y(x —i)e . gD

¢ —00 iZ0

+ Lk Y K@lp—i—cr)—y(r—i—cre =0, e“f—‘—c”, de

IA

16 =Vl 29 e /s e

c —00

x {DZJ(i)e‘“ + Lk Z K(i)e .e—“f, dr

i£0 :
_M ie iyarl . a—Acr
_D+d+CA{Di#ZOJ(I)e +LKiZK(I)@ e }

it follows that F : I" — I is continuous. Therefore, by virtue of Schauder’s Fixed Point
Theorem, it follows that~ has a fixed pointJc in X, which will be denoted by(Uc, ¢) and
satisfies

eAi(C)E _ qeﬁAl(C)E < Uc(§) < eAi(C)E + qeﬁAl(C)E, £ eR. (3.5)

Clearly,(Ug, ¢) is also a weak solution ¢fL.7), i.e., for any¢ € C3°(R), we have

[ Ve’ + DY 30) [ Uctrp(+1)— D+ [ Ueo
R i20 R R

+ 30K [ BULOC+i+en =0 (3.6)
i R

Takeu* e (0, K), then for eachc > c,, thereexids & € R suchthatU¢(&) = u*. By
I-Jelly’s Theorem, ther exists asequencecy, > C, with ¢, \, ¢, asm — 4o0, such hat
Ue, () == Ug, (- + &,) converges pointwise to a nondecreasing functighasm — +oo.

Applying the Lebesgue’s Dominated Convergence Theore(8.6) with ¢ replaced bycm
andU. replaced by, then gives

. [ Ve + DY 30) [ U+ - @+ [ Ues
R oy R R

+ > K(i)/ b(Uc, ()¢ (- +i +cr) =0,
i R
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forall ¢ € C3°(R). Sincec, > 0, the last equality implies thate, < WL(R), and
hence, a bootstrap argument shows tat is of classC! and thus a solution ofL.7). Since
Ue, (0) = u* € (0,K) andb(u) > duforu e (0, K), it follows thatU¢, (—oco) = 0 and
Ue, (o0) = K.

Next, we show that for eaah > c,, U, > 0 onR. Suppose on the contrary thef.(xg) = 0
for somexg € R. SinceU/ > 0 onR, we havel/(Xp) = 0, and hence

0=cUf(xo) =D Y JHUxo— i)+ > K(Hb'Uelxo—i —cr)Ui(xo —i —cr),
i£0 i
which together with the fact théf(0) > d > 0 implies thatU;(xo — i) = Ug(xo) = 0 fori #0
with J(i) > 0 andU{(xo —ip — cr) = O forig with K(ig) > 0 if —xg > 0 is sufficiantly large.
Soby using an induction argument, we conclude that

U{(Xo 4+ n —mcr) =0, foralln,m € Z withm > 0.

Let wnm(t) := UL(Xo + N — mcr +t), thenwy m satisfies the initial value problem

/ D . d
Wnm = EZJG)[wn—i,m—wn,m]— Ewn’m
i£0
1
- K@i)b'(U n—i—(m+oecr+t i
+Ci2 ()b’ (Uc(xo + N — i — (M+ 1)cr + ) wni,me1.
wn,m(o) =0,

wheren,m € Z with m > 0. By the uniqueness of the initial value problem, we have
wn,m(t) = 0, and henc® = const, which isa ntradiction.
If ¢ > c,, it then follows from (3.5)that

lim |Uc)e11©% _1) < lim qe#-DM4©s — g,
&——o0 £—>—00
Since 0< b'(0)u — b(u) < Mut for u € (0, K), we have
‘ lim  [b(Uc(€)) — b/ (0)Uc (&) e 105 < . lim M[Ug(&)1 e 1% — g,
T ——00

Hence, forc > c,, it follows from the following analogof the Lebesgue’'s Dominated
Convergace Theorem that

lim U.E)e 11©F
&——00

1 . . . . .
== _lim {DZJ@)[UC@—l)—uc(m—duc(s)+ZK(u)b(uc(s—l—cr))}
i

Cé-—o| D
« e~ 10

_1 : DY Ji)e MO —1]—d+b'(0) Y K )eA1(C><i+Cf>}
¢l = i

= A1(0).

This completes the proof. O
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Lemma3.2. Let{fj(X)}, ] € Z,x € R, be a sgquence of functions such thﬁj fj(x) exids

forany x € R and fj(x) — f-j as X — Xp € {R, —o0, 400} for all j € Z. If thereexids a
sumnable sequencgyj} suchthat| fj (x)| < gj forall j € Z and xe R, then

Y= > fi,  asx— x.
i i

The proof ofLemma 3.2s similar to that of Lelsgue’s dominated convergence theorem and is
omitted.

In what follows, we study the uniqueness of our solutions, and establish the following main
resut, which shows that for any fixed > c, the solution to(1.7) and(1.8) is unique up to a
translation.

Theorem 3.2. AssumgH1)—(H6) hpld. For each c> ¢, let (U, ¢) be the solution t¢1.7)and
(1.8)as given inTheorenB.1 Let (U, c) be another solution t¢1.7)and(1.8)satisfying

lim supU (£)e 1% < 4o0. (3.7)

£——00
Then there exists € R suchthatU (-) = U (- + 2).
Proof. Firstly, we observe that ifU, c) is a solution to(1.7)and(1.8), then

U <K. (3.8)

Suppose otherwise that there existsso thatU (xo) > K andU(x) < U(xo) for all x € R.
Then we havé)’(xp) = 0 and so

0> —cU'(x0)+ DY IDHIU(xo—i) —U(x0)]
i#0
= dU(xp) — > K(HbU(xo—i —cr))
i

> dU (x0) — b(U (x0)) > 0,

which is acontradiction.

In what follows, we denote by, ¢) the solution of(1.7) and(1.8) given in Theorem 3.1
Sinceb’(K) < d < b’(0), we can choose > 0 such hat

-1
d> 2« max[l, [eAﬂC)C' > K(i)eAl(C)i] } +b(K). (3.9)
i

Choosec > 0 sufficiently small andN € N sufficiently large so that

-1
b'(n) < b'(K) + % min [1, |:e‘/11(°)Cr IZ K(i)e_Al(C)ii| } ’

forn e [K —k, K +«], (3.10)

and
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biaxmax| > K(i), e 1@ 3 K(i)e MO { < /2. (3.11)
lil>N li|>N

TakeM1 > N + cr sufficiently large so that

UE) > K —«/2, foré > M1 — N —cr. (3.12)
Since lim_ —oo U/ (x)e"41©X = 41(c) > 0, we can takeM, > 0 sufficiently large that
1
U’ (x)eA1ex > EAI(C)’ for x < —Mo. (3.13)

Denote
¢ =minfU’'(¢); =Mz < & < My} > 0.
Letu € (0, x/2) and define
B= max{ i—’gb;na%e/w“"l X.: K(i)e 1O af—f(c)b;w; K (i)e A© } . (38.14)
We claim that foru € (0, «/2) given alove, thereexids z > M1, such hat
UX+2) +pmin{l, e1©) >~ J(x),  forallx € R. (3.15)

In fact, we can first choosa > M > 0 such that 192 > 5 = limsup,_, ., U (x)e 41X,
Since

lim U+ z)e hOx - gh©n o 0.
X—>—00

there existdMsz > 0 such that
Ux+2z) > Ux), forx < —Ms.
TakeM4 > 0 sufficiently large that
U(X) +pe 11OMs o K forx > M.
Letz = z; + M3 + My, then for x < —M3, we have
UX +2) + pwmin{1, 1% — Jx) > Ux +2z1) — U(x) > 0,
and forx > —Mgs, we havex 4+ z > My, andhence(3.8)implies that

U(X +2) + pmin{l, eM©%) — J(x) > U(x + 2) + pe1OMs _ (j(x)
> K -U(x) > 0.

Define
wx,t) = UX +z+ B(L— e + umin{1, eM©@% et _ J(x), (3.16)
then we have
w(X, 0) = U(X + 2) + x min{1, €11©%} — J(x) > 0.

We claim thatw(x, t) > O0forallx € Randt > 0. To see this, suppose that there exist R
andtp > 0 such hat
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w(Xo, to) = U (Pg) + wmin{1, el1©@%01e=eb _ J(xg) = 0 < w(x, 1), (3.17)
forall x € R andt € [0, tg], where

Po=Xo+z+ B(1— e ),
Clearly, if xo = 0, then

wx(Xo—, to) = U’ (Po) — U’ (x0) + pA1(c)e’1(@* . e~ < 0,
and

wx(Xo+, to) = U’ (Po) — U’ (x0) = O,
which is imposdile. So we haveg # 0, and hence

wy (X0, to) = U’(Pg) — U’(X0) + nA1(c)e1©@% . g~ — 0 jf xg < 0, (3.18)
and

wy (X0, to) = U’(Py) — U’(x0) = 0, if xg > O. (3.19)

In the case whergg > 0, we have

0 > wi(Xo,to) = D Y I(MIw(xo i, to) — w(Xo, to)]
i#£0
= —ape 0 4 ¢BU'(Py)e
—uD Y I@[HIminf1, eOC0D} _ qjgmeto

i#0
—DY IMIUPo—i)—U(P)l+ DY IMHIUo—i)— U]
i£0 i#0
> [—ap +aBU'(Pyle™ — cU'(Po) — dU(Po) + Y K(i)b(U (P —i —cr))

(3.20)
+cU’(x0) +dU (x0) — Y K(i)b(U(xo —i —cr))

= [du —aule™®+ Y K@)IbU Py —i —cr) —bUxo i —cn))]
i

v

[die — aple™0 + ) K (U Py —i —cr)) — bU (Pp — i — cr) + e )]

[d — o = bl ) K = ) K(i)b/(ni)} pe e,

li|>N li|l<N

v

wheren; € (U(Py —i —cr),U(Pp—i —cr) 4+ w). SincePy > z > My, it follows from (3.12)
thatn; > U(Pg—i —cr) > K —«/2for|i| < N, andhence, by(3.9)—(3.11)the rght hand side
of (3.20)is positive, which isa contradiction.
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In the case whergg < 0, we have

0 > wi(Xo,to) = DY J()w(xo— i, t0) — w(Xo, to)]
i#0
= —queM©% . gl 4 ,BUY/ (Py)e b
—uD Z J(@i)[min{1, eAi(C)(Xo—i)} _ eAi(C)Xo]e—Dlto
i#£0
—DY JIMIUPo—i)—UPeI+ DY IMHIUo—i)—Uxo)]
i£0 i
> [—ape©% 4 BU/(Py)le 0 — 1 Detr(©%o0 [Z J(i)e MO _ 1} g b
i£0
—cU'(Py) — dU(Po) + > K ()b(U(Po —i —cr))
i
+¢U’(x0) + dU (xp) — Z K(iHbU(xg—i —cr))
i
> [—auel(©% L ¢BU'(Py)le @ — ; Del1(©%o—ato [Z J(i)e MO _ 1}
i20 (3.21)
+ MCAl(C)eAl(C)XO*O‘tO + d’u‘eAl(C)XO*atO
+ Y K(@)[bU(Po—i —cr)) —bU(Po—i —cr)
i
+ wmin{L, eAi(C)(Xo—i—CF)}e—MO)]
> [—a + ﬁU/(PO)e_Al(C)XO} MeAl(C)XO—OltO
"
+ ul'(0) Z K (i )e~A1©@i+en gdi(©xo—eto
i
—u K (i )b/(ni)e*/ll(c)(i +cn) gA1(0x0—ato
2.
> u b/(o)e—/ll(c)cr Z K(i)e—/ll(c)i —a+ @U/(Po)e—Al(c)Po
; g
_ b;na)aef/ll(c)cr Z K(i)eﬁAl(C)i _ Z K(i)b/(ni)eAl(c)(Hcr)] eAl(c)xofato’
li|>N lil<N
wheren; € (U(Pg—i —cr),U(Py—i —cr)+ w).

In this case, ifPp < —Mp>, then(3.13)and(3.14)imply that

@U/(Po)e*Al(C)PO _ Z K(i)b/(ni)e*/ll(c)(i‘l’cr)
H liI=N

BA .
> “71(0) _ b;naxz K(i)e*/ll(c)l > 0,
i

= "
and hence, by3.9)and(3.11) the right hand side 0f3.21)is positive, which isa contradiction.
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If Pp € [—M2, M1], then by(3.14) we have

ﬁu/(PO)e—Al(C)PO _ Z K(i)b/(ni)e_Al(C)(i"‘Cf)
o lil<N

aB ) .
> —MQe*Al(C)'\’Il - b,/.naxz K(i)eM1©@i - o,
i

and hence, by3.11) the right hand side 0f3.21)is positive, which isa contradiction.
If Py > My, thent follows from (3.10)thatn; > U(Pg—i —cr) > K —«/2for|i| < N,
and hence, by3.9),

b/(O)e—Al(C)Cr Z K (| )e—Al(C)l _ Z K (| )b,(nl )e—Al(C)(i-'rCr)
i lil<N

2 defAl(C)Cr Z K (| )ef/l]_(c)l _ b/(K)ef/l]_(C)Cr Z K(| )efAl(C)I _ a/z
i i

> 3a/2.

So, by(3.11) the right hand side of3.21)is positive, which is alo a ontradiction.
Taking thelimit t — 400 in (3.16) we get

UX+z+ B) > U(®x), forall x € R.
Thus there exists a minimalsuchthat
Ux) >Ux—2), forall x € R andz > z. (3.22)

We assert that iU (x) # Ux —2) fprsomex, thenU (x) > U(x — 2) forall x € R. Suppose
otherwise that for somey, U (Xg) = U (Xg — 2). Letw(X) = U(x) — U (X — Z). Then we have
w’(Xg) = 0 andw(x) > w(xg) = 0 for all x € R, andhence

0< D) JW)wxo—i)— wxo)]

i#0
= —cw'(x0) + D ) J()[w(xo— ) — w(X0)] — dw(Xo)
i#0
= —cU'(xo) + D ) IMHIU(xo— i) — U (x0)] — dU(x0)
i£0
+cU'(xg — 2) — DZJ(i)[U(XO—Z—i)—U(XO—Z)]+dU(x0—2)
i#0

=Y KbUxo—i—cr)+ Y KibUx —z-i-cr)
i i

— Y Kb mwxo—i —cr) <0,

wheren; € Uxg—2z—1i —cr),Uxg —i — cr)). Sinceb/(0) > d > 0, it follows that
wXo+1) = wXp — 1) = wXg) = 0 fori # 0 with J(i) > 0, andw(Xg — ip — cr) =
U(xg—ig—cr)—U(xg—ig—2z—cr) = 0 for someigwith K (ig) > 0if —xg > 0 is suffidently
large. From which, by an induction argument, we can show that

w(Xg —mcr+n) =0, foralln, m € Z with m > 0. (3.23)
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Let unm(t) = w(Xo — mcr+n+ ct),n € Z, m > 0, then by the Mean Value Theorem, it is
easily seen thaty m(t) satisfies the initial value problem

U;Lm =D Z J()[vn—i.m — vnm] — dvnm + Z K (i) Pn—i.m+1(Dvn—im+1,
iZ0 i
Un,m(o) =0,

wheren € Z, m > 0 and

1
Pam(t) = / b'[U (Xo — mcr 4+ n 4+ ct)
0

+a(U(xo —mer+n —z+ct) — U(xo — mer + n + ct))] da.

By the uniqueness of solutions to the initial value problem, we concludesghatt) = 0, and
hencew(x) = 0, which leads to a contradiction and establish the assertion.
In what follows, we suppose thiekt(x) > U (x — 2) for all x € R. Then i follows that

1> pe 02, (3.24)

wherep = limsup,_, ., U(x)e~41©x
Lete > 0 anddefine

wx,t) =UXx—el—eY) - U -2, xeR, teR.

Thenw(x,0) = U (X) — U (X —2) > Oforallx € R. Suppose that there exigf > 0 andxp € R
suchthat

w(Xo, ) = U(Xo — e(1 — e~ *0)) —U(xg — 2) = 0 < w(x, t),
for x € R andt € [0, tp).
Then
wx(Xo. o) = U'(xo — (1 — € *0)) —U'(xo — 2) = 0.
Therefore, we have
0< DY JDlwxo—i,to) — w(xo, to)]

i£0
=D) JDOIUPL—i)—UP)]—DY IOHIUP2—i)—U(P)]
i£0 i£0

= c[U’(Py) — U'(P2)]+d[U(P) — U(P2)]
- ZK(i)b(U(Pl—i —cr))—i—ZK(i)b(U(Pz—i —cr))

= =Y Kb (r)wxo—i —cr.to) 0,
i

whereP; = xg — e(1 — e 0), P, = xg — Zandpy; € (U (P —i —cr),U(Py—i —cr)). Since
b’'(0) > d > 0, it follows thatw(xg + i, to) = w(Xo — i, to) = w(Xp, to) = O fori # O with

J(@i) > 0, andw(xg —ig — cr, tg) = U(Py —ig—cr) — U(P, —ig — cr) = 0 for someig with
K(ipg) > 0if —xo > 0 is aufficiently large. From which, by an induction argument, we can show
that

w(Xp —mcr+n, tg) =0, forall n, m € Z withm > 0.
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An argument as used above can be used to show that
w(X,t)) =UX —e(l—e ) —Ux—12) =0, forall x € R.
Therefore, we have

e M@= jim U (x — g(1 - e7*0))e MOX
X——00

= limsupU (x — z)e~41(0% (3.25)

X—>—00
— pe MO
If pe=11(2 = 1, then(3.25)leads to a comadiction. If pe~41(®2 - 1 then we can choose
& > 0in such a way that

e~ M pe*Al(C)z,
therefore, it follows fron(3.25)that gh(©ee™0 _ 1, which is also a contradiction. So we have
wx, ) =Ux—ecl—e*))—-Ux—-2 >0 forallx € Randt > 0. (3.26)
Passing to the limit a$ — +oo in (3.26)gives
Ux) >Ux = (Z—2e)), forall x € R,

contradicting the minimality of and proving that (x) = U (x — 2) for all x € R. Theproofis
complete. O

As a direct consquence ofheorem 3.2we have thédollowing

(;orollary 3.1. Assume thatH1)—(H6) hold. Then for any c> c,, thereare no solutions
U (n + ct) of (1.6)satisfying

lim supU (£)e"11(% < 0.

E——00
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