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Abstract

In this paper, we study a very general non-local lattice differential equation with delay. We obtain the
existence of the asymptotic speed of propagation, the existence and uniqueness of the traveling wavefront
and the minimal speed of the traveling wavefront for the system. We also confirm that the asymptotic speed
of propagation and the minimal speed of the traveling wavefront coincide.
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1. Introduction

Lattice differential equations are infinite systems of ordinary differential equations indexed
by points on spatial lattices. Such systems arise, on one hand, from practical backgrounds, such
as modeling population growth over patchy environments [5,17,32] and modeling the phase
transitions (see, e.g., [3,4]). On the other hand, they are also natural results of discretizing the
corresponding models of partial differential equations in which continuous spatial variables are
used.
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For nonlinear reaction–diffusion equations models describing a variety of physical and
biological phenomena, traveling wave solutions are an important class of solutions since in many
situations they (i) determine the long term behavior of other solutions, and (ii) account for phase
transitions between different states of physical systems, propagation of patterns, and domain
invasion of species in population biology.

A simple but typical lattice differential system is

u′
n(t) = D[un+1(t)+ un−1(t)− 2un(t)] + f (un(t)), n ∈ Z, t > 0, (1.1)

which was initially used in Bell and Cosner [5] and Keener [17] to model myelinated axons
in nerve systems. For such a system and its various generalizations, when the nonlinear
term f (u) is of bistable type, the study on traveling wavefronts of such lattice differential
equations has been extensive and intensive, and has led to many interesting and significant
results, some of which, have revealed some essential difference between a discrete model and
its continuous version. For details, see, for example, [6–8,12,3–5,17,22,24,26,27,34,35], and
the references therein. However, when thenonlinearterm f (u) is monostable, that is, f (u)
satisfies

(A) f (0) = f (k) = 0 for somek > 0; and f (w) > 0 forw ∈ (0, k),
results are still very limited. Zinner et al. [36] addressed the existence and minimal speed of
traveling wavefront for the discrete Fisher equation. Recently, Chen and Guo [10,11] discussed
a more general class of system

u′
n(t) = g(un+1(t))+ g(un−1(t))− 2g(un(t))+ f (un(t)), n ∈ Z, t > 0. (1.2)

whereg(u) is increasing andf (u) is monostable. Established in [10,11] are suchresults as
existence, uniqueness and stability (in some sense) as well as minimal wave speed for(1.3). Also
in a very recent paper, Carr and Chmaj [9] establisheduniqueness of traveling wavefronts for the
nonlocalmonostableODE system

u′
n =

∑
ı∈Z\{0}

J(i )un−i − un + f (un), n ∈ Z, (1.3)

which reduces to the discrete reaction–diffusion system(1.1)when taking J(1) = J(−1) = 1/2
andJ(i ) = 0 elsewhere. System(1.3)was derived in [4] for an l2 gradient flow for a Helmholtz
free energy functional with general long range linear coupling.

On the other hand, in modeling population growth and transmission of signals in the nerve
systems, temporal delays seem to be inevitable accounting for the maturation time of the species
under consideration and the time needed for the signals to travel along axons and to cross
synapses. The existence of traveling wave solutions of delayed lattice differential equations
with monostable nonlinearities was initially studied by Wu and Zou [33] and Zou [37], later
by Hsu and Lin [15] and Ma et al. [21], and recently by Huang and Zou [16]. We point
out that not addressed in [33,37,15,21,16] were problems of minimal wave speed, uniqueness
and stability of traveling wave solutions to delayed lattice differential equations. It is well
known that the presence of delay in an ODE changes a finite dimensional system to an infinite
dimensional one, and this increases the difficulty level in addressing the above problems.
Encouraged by the work of Chen and Guo [10,11], and Carr and Chmaj [9], more recently,
Ma and Zou [23] obtained the minimal wave speed for the following delayed lattice differential
system
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u′
n(t) = D[un+1(t)+ un−1(t)− 2un(t)] − dun(t)+ b(un(t − r )), n ∈ Z, t > 0,

(1.4)

and established some results on uniqueness and asymptotic stability of its traveling wavefronts,
under themonostableassumption.

Note that the coupling in system(1.4)is only through linear diffusion, meaning that each unit
in the latticeZ only interacts with its nearest (adjacent)neighbors in the form of linear diffusion.
This may not be true in some situations. Indeed, in their recent work, Weng et al. [32] derived
a discretenonlocalmodel parallel to the continuous nonlocal model in [28], which takes the
form

u′
n(t) = D[un+1(t)+ un−1(t)− 2un(t)] − dun(t)+

∞∑
j =−∞

Γ (n, j )b(u j (t − r )),

n ∈ Z, t > 0, (1.5)

and includes(1.4) as a special case. In addition to the isotropic property of solutions and the
asymptotic speed of propagation, [32] also addressed the existence of traveling wavefronts, and
the existence and uniqueness of the associated initial value problem to(1.5) undermonostable
and somequasi-monotonicconditions onb(u). However, they did not consider the uniqueness of
the traveling wavefronts, and the existence of the minimal wave speed, let alone the relation of
the two speeds.

We may say that(1.3) hasnon-local diffusionand local interaction, while (1.5) has local
diffusion and non-local interaction. In this paper, instead of addressing the above remaining
problems for any of the systems(1.1)–(1.5), we will consider the following more general lattice
differential system

u′
n(t) = D

∑
i∈Z\{0}

J(i )[un−i (t)− un(t)] − dun(t)+
∑
i∈Z

K (i )b(un−i (t − r )), (1.6)

wherex ∈ R, t > 0, D,d > 0, r ≥ 0, b(·) is a Lipschitz continuous function on any compact
interval andb(0) = dK − b(K ) = 0 for someK > 0. Obviously,(1.6) contains bothnon-
local diffusionand non-local interaction, and includes(1.1)–(1.5)as special cases. Our main
concern is the existence of the asymptotic speed of propagation, the existence and uniqueness of
traveling wavefronts, and the minimal wave speed and its relation with the asymptotic speed of
propagation.

We point out that the asymptotic speed of propagation is an important notion in population
biology and for a quite general reaction–diffusion equation or an integral equation, the asymptotic
speed of propagation coincides with the minimal wave speed of the equation (see, e.g., [1,2,13,
14,18,19,25,29–31]). One naturally would like to know if this is also true for lattice differential
equations.

Throughout this paper, we always assume that the kernel functionsJ and K satisfy J(i ) =
J(−i ) ≥ 0 andK (i ) = K (−i ) ≥ 0 for all i ∈ Z \ {0}, and∑

i∈Z\{0}
J(i ) = 1,

∑
i∈Z\{0}

J(i )e−λi < +∞,

∑
i∈Z

K (i ) = 1,
∑
i∈Z

K (i )e−λi < +∞,
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for anyλ > 0. We also assume that the support ofJ contains eitheri = 1 or two relatively prime
integers,i = p andi = q.

We also need the following assumptions:

(H1) b′(0) > d;
(H2) min{b′(0)u,dK∗} ≥ b(u) > 0 for someK ∗ ≥ K and allu ∈ (0, K ∗];
(H3) b(u) > du for all u ∈ (0, K );
(H4) b′(u) ≥ 0 for all u ∈ (0, K );
(H5) b′(0)u − b(u) ≤ Mu1+ν for all u ∈ (0, K ), someM > 0 and someν ∈ (0,1];
(H6) b′(K ) < d.

In the above assumptions, byb′(0) > d, we mean thatb(u) is differentiable atu = 0 and
b′(0) > d, and the others can be treated similarly. It is easily seen that ifb ∈ C2([0, K ]), then
(H5) holds spontaneously. A prototype of such functions which has been widely used in the
mathematical biology literature isb(u) = pue−αu for a wide range of parametersp > 0 and
α > 0.

In the present paper, in addition to the asymptotic speed of propagation, we are also interested
in finding monotonic traveling wavesun(t) = U(n + ct) of (1.6), with U saturating at 0 andK .
To this end, we need to find an increasing functionU(ξ), whereξ = n + ct, for the following
associated wave equation

−cU′(ξ)+ D
∑
i �=0

J(i )[U(ξ − i )− U(ξ)] − dU(ξ)+
∑

i

K (i )b(U(ξ − i − cr)) = 0,

(1.7)

subject to the boundary conditions

U(−∞) := lim
ξ→−∞ U(ξ) = 0, U(+∞) := lim

ξ→+∞ U(ξ) = K . (1.8)

We now summarize our main results in the following two theorems.

Theorem 1.1. Assume that(H1) and (H2) hold. Then there exists c∗ > 0 such that c∗ is the
asymptotic speed of propagation for(1.6) in the sense that for any initial dataϕ = {ϕn}n∈Z with
ϕn ∈ C([−r,0], [0, K ∗]), the following statements hold true:

(i) if lim supn→−∞ maxs∈[−r,0] ϕn(s)e−λn < +∞ for someλ > Λ1(c) with c> c∗, then

lim
t→+∞ sup

n
{un(t, ϕ)| n ≤ −ct} = 0,

(ii) if lim supn→+∞ maxs∈[−r,0] ϕn(s)eλn < +∞ for someλ > Λ1(c) with c> c∗, then

lim
t→+∞ sup

n
{un(t, ϕ)| n ≥ ct} = 0,

(iii) if ϕn0(0) > 0 for some n0 ∈ Z, then for any c∈ (0, c∗),

lim inf
t→+∞ min

n
{un(t, ϕ)| |n| ≤ ct} ≥ K∗,

where K∗ = 1
d infu∈(0,K ∗]{b(u)| b(u) ≤ du} > 0 andλ = Λ1(c) is the smallest solution to the

equation cλ− D
∑

i �=0 J(i )e−λi + D + d − b′(0)
∑

i K (i )e−λ(i+cr) = 0.
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Theorem 1.2. Assume that(H1)–(H6) hold and let c∗ > 0 be as inTheorem1.1. Then c∗ is
also the minimal wave speed for(1.6) in the sense that for c∈ (0, c∗), (1.6) has no non-
constant traveling wave U(n + ct) with U(ξ) ∈ [0, K ] for all ξ ∈ R, and for c ≥ c∗, the
equation admits a strictly increasing traveling wavefront U(n + ct) with U saturating at 0 and
K . Furthermore, for each c> c∗, the traveling wavefront U(n+ct) isunique (up to a translation)
under the additional conditionlim supξ→−∞ U(ξ)e−Λ1(c)ξ < +∞, whereΛ1(c) is defined as in
Theorem1.1.

Remark 1.1. In Weng et al. [32], in addition to the existence of traveling wavefronts, the authors
also obtained some results on the asymptotic speed of propagation for(1.5). OurTheorem 1.1is
a sharp extension of the corresponding results in [32]. In particular, among the other assumptions,
Weng etal. [32] assume that the birth functionb(·) is non-decreasing. In contrast to the existing
literature [1,2,13,14,29,30,32], in ourTheorem 1.1, we donot assume that the birth functionb(·)
is non-decreasing.

Remark 1.2. In our Theorem 1.2, the assumption (H4) is a crucialone by which, the delayed
termb(u) is increasing on the interval[0, K ]. Thus, we can apply the upper–lower solutions and
monotonic iteration technique established in [33] or use anargument similar to that in [20] and
the Schauder’s fixed point theorem to establish the existence of monotonic traveling wavefronts.
When K is such thatb(u) is not increasing on[0, K ], theproblem becomes much harder due
to lack of quasi-monotonicity. For such delayed equations without quasi-monotonicity, some
existence results for traveling waves havebeen obtained in [33] by using the idea of the socalled
exponential ordering for delayed differential equations. Application of these results to particular
model equations is not trivial as it requires construction of very demanding upper–lower
solutions. Uniqueness and stability of traveling waves of such systems seem to be very interesting
and challenging problems.

The rest of this paper is organized as follows. In Section2, by using the squeezing tech-
nique [1,2,13,14,29,32], we show that there exists an asymptotic speed of propagation for(1.6).
In Section 3, we establish the existence of a traveling wavefront by using an argument as used
in [20] and the Schauder’s fixed point theorem, and prove that the traveling wavefront is unique
up to a translation in some sense. The results in Sections2 and3 also confirm the coincidence of
the asymptotic speed of propagation and the minimal speed of traveling wavefronts for(1.6).

2. Asymptotic speed of propagation

In this section, we shall show that there exists a constantc∗ > 0 so thatc∗ is the asymptotic
speed of propagation.

Assume thatb′(0) > d. Define a new function as follows

b∗(u) =
{

inf
η∈[u,K ∗] b(η), for u ≤ K ∗,

b(u), for u > K ∗.

Then b(u) ≥ b∗(u) for all u ∈ R and b∗(·) is non-decreasing in(−∞, K ∗]. Furthermore,
b∗(0) = dK∗ − b∗(K∗) = 0 andb∗(u) > du for all u ∈ (0, K∗), here and in what follows,
K∗ = 1

d infu∈(0,K ∗]{b(u)| b(u) ≤ du} > 0.
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Consider the following initial value problems{
u′

n(t) = −(D + d)un(t)+ H [un](t), n ∈ Z, t > 0,
un(s) = ϕn(s), n ∈ Z, s ∈ [−r,0], (2.1)

and {
v′

n(t) = −(D + d)vn(t)+ H∗[vn](t), n ∈ Z, t > 0,
vn(s) = ψn(s), n ∈ Z, s ∈ [−r,0], (2.2)

where

H [un](t) = D
∑
i �=0

J(i )un−i (t)+
∑

i

K (i )b(un−i (t − r )),

and

H∗[vn](t) = D
∑
i �=0

J(i )vn−i (t)+
∑

i

K (i )b∗(vn−i (t − r )).

For theinitial value problems(2.1)and(2.2), we have the following existence and comparison
result.

Lemma 2.1. Assume that(H1) and (H2) hold. Then for all initial dataϕ = {ϕn}n∈Z, ϕn ∈
C([−r,0], [0, K ∗]), (2.1)admits a unique solution u= {un}n∈Z with un ∈ C([0,+∞), [0, K ∗]).
Moreover, the same conclusion holds for(2.2) and if ϕn(s) ≥ ψn(s) for all n ∈ Z and
s ∈ [−r,0], then

un(t) ≥ vn(t) ≥
∑

n1,n2∈Z,n1 p+n2q=n−k

(Dt)|n1|+|n2|

(|n1| + |n2|)! [J(p)]|n1|[J(q)]|n2|ψk(0)e−(D+d)t,

(2.3)

for every n, k ∈ Z and t> 0, hereand in whatfollows, p= q = 1 or p and q are two relatively
prime integers.

Proof. Clearly,(2.1)is equivalent to

un(t) = ϕn(0)e−(D+d)t +
∫ t

0
e(D+d)(τ−t)H [un](τ ) dτ.

Foru = {un} with un ∈ C([−r,+∞), [0, K ∗]) andun(t) = ϕn(t) for t ∈ [−r,0], define

Gn[u](t) =

ϕn(0)e

−(D+d)t +
∫ t

0
e(D+d)(τ−t)H [un](τ ) dτ, for n ∈ Z andt > 0.

ϕn(t), for n ∈ Z andt ∈ [−r,0].
Then fort > 0, we have

0 ≤ Gn[u](t) ≤ K ∗e−(D+d)t + K ∗(D + d)
∫ t

0
e(D+d)(τ−t)dτ = K ∗,

and hence,G = {Gn}n∈Z : S→ S is well-defined, where

S := {u = {un}n∈Z | un ∈ C([−r,+∞), [0, K ∗]), un(t) = ϕn(t) for t ∈ [−r,0]}.
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Forλ > 0, let

Xλ := {u = {un}n∈Z | un ∈ C([−r,+∞),R), sup
t≥−r,n∈Z

|un(t)|e−λt < +∞},

‖u‖λ := sup
t≥−r,n∈Z

|un(t)|e−λt < +∞.

Then(Xλ, ‖ · ‖λ) is a Banach space andS ⊂ Xλ is a closed subset ofXλ.
For anyu, ū ∈ S, let w = {wn}n∈Z, wn(t) = un(t) − ūn(t) for n ∈ Z, then for t > 0, we

have

|Gn[u](t)− Gn[ū](t)|e−λt

≤ e−(D+d+λ)t
∫ t

0
e(D+d)τ |H [un](τ )− H [ūn](τ )| dτ

≤
∫ t

0
e(D+d+λ)(τ−t)

{
D

∑
i �=0

J(i )|wn−i (τ )|e−λτ

+ LK ∗e−λr
∑

i

K (i )|wn−i (τ − r )|e−λ(τ−r )

}
dτ

≤ ‖w‖λ(D + LK ∗e−λr )

∫ t

0
e(D+d+λ)(τ−t) dτ

≤ D + LK ∗e−λr

D + d + λ
‖w‖λ,

where and in what follows,LK ∗ is the Lipschitz constant ofb(·) on [0, K ∗]. Therefore, we can
chooseλ > 0 large enough so thatG : S → S is a contracting map. Clearly, theunique fixed
pointu ∈ S is a solution of(2.1)on [0,+∞).

Assume thatψn(s) ≤ ϕn(s) for n ∈ Z ands ∈ [−r,0]. Putwn(t) := vn(t) − un(t) for
n ∈ Z andt ≥ −r . Thenwn(t) is continuous and bounded. Therefore,ω(t) := supn∈Z wn(t) is
continuous on[−r,+∞). Let M0 > 0 be such thatM0 > d + LK ∗e−M0r . Suppose that there
exists t0 > 0 such thatω(t0) > 0 and

ω(t0)e−M0t0 = sup
t≥−r

{ω(t)e−M0t } > ω(τ)e−M0τ , for all τ ∈ [0, t0). (2.4)

Let {nj }∞j =1 be a sequence such thatwnj (t0) > 0 for all j ≥ 1 andlim j →+∞wnj (t0) = ω(t0).
Let {t j }∞j =1 be a sequence in(0, t0] suchthat

e−M0t jwnj (t j ) = max
t∈[0,t0]

{e−M0twnj (t)}. (2.5)

It follows from (2.4)that limj →+∞ t j = t0. Since

e−M0t0wnj (t0) ≤ e−M0t jwnj (t j ) ≤ e−M0t jω(t j ) ≤ e−M0t0ω(t0),

we have

e−M0(t0−t j )wnj (t0) ≤ wnj (t j ) ≤ e−M0(t0−t j )ω(t0),

which yields limj →+∞wnj (t j ) = ω(t0).
In view of (2.5), for eachj ≥ 1, we obtain

0 ≤ d

dt
{e−M0twnj (t)}|t=t j − = e−M0t j [w′

nj
(t j )− M0wnj (t j )],
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and hence

M0wnj (t j ) ≤ w′
nj
(t j )

= −(D + d)wnj (t j )+ D
∑
i �=0

J(i )wnj −i (t j )

+
∑

i

K (i )[b∗(vnj −i (t j − r ))− b(unj −i (t j − r ))]

≤ −(D + d)wnj (t j )+ Dω(t j )

+
∑

i

K (i )[b∗(vnj −i (t j − r ))− b∗(unj −i (t j − r ))]

≤ −(D + d)wnj (t j )+ Dω(t j )+ LK ∗ max{0, ω(t j − r )}.
Sending j → +∞ we get

M0ω(t0) ≤ dω(t0)+ LK ∗e−M0rω(t0),

which together withω(t0) > 0 implies thatM0 ≤ d + LK ∗e−M0r , which contradictsM0 >

d + LK ∗e−M0r . This contradiction shows thatwn(t) = vn(t) − un(t) ≤ 0 for n ∈ Z and
t > 0.

Sine(2.2)is equivalent to

vn(t) = ψn(0)e−(D+d)t +
∫ t

0
e(D+d)(τ−t)H∗[vn](τ ) dτ,

it follows that

vn(t) ≥ ψn(0)e−(D+d)t + D
∑
i �=0

J(i )
∫ t

0
e(D+d)(τ−t)vn−i (τ ) dτ. (2.6)

Therefore, we have

vn(t) ≥ ψn(0)e−(D+d)t, t ≥ 0,

which together with(2.6)yields

vn(t) ≥ e−(D+d)t

{
ψn(0)+ Dt

∑
i1 �=0

J(i1)ψn−i1(0)

}
.

An induction argument shows that

vn(t) ≥ e−(D+d)t

{
ψn(0)+

∞∑
m=1

(Dt)m

m!
∑

i1i2···im �=0

J(i1)J(i2) · · · J(im)ψn−i1−i2−···−im(0)

}
,

from which(2.3)follows, and the proof is complete. �

We set

∆(c, λ) := cλ− D
∑
i �=0

J(i )e−λi + D + d − b′(0)
∑

i

K (i )e−λ(i+cr). (2.7)

If b′(0) > d, we have∆(c,0) = d − b′(0) < 0 for all c ≥ 0 andlimλ→+∞ ∆(c, λ) = −∞.
For fixedc ≥ 0, and anyλ1, λ2 ≥ 0 with λ1 �= λ2, we have
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1

2
[∆(c, λ1)+ ∆(c, λ2)]

= c
λ1 + λ2

2
− D

∑
i �=0

J(i )

[
e−λ1i + e−λ2i

2
− 1

]

+ d − b′(0)
∑

i

K (i )
e−λ1(i+cr) + e−λ2(i+cr)

2

< c
λ1 + λ2

2
− D

∑
i �=0

J(i )
[
e−(λ1+λ2)i/2 − 1

]
+ d − b′(0)

∑
i

K (i )e−(λ1+λ2)(i+cr)/2

= ∆
(

c,
λ1 + λ2

2

)
.

Differentiating∆(c, λ) with respect toc, we get

∂

∂c
∆(c, λ) = λ+ λrb′(0)

∑
i

K (i )e−λ(i+cr) > 0, for all λ > 0.

Furthermore, for each fixedλ > 0, we have limc→+∞ ∆(c, λ) = +∞ and

∆(0, λ) = −D
∑
i �=0

J(i )e−λi − b′(0)
∑

i

K (i )e−λi < 0.

Therefore, we have the following observations:

Lemma 2.2. Assume that b′(0) > d. Then there exists a unique c∗ > 0 suchthat

(i) if c ≥ c∗, then there exist two positive numbersΛ1(c) andΛ2(c) with Λ1(c) ≤ Λ2(c) such
that

∆(c,Λ1(c)) = ∆(c,Λ2(c)) = 0;
(ii) if c < c∗, then∆(c, λ) < 0 for all λ ≥ 0;
(iii) if c = c∗, thenΛ1(c) = Λ2(c) := Λ∗, and if c> c∗, thenΛ1(c) < Λ∗ < Λ2(c) and

∆(c, ·) > 0 in (Λ1(c),Λ2(c)), ∆(c, ·) < 0 in R \ [Λ1(c),Λ2(c)],
(iv) Λ1(c) is strictly decreasing andΛ2(c) is strictly increasing in(c∗,+∞).

In what follows, we also write ∆(c, λ) = 0 as

1 = 1

D + d + cλ

[
D

∑
i �=0

J(i )e−λi + b′(0)
∑

i

K (i )e−λ(i+cr)

]
.

Let

Lc(λ) := 1

D + d + cλ

[
D

∑
i �=0

J(i )e−λi + b′(0)
∑

i

K (i )e−λ(i+cr)

]
. (2.8)

Then the constantc∗ > 0 defined inLemma 2.2can also be written as

c∗ = inf{c > 0| Lc(λ) ≤ 1 for someλ ≥ 0}.
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Theorem 2.1. Assume that(H1) and (H2) hold, and let c> c∗ andϕn ∈ C([−r,0], [0, K ∗]).
Then the following statements hold true:

(i) If

lim sup
n→−∞

max
s∈[−r,0]ϕn(s)e

−λn < +∞ (2.9)

for someλ > Λ1(c), then

lim
t→+∞ sup

n
{un(t, ϕ)| n ≤ −ct} = 0.

(ii) If

lim sup
n→+∞

max
s∈[−r,0]

ϕn(s)eλn < +∞ (2.10)

for someλ > Λ1(c), then

lim
t→+∞ sup

n
{un(t, ϕ)| n ≥ ct} = 0.

Proof. Define a sequence as follows

u( j ) = {u( j )
n }n∈Z, u( j )

n (t) = Gn[u( j −1)](t), t ≥ −r,

u(0) = {u(0)n }n∈Z, u(0)n (t) =
{
ϕn(0), t > 0,
ϕn(t), t ∈ [−r,0].

Then an argument similar to that ofLemma 2.1shows thatu( j )
n (t) ∈ [0, K ∗] for all j , and

u = {un}n∈Z with

un(t) = lim
j →+∞ u( j )

n (t), n ∈ Z, t ≥ −r

is a solution of(2.1).
For anyc > c∗, takec1 ∈ (c∗, c). If (2.9) holds, then by the definition of u(0)n (t), we can

chooseM > 0 so that

u(0)n (t)e−λ(n+c1t) ≤ M, for all n ∈ Z andt ≥ −r. (2.11)

Without loss of generality, we may assume thatλ ∈ (∆1(c),∆∗) and choosec1 ∈ (c∗, c) in
such a way that∆(c1, λ) = 0. ThenLc1(λ) = 1, and fort > 0, by(2.4)and(2.11)and the fact
thatb(w) ≤ b′(0)w for w ∈ [0, K ∗], we have

u(1)n (t)e−λ(n+c1t)

= e−λ(n+c1t)

{
ϕn(0)e−(D+d)t +

∫ t

0
e(D+d)(τ−t)

[
D

∑
i �=0

J(i )u(0)n−i (τ )

+
∑

i

K (i )b(u(0)n−i (τ − r ))

]
dτ

}

≤ e−(D+d+λc1)t

{
ϕn(0)e−λn + D

∫ t

0
e(D+d+λc1)τ

∑
i �=0

J(i )u(0)n−i (τ )

× e−λ(n−i+c1τ ) · e−λi dτ
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+ b′(0)e−λc1r
∫ t

0
e(D+d+λc1)τ

∑
j

K (i )u(0)n−i (τ − r )e−λ(n−i+c1(τ−r )) · e−λi dτ

}

≤ M

D + d + λc1

{
D

∑
i �=0

J(i )e−λi + b′(0)e−λc1r
∑

i

K (i )e−λi

+
[

D + d + λc1 − D
∑
i �=0

J(i )e−λi − b′(0)e−λc1r
∑

i

K (i )e−λi

]
e−(D+d+λc1)t

}

= M

D + d + λc1

×
{

D
∑
i �=0

J(i )e−λi + b′(0)e−λc1r
∑

i

K (i )e−λi + ∆(c1, λ)e−(D+d+λc1)t

}

≤ M Lc1(λ)

= M,

and fort ∈ [−r,0], we also have

u(1)n (t)e−λ(n+c1t) = u(0)n (t)e−λ(n+c1t) ≤ M.

By using an induction argument, we may obtain

u( j )
n (t)e−λ(n+c1t) ≤ M, for all j ∈ N andt ≥ −r. (2.12)

Therefore, forn ≤ −ct, we have

0 ≤ un(t) ≤ Meλ(n+c1t) ≤ Me−λ(c−c1)t → 0,

ast → +∞, from which (i) follows. The statement (ii) can be proved in a similar way and the
proof is complete.

As a direct consequence ofTheorem 2.1, we have thefollowing

Corollary 2.1. Assume that(H1) and(H2) hold. Then for any c> c∗, (1.6)has no nonconstant
traveling wave solution U(n + ct) satisfying U(ξ) ∈ [0, K ∗] for all ξ ∈ R, and

lim sup
ξ→−∞

U(ξ)e−λξ < +∞

for someλ > Λ1(c).

Remark 2.1. Instead of (H2), we assume that 0< b(u) ≤ min{Lu,dK∗} for all u ∈ (0, K ∗],
someL ≥ b′(0) andK ∗ ≥ K . Define

c∗ = inf

{
c > 0

∣∣∣∣∣ 1

D + d + cλ

[
D

∑
i �=0

J(i )e−λi + L
∑

i

K (i )e−λ(i+cr)

]

≤ 1 for someλ ≥ 0

}
.

Thenc∗ ≥ c∗, and forc > c∗, the same conclusion ofTheorem 2.1holds.
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For anyT > 0 andφ = {φn}n∈Z with φn ∈ C([−r,+∞), [0, K∗]), define

ET
n [φ](t) =

∫ T

0
e−(D+d)τ

{
D

∑
i �=0

J(i )φn−i (t − τ )

+
∑

i

K (i )b∗(φn−i (t − τ − r ))

}
dτ, (2.13)

wheren ∈ Z andt ≥ T . Then we have thefollowing comparison principle.

Lemma 2.3. Letφ = {φn}n∈Z with φn ∈ C([−r,+∞), [0, K∗]) be such that for anȳt ≥ T , the
set{n ∈ Z| φn(t) �= 0 for some t∈ [T, t̄]} is bounded and

ET
n [φ](t) ≥ φn(t), for all n ∈ Z and t ≥ T. (2.14)

If there exists t0 ≥ 0 such that the solutionvn(t) of (2.2)satisfies

vn(t0) > 0 for all n ∈ Z,

and

vn(t0 + t) ≥ φn(t) for t ∈ [−r, T].
Then

vn(t0 + t) ≥ φn(t) for all t ≥ −r.

Proof. Let

t ′ = sup{t ≥ T | vn(t0 + t) ≥ φn(t), for all n ∈ Z}.
If t ′ < +∞, then there exists {(nj , t j )}∞j =1 suchthat t j ↘ t ′ and 0≤ vnj (t0 + t j ) < φnj (t j ).
Therefore,{nj }∞j =1 is bounded, and hence{nj }∞j =1 is composed of finite integers and contains a
constant sub-sequence{n′}. Thus, we have

vn′ (t0 + t ′) ≤ φn′(t ′). (2.15)

Notice thatt ′ ≥ T , t0 ≥ 0 andvn(t0) > 0 for all n ∈ Z, it follows from the definition oft ′ and
(2.14)that

vn′ (t0 + t ′)

= vn′ (t0)e−(D+d)t ′ +
∫ t0+t ′

t0
e(D+d)(τ−t ′)

{
D

∑
i �=0

J(i )vn′−i (τ )

+
∑

i

K (i )b∗(vn′−i (τ − r ))

}
dτ

>

∫ t ′

0
e(D+d)(τ+t0−t ′)

{
D

∑
i �=0

J(i )vn′−i (τ + t0)+
∑

i

K (i )b∗(vn′−i (τ + t0 − r ))

}
dτ

≥
∫ t ′

0
e(D+d)(τ−t ′)

{
D

∑
i �=0

J(i )vn′−i (τ + t0)+
∑

i

K (i )b∗(vn′−i (τ + t0 − r ))

}
dτ



1870 S. Ma et al. / Nonlinear Analysis 65 (2006) 1858–1890

=
∫ t ′

0
e−(D+d)τ

{
D

∑
i �=0

J(i )vn′−i (t0 + t ′ − τ )

+
∑

i

K (i )b∗(vn′−i (t0 + t ′ − τ − r ))

}
dτ

≥
∫ T

0
e−(D+d)τ

{
D

∑
i �=0

J(i )vn′−i (t0 + t ′ − τ )

+
∑

i

K (i )b∗(vn′−i (t0 + t ′ − τ − r ))

}
dτ

≥
∫ T

0
e−(D+d)τ

{
D

∑
i �=0

J(i )φn′−i (t
′ − τ )+

∑
i

K (i )b∗(φn′−i (t
′ − τ − r ))

}
dτ

= ET
n′ [φ](t ′) ≥ φn′(t ′),

which contradicts(2.15). This contradiction shows thatt ′ = +∞ and the proof is complete.

Define a function with two parametersω ∈ R andβ > 0 as follows

f (y;ω, β) =




e−ωy sin(βy), for y ∈
[
0,
π

β

]
,

0, for y ∈ R \
[
0,
π

β

]
.

(2.16)

Then we have the following lemma.

Lemma 2.4. Let c ∈ (0, c∗), then there exist T> 0, h ∈ (d,b′(0)), N > 0, β0 > 0 and a
continuous functioñω = ω̃(β) defined on[0, β0] suchthat∫ T

0
e−(D+d)τ

{
D

∑
0<|i |≤N

J(i ) f (y + cτ − i )+ h
∑

|i |≤N

K (i ) f (y + cτ + cr − i )

}
dτ

≥ f (y), (2.17)

for all y ∈ R, where f(y) = f (y; ω̃(β), β).
Proof. Define

L(λ) = L(λ, T, N,h) :=
∫ T

0
e−(D+d)τ

{
D

∑
0<|i |≤N

J(i )e−λ(cτ−i )

+ h
∑
|i |≤N

K (i )e−λ(cτ+cr−i )

}
dτ

=
{

D
∑

0<|i |≤N

J(i )eλi + h
∑

|i |≤N

K (i )eλ(i−cr)

}

×
∫ T

0
e−(D+d+λc)τ dτ.
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Firstly, we assert that there existh ∈ (d,b′(0)), T > 0 andN ∈ N with b′(0) − h > 0
sufficiently small,T > 0 andN > 0 sufficiently large, such that

L(λ) = L(λ, T, N,h) > 1, for all λ ∈ R. (2.18)

SinceL(−λ) ≥ L(λ) for λ ≥ 0, we only need to show thatL(λ) > 1 for λ ≥ 0. We observe that
for anyT > 0, h ∈ (d,b′(0)) and anyN ∈ N with J(i0) > 0 for somei0 ∈ {1,2, . . . , N},

L(λ) = L(λ, T, N,h) ≥
D

∑
0<i≤N

J(i )eλi

D + d + λc∗
[1 − e−(D+d)T ] → +∞, asλ → +∞.

So we can chooseT0 > 0, N0 > 0 andλ0 > 0 so thatL(λ) = L(λ, T, N,h) > 1 for all
λ ≥ λ0, T ≥ T0, N ≥ N0 andh ∈ (d,b′(0)).

If the assertion is not true, then there exist{h j }∞j =1, {Tj }∞j =1, {Nj }∞j =1 and{λ j }∞j =1 satisfying
h j ↗ b′(0), Tj ↗ +∞, Nj ↗ +∞, λ j ∈ [0, λ0] suchthat

L(λ j , Tj , Nj ,h j ) ≤ 1, for all j ∈ N. (2.19)

Without loss of generality, we assumeλ j → λ̄ ∈ [0, λ0]. Passing to the limit asj → ∞ in (2.19)
gives

1< Lc(λ̄) = lim
j →∞ L(λ j , Tj , Nj ,h j ) ≤ 1,

which leads to a contradiction and establishes the assertion.
Let λ = ω + iβ, then

L(ω + iβ) = R[L(ω + iβ)] + i �[L(ω + iβ)],
where

R[L(ω + iβ)] =
∫ T

0
e−(D+d)τ

{
D

∑
0<|i |≤N

J(i )e−ω(cτ−i ) cosβ(cτ − i )

+ h
∑

|i |≤N

K (i )e−ω(cτ+cr−i ) cosβ(cτ + cr − i )

}
dτ, (2.20)

and

�[L(ω + iβ)] = −
∫ T

0
e−(D+d)τ

{
D

∑
0<|i |≤N

J(i )e−ω(cτ−i ) sinβ(cτ − i )

+ h
∑

|i |≤N

K (i )e−ω(cτ+cr−i ) sinβ(cτ + cr − i )

}
dτ. (2.21)

SinceL ′′(λ) > 0 for all λ ∈ R and lim|λ|→+∞ L(λ) = +∞, it follows thatL(λ) can achieve its
minimum, say atλ = λ0. Therefore, we have

L ′(ω0) = −
∫ T

0
e−(D+d)τ

{
D

∑
0<|i |≤N

J(i )(cτ − i )e−ω0(cτ−i )

+ h
∑
|i |≤N

K (i )(cτ + cr − i )e−ω0(cτ+cr−i )

}
dτ = 0.
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We now define a functionH = H (ω, β) by


H (ω, β) = 1

β
�[L(ω + iβ)], for β �= 0,

H (ω,0) = lim
β→0

H (ω, β) = L ′(ω).

ThenH (ω0,0) = 0 and

∂H

∂ω
(ω0,0) = L ′′(ω0) > 0.

The Implicit Function Theorem then implies that there existβ1 > 0 and a continuous function
ω̃ = ω̃(β) defined on[0, β1] with ω̃(0) = ω0 suchthat H (ω̃(β), β) = 0 for β ∈ [0, β1]. Hence,
we have

�[L(ω̃(β)+ iβ)] = 0, for β ∈ [0, β1]. (2.22)

SinceL(ω0) > 1, we can chooseβ2 > 0 sufficiently small so that

R[L(ω̃(β)+ iβ)] > 1, for β ∈ [0, β2]. (2.23)

Let

0< β ≤ β0 := min

{
β1, β2,

π

N + c∗(T + r )

}
. (2.24)

Then fory ∈ [0, π
β
], |i | ≤ N andτ ∈ [0, T], we have

−π
β
< −N ≤ y + cτ − i ≤ y + cτ + cr − i ≤ π

β
+ c∗(T + r )+ N ≤ 2π

β
.

Since sinβz ≤ 0 for z ∈ [−π
β
,0] ∪ [π

β
, 2π
β

], it follows from(2.20)–(2.24)that fory ∈ [0, π
β
],

∫ T

0
e−(D+d)τ

{
D

∑
0<|i |≤N

J(i ) f (y + cτ − i )+ h
∑

|i |≤N

K (i ) f (y + cτ + cr − i )

}
dτ

≥
∫ T

0
e−(D+d)τ

{
D

∑
0<|i |≤N

J(i )e−ω̃(β)(y+cτ−i ) sinβ(y + cτ − i )

+ h
∑
|i |≤N

K (i )e−ω̃(β)(y+cτ+cr−i ) sinβ(y + cτ + cr − i )

}
dτ

= e−ω̃(β)y sinβy · R[L(ω̃(β)+ iβ)] − e−ω̃(β)y cosβy · �[L(ω̃(β)+ iβ)]
≥ e−ω̃(β)y sinβy = f (y).

This completes the proof. �
Define

R(y;ω, β, χ) := max
η≥−χ f (y + η;ω, β)

=



�, for y ≤ χ + �,

f (y − χ;ω, β), for χ + � ≤ y ≤ χ + π

β
,

0, for y ≥ χ + π

β
,

(2.25)
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where

� = �(ω, β) := max

{
f (y;ω, β)| 0 ≤ y ≤ π

β

}
, (2.26)

and� = �(ω, β) is the point where the above maximum� is achieved.

Lemma 2.5. Let c∈ (0, c∗) be given, then there exist T> 0, β > 0, ω ∈ R, B > 0 andσ0 > 0
such that for anyσ ∈ (0, σ0) and for any t≥ T ,

ET
n [σφ](t) ≥ σφn(t), (2.27)

whereφn(t) = R(|n|;ω, β, B + ct),n ∈ Z, t ≥ −r .

Proof. By Lemma 2.4, wecan chooseT > 0, h ∈ (d,b′(0)), N > 0,β > 0 andω = ω̃(β) such
that(2.17)holds.

TakeB = 2N + c∗r + 1. Letσh be the smallest positive root of the equationb∗(w) = hw.
Thenb∗(w) > hw for w ∈ (0, ωh). Chooseσ0 ∈ (0, σh

�
). Let σ ∈ (0, σ0) andt ≥ T , then we

have

ET
n [σφ](t)

=
∫ T

0
e−(D+d)τ

{
σD

∑
i �=0

J(i )φn−i (t − τ )+
∑

i

K (i )b∗(σφn−i (t − τ − r ))

}
dτ

≥ σ

∫ T

0
e−(D+d)τ

{
D

∑
0<|i |≤N

J(i )φn−i (t − τ )+ h
∑

|i |≤N

K (i )φn−i (t − τ − r )

}
dτ.

(2.28)

We now distinguish between two cases:

Case(i). |n| ≤ B+�+c(t −T −r )− N. In thiscase, we have|n− i | ≤ B+c(t −τ−r )+� ≤
B + c(t − τ )+ � for τ ∈ [0, T] and|i | ≤ N, andhence, it follows from(2.28)and the definition
of φn(t) that

ET
n [σφ](t) ≥ σ�

{
D

∑
0<|i |≤N

J(i )+ h
∑

|i |≤N

K (i )

}∫ T

0
e−(D+d)τ dτ

= σ�

{
D

∑
0<|i |≤N

J(i )+ h
∑

|i |≤N

K (i )

}
· 1

D + d
[1 − e−(D+d)T ]

≥ σ� = σφn(t),

provided thatT > 0 andN > 0 are large enough.

Case (ii).B+�+c(t − T − r )− N ≤ |n| ≤ B+ct + π
β

. In thiscase,|n| ≥ N +1. Therefore,
for |i | ≤ N, we have|n − i | = n − i = |n| − i if n > 0 and|n − i | = −n + i = |n| + i if n < 0.
Hence, it follows from(2.17)and(2.28), thedefinition of φn(t) and the evenness ofJ(i ) andK (i )
that
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ET
n [σφ](t) ≥ σ

∫ T

0
e−(D+d)τ

{
D

∑
0<|i |≤N

J(i ) max
η≥−B−c(t−τ )

f (|n| − i + η)

+ h
∑
|i |≤N

K (i ) max
η≥−B−c(t−τ−r )

f (|n| − i + η)

}
dτ

= σ

∫ T

0
e−(D+d)τ

{
D

∑
0<|i |≤N

J(i ) max
η≥−B−ct

f (|n| − i + cτ + η)

+ h
∑
|i |≤N

K (i ) max
η≥−B−ct

f (|n| − i + cτ + cr + η)

}
dτ

≥ σ max
η≥−B−ct

f (|n| + η) = σφn(t).

Combining (i) and (ii), we obtain(2.27)and complete the proof. �

Theorem 2.2. Assume that(H1) and (H2) hold. Assume thatϕ = {ϕn}n∈Z with ϕn ∈
C([−r,0], [0, K ∗]) satisfiesϕn0(0) > 0 for some n0 ∈ Z. Then for any c ∈ (0, c∗), there
holds

lim inf
t→+∞ min

n
{un(t, ϕ)| |n| ≤ ct} ≥ K∗, (2.29)

where K∗ = 1
d infu∈(0,K ∗]{b(u)| b(u) ≤ du} > 0.

Proof. Takeψ = {ψn}n∈Z whereψn ∈ C([−r,0], [0, K∗]) satisfiesϕn(s) ≥ ψn(s) for all
n ∈ Z, s ∈ [−r,0] andψn0(0) > 0. Then by virtue ofLemma 2.1, we haveun(t, ϕ) ≥ vn(t, ψ)
for all n ∈ Z andt > 0. So it sufficesto show that

lim inf
t→+∞ min

n
{vn(t, ψ)| |n| ≤ ct } ≥ K∗, (2.30)

wherev(t) := v(t, ψ) = {vn(t, ψ)}n∈Z is the unique solution of(2.2).
For anyc ∈ (0, c∗), choosec1 ∈ (c, c∗). By Lemma 2.5, there exist constantsT > 0, β >

0, ω ∈ R, B > 0 andσ0 > 0 such that for anyσ ∈ (0, σ0) and anyt ≥ T ,

ET
n [σφ](t) ≥ σφn(t), (2.31)

whereφn(t) = R(|n|;ω, β, B + c1t),n ∈ Z, t ≥ −r .
By Lemma 2.1, we seethat vn(t) = vn(t, ψ) > 0 for all n ∈ Z and t > 0. Choose

t0 > r and denoteφ(n, t) = φn(t) for n ∈ Z and t ≥ −r . Since for anyt ∈ [−r, T],
suppφ(·, t) ⊂ suppφ(·, T) are bounded sets, we can chooseς ∈ (0, σ0) suchthat

ς� < K∗ (2.32)

and

vn(t0 + t) ≥ ςφn(t), for n ∈ suppφ(·, T) andt ∈ [−r, T]. (2.33)

It then follows fromLemma 2.3that

vn(t0 + t) ≥ ςφn(t), for all n ∈ suppφ(·, T) andt ≥ −r,

from which and the definition ofφn(t), weobtain

vn(t0 + t) ≥ ς� for t ≥ −r and|n| ≤ B + c1t + �.
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By (2.2), we find

vn(t0 + t) ≥
∫ t

0
e−(D+d)τ

{
D

∑
i �=0

J(i )vn−i (t0 + t − τ )

+
∑

i

K (i )b∗(vn−i (t0 + t − τ − r ))

}
dτ. (2.34)

Let a = ς� = Q0(t, N), t ≥ −r and for j ∈ N, let

Qj (t, N) =
∫ t

0
e−(D+d)τ

{
D

∑
0<|i |≤N

J(i )Qj −1(t − τ, N)

+
∑
|i |≤N

K (i )b∗(Qj −1(t − τ − r, N))

}
, for t > 0,

and

Qj (t, N) = 0, for t ∈ [−r,0].
Then fort ≥ 0 and|n| ≤ B + c1t + � − N, we have

vn(t0 + t) ≥
∫ t

0
e−(D+d)τ

{
D

∑
0<|i |≤N

J(i )Q0(t − τ, N)

+
∑

|i |≤N

K (i )b∗(Q0(t − τ − r, N))

}
dτ = Q1(t, N).

By an induction argument, it is easily seen that

vn(t0 + t) ≥ Qj (t, N), for t ≥ −r and|n| ≤ B + c1t + � − j N. (2.35)

We claim that for anyε > 0, there exist̄t(ε) > 0, N̄(ε) ∈ N and J̄(ε) ∈ N suchthat

Qj (t, N) ≥ K∗ − ε, for N ≥ N̄(ε), j ≥ J̄(ε) andt ≥ j (t̄(ε)+ r ). (2.36)

To see this, we firstly observe that

0< a = Q0(t, N) < K∗ and 0< 1 − e−(D+d)t < 1, for t > 0.

and an induction argument shows that

0< Qj (t, N) < K∗, for all t > 0, j , N ∈ N with N large enough.

For smallε > 0. Sinceb′∗(0) = b′(0) > d andDw + b∗(w) > (D + d)w for w ∈ (0, K∗), we
have

Λ(ε) = inf

{
Dw + b∗(w)
(D + d)w

∣∣∣∣ 0< w ≤ K∗ − ε

}
> 1.

Chooseα(ε) ∈ ( 1
Λ(ε) ,1). Then

α(ε)

D + d
[Dw + b∗(w)] > 1

Λ(ε)(D + d)
[Dw + b∗(w)] ≥ w, for w ∈ (0, K∗ − ε].

(2.37)
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Define a sequence as follows

M0 = a, Mj = α(ε)

D + d
[DMj −1 + b∗(Mj −1)], j ≥ 1.

Then we have the following observations:

(i) if 0 < Mj ≤ K∗ − ε, thenMj +1 ≥ Mj ;

(ii) if Mj > K∗ − ε, then

Mj +1 >
α(ε)

D + d
[D(K∗ − ε)+ b∗(K∗ − ε)] ≥ K∗ − ε.

If Mj ≤ K∗ − ε for all j ∈ N, then by (i) lim j →∞ Mj = M̄ exists and satisfies

0< M̄ = α(ε)

D + d
[DM̄ + b∗(M̄)] ≤ K∗ − ε,

which contradicts(2.37). Therefore, there exists̄J(ε) ∈ N suchthatMJ̄(ε) > K∗ − ε, andhence,

it follows from (ii) that Mj > K∗ − ε for all j ≥ J̄(ε).
ChooseN̄(ε) > 0 andt̄(ε) > 0 sufficiently large so that

[1 − e−(D+d)t̄(ε)] · min




∑
0<|i |≤N̄(ε)

J(i ),
∑

|i |≤N̄(ε)

K (i )


 ≥ α(ε).

For N ≥ N̄(ε), if Qj (t, N) ≥ Mj for some j and everyt ≥ j (t̄(ε) + r ), then for all
t ≥ ( j + 1)(t̄(ε)+ r ), we have

Qj +1(t, N) =
∫ t

0
e−(D+d)τ

{
D

∑
0<|i |≤N

J(i )Qj (t − τ, N)

+
∑

|i |≤N

K (i )b∗(Qj (t − τ − r, N))

}
dτ

≥
∫ t̄(ε)

0
e−(D+d)τ

{
D

∑
0<|i |≤N

J(i )Qj (t − τ, N)

+
∑

|i |≤N

K (i )b∗(Qj (t − τ − r, N))

}
dτ

≥ 1 − e−(D+d)t̄(ε)

D + d


D

∑
0<|i |≤N̄(ε)

J(i )Mj +
∑

|i |≤N̄(ε)

K (i )b∗(Mj )




≥ α(ε)

D + d
[DMj + b∗(Mj )] = Mj +1.

SinceQ0(t, N) = a ≥ M0, t ≥ 0, by induction, we conclude thatQj (t, N) ≥ Mj for all j ≥ 0,
N ≥ N̄(ε) andt ≥ j (t̄(ε) + r ). Therefore, Qj (t, N) > K∗ − ε for j ≥ J̄(ε), N ≥ N̄(ε) and
t ≥ j (t̄(ε)+ r ). This establishes the assertion.
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So it follows from(2.35)and(2.36)that

vn(t) ≥ K∗ − ε, for t ≥ t0 + J̄(ε)(t̄(ε)+ r ) and

|n| ≤ B + c1(t − t0)+ � − J̄(ε)N̄(ε). (2.38)

Define

t1 = max

{
t0 + J̄(ε)(t̄(ε)+ r ),

J̄(ε)N̄(ε)+ c1t0 − B − �

c1 − c

}
.

Sincec1 > c, it follows from(2.38)that

vn(t) ≥ K∗ − ε, for t ≥ t1 and|n| ≤ ct,

from which(2.30)follows and the proof is complete. �

As a direct consequence ofTheorem 2.2, we have the following

Corollary 2.2. Assume that(H1) and(H2) hold. Then for any c∈ (0, c∗), (1.2)has no traveling
wave solution U(n + ct) satisfying U(ξ) ∈ [0, K ∗] for all ξ ∈ R and U(ξ0) ∈ (0, K∗) for some
ξ0 ∈ R.

3. Existence and uniqueness of traveling waves

In this section, we first show the existence of traveling waves of(1.6) by using the sub-
supersolution technique and an iteration scheme.

For any absolutely continuous functionφ : R → R, we set

Nc[φ](ξ) := c lim
h↘0

φ(ξ)− φ(ξ − h)

h
− D

∑
i �=0

J(i )[φ(ξ − i )− φ(ξ)] + dφ(ξ)

−
∑

i

K (i )b(φ(ξ − i − cr)). (3.1)

Defintion 3.1. An absolutely continuous functionφ : R → [0, K ] is called a supersolution (a
subsolution, resp.) of(1.7)if for almost everyξ ∈ R, Nc[φ](ξ) ≥ 0 (≤ 0, resp.).

Lemma 3.1. Assume that(H1)–(H5) hold. Let c > c∗ and Λ1(c),Λ2(c) be defined as in
Lemma2.2. Then for everyβ ∈ (1,min{1 + ν,

Λ2(c)
Λ1(c)

}), there exists Q(c, β) ≥ 1, such that

for any q≥ Q(c, β) and anyξ± ∈ R, the functionsφ± defined by

φ+(ξ) := min{K ,eΛ1(c)(ξ+ξ+) + qeβΛ1(c)(ξ+ξ+)}, ξ ∈ R (3.2)

and

φ−(ξ) := max{0,eΛ1(c)(ξ+ξ−) − qeβΛ1(c)(ξ+ξ−)}, ξ ∈ R (3.3)

are a supersolution and a subsolution to(1.7), respectively.

Proof. It is easily seen that there existsξ∗ ≤ −ξ+ − 1
βΛ1(c)

ln q
K , such thatφ+(ξ) = K for

ξ > ξ∗ andφ+(ξ) = eΛ1(c)(ξ+ξ+) + qeβΛ1(c)(ξ+ξ+) for ξ ≤ ξ∗.



1878 S. Ma et al. / Nonlinear Analysis 65 (2006) 1858–1890

For ξ > ξ∗, we have

Nc[φ+](ξ) = −D
∑
i �=0

J(i )[φ+(ξ − i )− K ] + dK −
∑

i

K (i )b(φ+(ξ − i − cr))

≥ −D
∑
i �=0

J(i )[φ+(ξ − i )− K ] −
∑

i

K (i )[b(φ+(ξ − i − cr))− b(K )]

≥ 0.

Forξ ≤ ξ∗, we have

Nc[φ+](ξ) ≥ eΛ1(c)(ξ+ξ+)
[

cΛ1(c)− D
∑
i �=0

J(i )e−Λ1(c)i + D + d

]

+ qeβΛ1(c)(ξ+ξ+)
[

cβΛ1(c)− D
∑
i �=0

J(i )e−βΛ1(c)i + D + d

]

−
∑

i

K (i )b(φ+(ξ − i − cr))

≥ qeβΛ1(c)(ξ+ξ+)∆(c, βΛ1(c))+ b′(0)
∑

i

K (i )φ+(ξ − i − cr)

−
∑

i

K (i )b(φ+(ξ − i − cr))

> 0.

Therefore,φ+ is a supersolution of(1.7).
Let ξ∗ = −ξ− − 1

(β−1)Λ1(c)
ln q. If q ≥ 1, thenξ∗ ≤ −ξ−. Clearly,φ−(ξ) = 0 for ξ > ξ∗

andφ−(ξ) = eΛ1(c)(ξ+ξ−) − qeβΛ1(c)(ξ+ξ−) for ξ ≤ ξ∗.
For ξ > ξ∗, we have

Nc[φ−](ξ) = −D
∑
i �=0

J(i )φ−(ξ − i )−
∑

i

K (i )b(φ−(ξ − i − cr)) ≤ 0.

Forξ ≤ ξ∗, we haveξ + ξ− ≤ − 1
(β−1)Λ1(c)

ln q, andhence

Nc[φ−](ξ) ≤ eΛ1(c)(ξ+ξ−)
[

cΛ1(c)− D
∑
i �=0

J(i )e−Λ1(c)i + D + d

]

− qeβΛ1(c)(ξ+ξ−)
[

cβΛ1(c)− D
∑
i �=0

J(i )e−βΛ1(c)i + D + d

]

−
∑

i

K (i )b(φ−(ξ − i − cr))

≤ −qeβΛ1(c)(ξ+ξ−)∆(c, βΛ1(c))+ b′(0)
∑

i

K (i )φ−(ξ − i − cr)

−
∑

i

K (i )b(φ−(ξ − i − cr))

≤ −qeβΛ1(c)(ξ+ξ−)∆(c, βΛ1(c))+ M
∑

i

K (i )[φ−(ξ − i − cr)]1+ν
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≤ −qeβΛ1(c)(ξ+ξ−)∆(c, βΛ1(c))+ M
∑

i

K (i )e(1+ν)Λ1(c)(ξ+ξ−−i )

≤
{

−q∆(c, βΛ1(c))+ M
∑

i

K (i )e(1+ν)Λ1(c)i e(1+ν−β)Λ1(c)(ξ+ξ−)
}

× eβΛ1(c)(ξ+ξ−)

≤
{

−q∆(c, βΛ1(c))+ M
∑

i

K (i )e(1+ν)Λ1(c)i

}
eβΛ1(c)(ξ+ξ−)

≤ 0,

provided thatq ≥ Q(c, β) := max
{
1, M

∆(c,βΛ1(c))

∑
i K (i )e(1+ν)Λ1(c)i

}
. Therefore, φ− is a

subsolution of(1.7). Theproof is complete. �

The following theorem is our main result for the existence of traveling waves.

Theorem 3.1. Assume(H1)–(H5) hold. Let c∗ > 0 be as inLemma2.2. Then for each c≥ c∗,
(1.6)admits a traveling wave solution un(t) = U(n+ ct) satisfying U(−∞) = 0, U(+∞) = K
and U′ > 0 onR. Furthermore, for c> c∗, U alsosatisfies

lim
ξ→−∞ U(ξ)e−Λ1(c)ξ = 1, lim

ξ→−∞ U ′(ξ)e−Λ1(c)ξ = Λ1(c), (3.4)

whereλ = Λ1(c) is the smallest solution to the equation

∆(c, λ) = cλ− D
∑
i �=0

J(i )e−λi + D + d − b′(0)
∑

i

K (i )e−λ(i+cr) = 0.

Proof. For c > c∗, by virtue ofLemma 3.1, φ+ andφ− with ξ± = 0 are a supersolution and a
subsolution to(1.7), respectively. For anyλ ∈ (0,Λ1(c)), let

X =
{
φ ∈ C(R,R) | sup

ξ∈R
|φ(ξ)|e−λξ < +∞

}
, ‖φ‖λ = sup

ξ∈R
|φ(ξ)|e−λξ .

Then (X, ‖ · ‖λ) is a Banach space. Sinceφ−(ξ) ≤ φ+(ξ) for all ξ ∈ R and φ+(ξ) is
nondecreasing onR, by using a argument as used in [20], it is easily known that the set

Γ :=


φ ∈ C(R, [0, K ])

∣∣∣∣∣∣∣
(i) φ(ξ) is nondecreasing onR;
(ii) φ−(ξ) ≤ φ(ξ) ≤ φ+(ξ) for all ξ ∈ R;
(iii ) |φ(ξ1)− φ(ξ2)| ≤ 2K (D + d)

c
|ξ1 − ξ2| for all ξ1, ξ2 ∈ R.


 .

is nonempty, convex and compact inX.
DefineF : Γ → Γ by

F(φ)(ξ) = 1

c
e− D+d

c ξ

∫ ξ

−∞
e

D+d
c τ H (φ)(τ ) dτ,

whereH (φ)(ξ) = D
∑

i �=0 J(i )φ(ξ − i ) + ∑
i K (i )b(φ(ξ − i − cr)), ξ ∈ R. It is easily seen

that F is well-defined and a fixedpoint of F is a solution of(1.7)and(1.8).
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Since for anyφ,ψ ∈ Γ ,

|F(φ)(ξ)− F(ψ)(ξ)|e−λξ

≤ 1

c
e−( D+d

c +λ)ξ
∫ ξ

−∞
e

D+d
c τ |H (φ)(τ )− H (ψ)(τ )| dτ

≤ 1

c
e−( D+d

c +λ)ξ
∫ ξ

−∞
e

D+d
c τ

{
D

∑
i �=0

J(i )|φ(τ − i )− ψ(τ − i )|e−λ(τ−i ) · eλ(τ−i )

+ LK

∑
i

K (i )|φ(τ − i − cr)− ψ(τ − i − cr)|e−λ(τ−i−cr) · eλ(τ−i−cr)

}
dτ

≤ ‖φ − ψ‖λ
c

e−( D+d
c +λ)ξ

∫ ξ

−∞
e(

D+d
c +λ)τ

×
{

D
∑
i �=0

J(i )e−λi + LK

∑
i

K (i )eλi · e−λcr

}
dτ

= ‖φ − ψ‖λ
D + d + cλ

{
D

∑
i �=0

J(i )e−λi + LK

∑
i

K (i )eλi · e−λcr

}
,

it follows that F : Γ → Γ is continuous. Therefore, by virtue of Schauder’s Fixed Point
Theorem, it follows thatF has a fixed pointUc in X, which will be denoted by(Uc, c) and
satisfies

eΛ1(c)ξ − qeβΛ1(c)ξ ≤ Uc(ξ) ≤ eΛ1(c)ξ + qeβΛ1(c)ξ , ξ ∈ R. (3.5)

Clearly,(Uc, c) is also a weak solution of(1.7), i.e., for anyφ ∈ C∞
0 (R), we have

c
∫
R

Ucφ
′ + D

∑
i �=0

J(i )
∫
R

Uc(·)φ(· + i )− (D + d)
∫
R

Ucφ

+
∑

i

K (i )
∫
R

b(Uc(·))φ(· + i + cr) = 0. (3.6)

Takeu∗ ∈ (0, K ), then for eachc > c∗, thereexists ξc ∈ R suchthat Uc(ξc) = u∗. By
Helly’s Theorem, there exists asequencecm > c∗ with cm ↘ c∗ as m → +∞, such that
Ũcm(·) := Ucm(· + ξcm) converges pointwise to a nondecreasing functionUc∗ asm → +∞.

Applying the Lebesgue’s Dominated Convergence Theorem to(3.6) with c replaced bycm

andUc replaced byŨcm then gives

c∗
∫
R

Uc∗φ
′ + D

∑
i �=0

J(i )
∫
R

Uc∗(·)φ(· + i )− (D + d)
∫
R

Uc∗φ

+
∑

i

K (i )
∫
R

b(Uc∗(·))φ(· + i + c∗r ) = 0,
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for all φ ∈ C∞
0 (R). Since c∗ > 0, the last equality implies thatUc∗ ∈ W1,∞(R), and

hence, a bootstrap argument shows thatUc∗ is of classC1 and thus a solution of(1.7). Since
Uc∗(0) = u∗ ∈ (0, K ) and b(u) > du for u ∈ (0, K ), it follows thatUc∗(−∞) = 0 and
Uc∗(+∞) = K .

Next, we show that for eachc ≥ c∗, U ′
c > 0 onR. Suppose on the contrary thatU ′

c(x0) = 0
for somex0 ∈ R. SinceU ′

c ≥ 0 onR, we haveU ′′
c (x0) = 0, and hence

0 = cU′′
c (x0) = D

∑
i �=0

J(i )U ′
c(x0 − i )+

∑
i

K (i )b′(Uc(x0 − i − cr))U ′
c(x0 − i − cr),

which together with the fact thatb′(0) > d > 0 implies thatU ′
c(x0 − i ) = U ′

c(x0) = 0 for i �= 0
with J(i ) > 0 andU ′

c(x0 − i0 − cr) = 0 for i0 with K (i0) > 0 if −x0 > 0 is sufficiently large.
Soby using an induction argument, we conclude that

U ′
c(x0 + n − mcr) = 0, for all n,m ∈ Z with m ≥ 0.

Letwn,m(t) := U ′
c(x0 + n − mcr + t), thenwn,m satisfies the initial value problem

w′
n,m = D

c

∑
i �=0

J(i )[wn−i,m − wn,m] − d

c
wn,m

+ 1

c

∑
i

K (i )b′(Uc(x0 + n − i − (m + 1)cr + t))wn−i,m+1,

wn,m(0) = 0,

where n,m ∈ Z with m ≥ 0. By the uniqueness of the initial value problem, we have
wn,m(t) ≡ 0, and henceU ≡ const., which isa contradiction.

If c > c∗, it then follows from(3.5)that

lim
ξ→−∞ |Uc(ξ)e−Λ1(c)ξ − 1| ≤ lim

ξ→−∞ qe(β−1)Λ1(c)ξ = 0.

Since 0≤ b′(0)u − b(u) ≤ Mu1+ν for u ∈ (0, K ), we have

lim
ξ→−∞ |b(Uc(ξ))− b′(0)Uc(ξ)|e−Λ1(c)ξ ≤ lim

ξ→−∞ M[Uc(ξ)]1+νe−Λ1(c)ξ = 0.

Hence, for c > c∗, it follows from the following analogof the Lebesgue’s Dominated
Convergence Theorem that

lim
ξ→−∞ U ′

c(ξ)e
−Λ1(c)ξ

= 1

c
lim

ξ→−∞

{
D

∑
i �=0

J(i )[Uc(ξ − i )− Uc(ξ)] − dUc(ξ)+
∑

i

K (i )b(Uc(ξ − i − cr))

}

× e−Λ1(c)ξ

= 1

c

{
D

∑
i �=0

J(i )[e−Λ1(c)i − 1] − d + b′(0)
∑

i

K (i )e−Λ1(c)(i+cr)

}

= Λ1(c).

This completes the proof. �
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Lemma 3.2. Let { f j (x)}, j ∈ Z, x ∈ R, be a sequence of functions such that
∑

j f j (x) exists

for any x ∈ R and fj (x) → f̄ j as x → x0 ∈ {R,−∞,+∞} for all j ∈ Z. If thereexists a
summable sequence{gj } suchthat | f j (x)| ≤ gj for all j ∈ Z and x∈ R, then∑

j

f j (x) →
∑

j

f̄ j , as x→ x0.

The proof ofLemma 3.2is similar to that of Lebesgue’s dominated convergence theorem and is
omitted.

In what follows, we study the uniqueness of our solutions, and establish the following main
result, which shows that for any fixedc > c∗ the solution to(1.7) and(1.8) is unique up to a
translation.

Theorem 3.2. Assume(H1)–(H6) hold. For each c> c∗, let (U, c) be the solution to(1.7)and
(1.8)as given inTheorem3.1. Let (Û , c) be another solution to(1.7)and(1.8)satisfying

lim sup
ξ→−∞

Û (ξ)e−Λ1(c)ξ < +∞. (3.7)

Then there exists̄z ∈ R suchthat Û(·) = U(· + z̄).

Proof. Firstly, we observe that if(Û , c) is a solution to(1.7)and(1.8), then

Û ≤ K . (3.8)

Suppose otherwise that there existsx0 so thatÛ(x0) > K andÛ(x) ≤ Û(x0) for all x ∈ R.
Then we havêU ′(x0) = 0 and so

0 ≥ −cÛ ′(x0)+ D
∑
i �=0

J(i )[Û(x0 − i )− Û(x0)]

= dÛ(x0)−
∑

i

K (i )b(Û(x0 − i − cr))

≥ dÛ(x0)− b(Û(x0)) > 0,

which is acontradiction.
In what follows, we denote by(U, c) the solution of(1.7) and(1.8) given in Theorem 3.1.

Sinceb′(K ) < d < b′(0), wecan chooseα > 0 such that

d > 2αmax


1,

[
e−Λ1(c)cr

∑
i

K (i )e−Λ1(c)i

]−1

 + b′(K ). (3.9)

Chooseκ > 0 sufficiently small andN ∈ N sufficiently large so that

b′(η) ≤ b′(K )+ α

2
min


1,

[
e−Λ1(c)cr

∑
i

K (i )e−Λ1(c)i

]−1

 ,

for η ∈ [K − κ, K + κ], (3.10)

and
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b′
maxmax

{ ∑
|i |>N

K (i ),e−Λ1(c)cr
∑

|i |>N

K (i )e−Λ1(c)i

}
≤ α/2. (3.11)

TakeM1 > N + cr sufficiently large so that

U(ξ) ≥ K − κ/2, for ξ ≥ M1 − N − cr. (3.12)

Since limx→−∞ U ′(x)e−Λ1(c)x = Λ1(c) > 0, we can takeM2 > 0 sufficiently large that

U ′(x)e−Λ1(c)x ≥ 1

2
Λ1(c), for x ≤ −M2. (3.13)

Denote

� := min{U ′(ξ); −M2 ≤ ξ ≤ M1} > 0.

Letµ ∈ (0, κ/2) and define

B = max

{
2µ

α�
b′

maxe
Λ1(c)M1

∑
i

K (i )e−Λ1(c)i ,
3µ

αΛ1(c)
b′

max

∑
i

K (i )e−Λ1(c)i

}
. (3.14)

We claim that forµ ∈ (0, κ/2) given above, thereexists z ≥ M1, such that

U(x + z)+ µmin{1,eΛ1(c)x} > Û(x), for all x ∈ R. (3.15)

In fact, we can first choosez1 ≥ M > 0 such that eΛ1(c)z1 > ρ := lim supx→−∞ Û(x)e−Λ1(c)x.
Since

lim
x→−∞ U(x + z1)e

−Λ1(c)x = eΛ1(c)z1 > ρ,

there existsM3 > 0 such that

U(x + z1) > Û(x), for x ≤ −M3.

TakeM4 > 0 sufficiently large that

U(x)+ µe−Λ1(c)M3 > K , for x ≥ M4.

Let z = z1 + M3 + M4, then for x ≤ −M3, we have

U(x + z)+ µmin{1,eΛ1(c)x} − Û(x) > U(x + z1)− Û(x) > 0,

and forx ≥ −M3, we havex + z ≥ M4, andhence,(3.8)implies that

U(x + z)+ µmin{1,eΛ1(c)x} − Û(x) ≥ U(x + z)+ µe−Λ1(c)M3 − Û(x)

> K − Û(x) ≥ 0.

Define

w(x, t) = U(x + z + B(1 − e−αt ))+ µmin{1,eΛ1(c)x}e−αt − Û(x), (3.16)

then we have

w(x,0) = U(x + z)+ µmin{1,eΛ1(c)x} − Û(x) > 0.

We claim thatw(x, t) > 0 for all x ∈ R andt ≥ 0. To see this, suppose that there existx0 ∈ R

andt0 > 0 such that
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w(x0, t0) = U(P0)+ µmin{1,eΛ1(c)x0}e−αt0 − Û(x0) = 0 ≤ w(x, t), (3.17)

for all x ∈ R andt ∈ [0, t0], where

P0 = x0 + z + B(1 − e−αt0).

Clearly, if x0 = 0, then

wx(x0−, t0) = U ′(P0)− Û ′(x0)+ µΛ1(c)eΛ1(c)x0 · e−αt0 ≤ 0,

and

wx(x0+, t0) = U ′(P0)− Û ′(x0) ≥ 0,

which is impossible. So we havex0 �= 0, and hence

wx(x0, t0) = U ′(P0)− Û ′(x0)+ µΛ1(c)e
Λ1(c)x0 · e−αt0 = 0, if x0 < 0, (3.18)

and

wx(x0, t0) = U ′(P0)− Û ′(x0) = 0, if x0 > 0. (3.19)

In the case wherex0 > 0, we have

0 ≥ wt (x0, t0)− D
∑
i �=0

J(i )[w(x0 − i , t0)−w(x0, t0)]

= −αµe−αt0 + αBU′(P0)e−αt0

−µD
∑
i �=0

J(i )[min{1,eΛ1(c)(x0−i )} − 1]e−αt0

− D
∑
i �=0

J(i )[U(P0 − i )− U(P0)] + D
∑
i �=0

J(i )[Û(x0 − i )− Û(x0)]

≥ [−αµ+ αBU′(P0)]e−αt0 − cU′(P0)− dU(P0)+
∑

i

K (i )b(U(P0 − i − cr))

+ cÛ ′(x0)+ dÛ(x0)−
∑

i

K (i )b(Û(x0 − i − cr))

= [dµ− αµ]e−αt0 +
∑

i

K (i )[b(U(P0 − i − cr))− b(Û(x0 − i − cr))]

≥ [dµ− αµ]e−αt0 +
∑

i

K (i )[b(U(P0 − i − cr))− b(U(P0 − i − cr)+ µe−αt0)]

≥
[

d − α − b′
max

∑
|i |>N

K (i )−
∑
|i |≤N

K (i )b′(ηi )

]
µe−αt0,

(3.20)

whereηi ∈ (U(P0 − i − cr),U(P0 − i − cr)+ µ). SinceP0 > z ≥ M1, it follows from(3.12)
thatηi ≥ U(P0 − i − cr) ≥ K − κ/2 for |i | ≤ N, andhence, by(3.9)–(3.11), the right hand side
of (3.20)is positive, which isa contradiction.
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In the case wherex0 < 0, we have

0 ≥ wt (x0, t0)− D
∑
i �=0

J(i )[w(x0 − i , t0)−w(x0, t0)]

= −αµeΛ1(c)x0 · e−αt0 + αBU′(P0)e−αt0

−µD
∑
i �=0

J(i )[min{1,eΛ1(c)(x0−i )} − eΛ1(c)x0]e−αt0

− D
∑
i �=0

J(i )[U(P0 − i )− U(P0)] + D
∑

i

J(i )[Û(x0 − i )− Û(x0)]

≥ [−αµeΛ1(c)x0 + αBU′(P0)]e−αt0 − µDeΛ1(c)x0

[∑
i �=0

J(i )e−Λ1(c)i − 1

]
e−αt0

− cU′(P0)− dU(P0)+
∑

i

K (i )b(U(P0 − i − cr))

+ cÛ ′(x0)+ dÛ(x0)−
∑

i

K (i )b(Û(x0 − i − cr))

≥ [−αµeΛ1(c)x0 + αBU′(P0)]e−αt0 − µDeΛ1(c)x0−αt0

[∑
i �=0

J(i )e−Λ1(c)i − 1

]

+µcΛ1(c)eΛ1(c)x0−αt0 + dµeΛ1(c)x0−αt0

+
∑

i

K (i )[b(U(P0 − i − cr))− b(U(P0 − i − cr)

+µmin{1,eΛ1(c)(x0−i−cr)}e−αt0)]
≥

[
−α + αB

µ
U ′(P0)e−Λ1(c)x0

]
µeΛ1(c)x0−αt0

+µb′(0)
∑

i

K (i )e−Λ1(c)(i+cr)eΛ1(c)x0−αt0

−µ
∑

i

K (i )b′(ηi )e−Λ1(c)(i+cr)eΛ1(c)x0−αt0

≥ µ

[
b′(0)e−Λ1(c)cr

∑
i

K (i )e−Λ1(c)i − α + αB

µ
U ′(P0)e

−Λ1(c)P0

− b′
maxe

−Λ1(c)cr
∑

|i |>N

K (i )e−Λ1(c)i −
∑

|i |≤N

K (i )b′(ηi )e
−Λ1(c)(i+cr)

]
eΛ1(c)x0−αt0,

(3.21)

whereηi ∈ (U(P0 − i − cr),U(P0 − i − cr)+ µ).
In this case, ifP0 ≤ −M2, then(3.13)and(3.14)imply that

αB

µ
U ′(P0)e−Λ1(c)P0 −

∑
|i |≤N

K (i )b′(ηi )e−Λ1(c)(i+cr)

≥ αBΛ1(c)

2µ
− b′

max

∑
i

K (i )e−Λ1(c)i > 0,

and hence, by(3.9)and(3.11), the right hand side of(3.21)is positive, which isa contradiction.
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If P0 ∈ [−M2,M1], then by(3.14), we have

αB

µ
U ′(P0)e−Λ1(c)P0 −

∑
|i |≤N

K (i )b′(ηi )e−Λ1(c)(i+cr)

≥ αB�

µ
e−Λ1(c)M1 − b′

max

∑
i

K (i )e−Λ1(c)i > 0,

and hence, by(3.11), the right hand side of(3.21)is positive, which isa contradiction.
If P0 ≥ M1, then it follows from (3.10)thatηi ≥ U(P0 − i − cr) ≥ K − κ/2 for |i | ≤ N,

and hence, by(3.9),

b′(0)e−Λ1(c)cr
∑

i

K (i )e−Λ1(c)i −
∑
|i |≤N

K (i )b′(ηi )e
−Λ1(c)(i+cr)

≥ de−Λ1(c)cr
∑

i

K (i )e−Λ1(c)i − b′(K )e−Λ1(c)cr
∑

i

K (i )e−Λ1(c)i − α/2

> 3α/2.

So, by(3.11), the right hand side of(3.21)is positive, which is also a contradiction.
Taking thelimit t → +∞ in (3.16), we get

U(x + z + B) ≥ Û (x), for all x ∈ R.

Thus there exists a minimalz̄ suchthat

U(x) ≥ Û(x − z), for all x ∈ R andz ≥ z̄. (3.22)

We assert that ifU(x) �= Û(x − z̄) for somex, thenU(x) > Û(x − z̄) for all x ∈ R. Suppose
otherwise that for somex0, U(x0) = Û(x0 − z̄). Letw(x) = U(x) − Û(x − z̄). Then we have
w′(x0) = 0 andw(x) ≥ w(x0) = 0 for all x ∈ R, andhence

0 ≤ D
∑
i �=0

J(i )[w(x0 − i )−w(x0)]

= −cw′(x0)+ D
∑
i �=0

J(i )[w(x0 − i )−w(x0)] − dw(x0)

= −cU′(x0)+ D
∑
i �=0

J(i )[U(x0 − i )− U(x0)] − dU(x0)

+ cÛ ′(x0 − z̄)− D
∑
i �=0

J(i )[Û(x0 − z̄ − i )− Û(x0 − z̄)] + dÛ(x0 − z̄)

= −
∑

i

K (i )b(U(x0 − i − cr))+
∑

i

K (i )b(Û(x0 − z̄ − i − cr))

= −
∑

i

K (i )b′(ηi )w(x0 − i − cr) ≤ 0,

whereηi ∈ (Û(x0 − z̄ − i − cr),U(x0 − i − cr)). Sinceb′(0) > d > 0, it follows that
w(x0 + i ) = w(x0 − i ) = w(x0) = 0 for i �= 0 with J(i ) > 0, andw(x0 − i0 − cr) =
U(x0 − i0 −cr)− Û(x0 − i0 − z̄−cr) = 0 for somei0 with K (i0) > 0 if −x0 > 0 is sufficiently
large. From which, by an induction argument, we can show that

w(x0 − mcr + n) = 0, for all n,m ∈ Z with m ≥ 0. (3.23)
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Let vn,m(t) = w(x0 − mcr + n + ct),n ∈ Z,m ≥ 0, then by the Mean Value Theorem, it is
easily seen thatvn,m(t) satisfies the initial value problem

v′
n,m = D

∑
i �=0

J(i )[vn−i,m − vn,m] − dvn,m +
∑

i

K (i )Pn−i,m+1(t)vn−i,m+1,

vn,m(0) = 0,

wheren ∈ Z,m ≥ 0 and

Pn,m(t) =
∫ 1

0
b′[U(x0 − mcr + n + ct)

+ α(Û(x0 − mcr + n − z̄ + ct)− U(x0 − mcr + n + ct))] dα.

By the uniqueness of solutions to the initial value problem, we conclude thatvn,m(t) ≡ 0, and
hencew(x) ≡ 0, which leads to a contradiction and establish the assertion.

In what follows, we suppose thatU(x) > Û(x − z̄) for all x ∈ R. Then it follows that

1 ≥ ρe−Λ1(c)z̄, (3.24)

whereρ = lim supx→−∞ Û(x)e−Λ1(c)x.
Let ε > 0 anddefine

w(x, t) = U(x − ε(1 − e−αt ))− Û(x − z̄), x ∈ R, t ∈ R.

Thenw(x,0) = U(x)− Û(x − z̄) > 0 for all x ∈ R. Suppose that there existt0 > 0 andx0 ∈ R

suchthat

w(x0, t0) = U(x0 − ε(1 − e−αt0))− Û(x0 − z̄) = 0< w(x, t),

for x ∈ R andt ∈ [0, t0).
Then

wx(x0, t0) = U ′(x0 − ε(1 − e−αt0))− Û ′(x0 − z̄) = 0.

Therefore, we have

0 ≤ D
∑
i �=0

J(i )[w(x0 − i , t0)−w(x0, t0)]

= D
∑
i �=0

J(i )[U(P1 − i )− U(P1)] − D
∑
i �=0

J(i )[Û(P2 − i )− Û(P2)]

= c[U ′(P1)− Û ′(P2)] + d[U(P1)− Û(P2)]
−

∑
i

K (i )b(U(P1 − i − cr))+
∑

i

K (i )b(Û(P2 − i − cr))

= −
∑

i

K (i )b′(ηi )w(x0 − i − cr, t0) ≤ 0,

whereP1 = x0 − ε(1 − e−αt0), P2 = x0 − z̄ andηi ∈ (Û(P2 − i − cr),U(P1 − i − cr)). Since
b′(0) > d > 0, it follows thatw(x0 + i , t0) = w(x0 − i , t0) = w(x0, t0) = 0 for i �= 0 with
J(i ) > 0, andw(x0 − i0 − cr, t0) = U(P1 − i0 − cr)− Û(P2 − i0 − cr) = 0 for somei0 with
K (i0) > 0 if −x0 > 0 is sufficiently large. From which, by an induction argument, we can show
that

w(x0 − mcr + n, t0) = 0, for all n,m ∈ Z with m ≥ 0.
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An argument as used above can be used to show that

w(x, t0) = U(x − ε(1 − e−αt0))− Û(x − z̄) = 0, for all x ∈ R.

Therefore, we have

e−Λ1(c)ε(1−e−αt0) = lim
x→−∞ U(x − ε(1 − e−αt0))e−Λ1(c)x

= lim sup
x→−∞

Û(x − z̄)e−Λ1(c)x

= ρe−Λ1(c)z̄.

(3.25)

If ρe−Λ1(c)z̄ = 1, then(3.25) leads to a contradiction. If ρe−Λ1(c)z̄ < 1, then we can choose
ε > 0 in such a way that

e−Λ1(c)ε > ρe−Λ1(c)z̄,

therefore, it follows from(3.25)that eΛ1(c)εe−αt0
< 1, which is also a contradiction. So we have

w(x, t) = U(x − ε(1 − e−αt ))− Û(x − z̄) > 0, for all x ∈ R andt ≥ 0. (3.26)

Passing to the limit ast → +∞ in (3.26)gives

U(x) ≥ Û(x − (z̄ − ε)), for all x ∈ R,

contradicting the minimality of̄z and proving thatU(x) = Û(x − z̄) for all x ∈ R. Theproof is
complete. �

As a direct consequence ofTheorem 3.2, we have thefollowing

Corollary 3.1. Assume that(H1)–(H6) hold. Then for any c> c∗, there are no solutions
Û(n + ct) of (1.6)satisfying

lim sup
ξ→−∞

Û(ξ)e−Λ1(c)ξ ≤ 0.
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