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a b s t r a c t

In this paper, a general mathematical model is proposed with detailed justifications to
describe the spread of a disease with latency in a heterogeneous host population which
includesmany existing ones as special cases. For a simpler version that assumes an identical
natural death rate for all groups, and with a gamma distribution for the latency, the model
is shown to demonstrate the global threshold dynamics in terms of the basic reproduction
numberR0 of themodel: ifR0 ≤ 1, the disease-free equilibrium is globally asymptotically
stable in the positive orthant, whereas if R0 > 1, a unique endemic equilibrium exists
and is globally asymptotically stable in the interior of the positive orthant. The proofs of
the main results make use of the theory of non-negative matrices, persistence theory in
dynamical systems, Lyapunov functions and a subtle grouping technique in estimating the
derivatives of Lyapunov functions guided by graph theory, which was recently developed
and applied by several authors to some relateted epidemic models.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

One of the typical SIR models for infectious disease has the formS
′(t) = Λ− δS(t)− βS(t)I(t)
I ′(t) = βS(t)T (t)− (δ + ε + γ )I(t)
R′(t) = γ I(t)− δR(t)

(1.1)

where S(t), I(t) and R(t) denote the populations of the susceptible, infectious and recovered classes respectively at time
t . See. e.g., [1,2]. Here recovery may be natural or due to the treatment of infectious individuals. Also in the model, Λ is
the recruitment rate, β is the transmission coefficient (average number of effective contacts an infective individual makes
per unit time), δ is the natural death rate, ε is the disease caused death rate, and γ is the recovery rate. An underlining
assumption for this model is that the disease has no latency, and thus, once infected, an individual immediately becomes
infectious.
In the realword,manydiseases do have a latent period. For example, tuberculosis including bovine tuberculosis (a disease

spread from animal to animal mainly by direct contact) may take months to develop to the infectious stage. For such a
disease, it is natural to introduce into the model an exposed class, consisting of those individuals that are infected but are
not infectious yet. Denote by E(t) the population of this class. Since the time it takes from the moment of new infection
to the moment of becoming infectious may differ from individual to individual, it is indeed a random variable. Following
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the approach in [3], we denote by P(t) the probability (without taking death into account) that an exposed individual still
remains in the exposed class t time units after entering the exposed class. Taking into consideration the natural death rate
(assuming that the disease does not cause deaths during the latent period), we then have

E(t) =
∫ t

0
βS(u)I(u)e−δ(t−u)P(t − u) du. (1.2)

By its biological meaning, P(t) should be non-decreasing. Taking into account this and the consideration of accommodating
those frequently used probability functions and the mathematical tractability, we assume that P(t) satisfies that following:

(A) P : [0,∞) → [0, 1] is non-increasing, piecewise continuous with possibly finitely many jumps and satisfy P(0+) =
1, limt→∞ P(t) = 0 with

∫
∞

0 P(t) dt positive and finite.

Differentiation to (1.2) leads to

E ′(t) = βS(t)I(t)+
∫ t

0
βS(u)I(u)e−δ(t−u)P ′(t − u) du− δE(t). (1.3)

The first term on the right hand side in (1.3) is the rate at which new infected individuals come into the exposed class,
and the last term explains the natural deaths. The second term accounts for the rate at which the individuals move to the
infectious class (noting that P ′(t−u) ≤ 0 due to the property (A)) from the exposed class, implying that the second equation
in (1.1) should be replaced by

I ′(t) = −
∫ t

0
βS(u)I(u)e−δ(t−u)P ′(t − u) du− (δ + ε + γ )I(t). (1.4)

Let Q (t) = 1 − P(t), the probability that an exposed individual becomes infectious t time units after infection, and let
g(t) = Q ′(t)which is non-decreasing under assumption (A). Then the above equation becomes

I ′(t) =
∫ t

0
βS(u)I(u)e−δ(t−u)g(t − u) du− (δ + ε + γ )I(t). (1.5)

Replacing the second equation in (1.1) by (1.5) gives a model for diseases with latency
S ′(t) = Λ− δS(t)− βS(t)I(t)

I ′(t) =
∫ t

0
βS(u)I(u)e−δ(t−u)g(t − u) du− (δ + ε + γ )I(t)

R′(t) = γ I(t)− δR(t).

(1.6)

For a disease without latency, Q (t) = 0 for t > 0 and Q (0+) = 1, reducing (1.6) to (1.1).
On the other hand, the host population for a disease is often heterogeneous. Therefore, when it comes to modeling

of disease transmission in a heterogeneous host population, it is more reasonable and more desirable to divide the host
population into groups. Groups can be formed in terms of education levels, ethnic backgrounds, gender, age, and professions
etc. They can also be formed geographically, such as by schools, communities and cities. Such a division can better reflect the
variance of within group transmission rates and the transmission rate between different groups. For example, for HIV/AIDS,
the transmission rate within or to a higher education level group would be lower than that within or to a lower education
level group; a flu can spread from one school to another due to after-school activities, but an inter-school transmission rate
is usually lower than an intra-school transmission rate. For more and detailed justifications for multi-group disease models,
see, e.g., [4–6] and the references therein.
For a heterogeneous host population, the disease can transmit within the same group as well as between groups.

Modifying (1.6) in a straightforward way for such a situation lead to the following multi-group model for a disease with
latency:

S ′k(t) = Λk − δkSk −
m∑
j=1

βkjSkIj,

I ′k(t) =
m∑
j=1

βkj

∫ t

0
Sk(u)Ij(u)gj(t − u)e−δj(t−u)du− (δk + εk + γk)Ik,

R′k(t) = γkIk − δkRk, k = 1, . . . ,m.

(1.7)

Here Sk(t), Ik(t) and Rk(t) denote the numbers of susceptible, infectious, and recovered of individuals at time t in the k-th
group, respectively. The non-negative constant βkj is the transmission rate due to the contact of susceptible individuals in
the k-th group with infectious individuals in the j-th group. The non-negative constants λk, δk, εk, γk are the recruitment
rates, natural death rates, disease-caused death rates and recovery rates of in the k-th group, respectively. The function gk(t)
is the probability density function for the time (a random variable) it takes for an infected individual in the k-th group to
becomes infectious.
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Since Rk(t), k = 1, . . . ,m, are decoupled from the Sk and Ik equations, we only need to consider the sub-system of (1.7)
consisting of only the Sk and Ik equations of (1.7):

S ′k(t) = Λk − δkSk −
m∑
j=1

βkjSkIj,

I ′k(t) =
m∑
j=1

βkj

∫ t

0
Sk(u)Ij(u)gj(t − u)e−δj(t−u)du− (δk + εk + γk)Ik, k = 1, . . . ,m.

(1.8)

To show themain idea and the approachesmore clearly and conveniently, we consider a simpler case in which all groups
share the same natural death rate: δj = δ for j = 1, . . . ,m. Moreover, we assume that the functions gj(u) are disease specific
only, implying that gj(u) = g(u) for j = 1, . . . ,m. In the rest of the paper, we choose the gamma distribution:

g(u) = gn,b(u) ≡
un−1

(n− 1)!bn
e−u/b (1.9)

where b > 0 is a real number and n > 1 is an integer. The reason for this choice is that it is a widely used distribution and it
can approximate several frequently used distributions. For example, as b→ 0+, gn,b(u) approaches the Dirac delta function
corresponding to the diseases without latency; and when n = 1, gn,b(u) becomes an exponentially decaying function
corresponding to a typical SEIRmulti-groupmodel of ordinary differential equations studied in [5,4] where synchronization,
in-phase and out-phase properties are explored via linearization.
Note that the basic demographic model for (1.8), that is, the Sk equations in the absence of disease, is of the form

S ′(t) = λ − δS which has the dynamics of global convergence to a positive equilibrium S0 = Λ/δ. In the sequel, we
will replaceΛ− δS by a general ϕ(S) that preserves this global convergence property. In other words, in the remainder of
this paper, we consider the system:

S ′k(t) = ϕk(Sk)−
m∑
j=1

βkjSkIj,

I ′k(t) =
m∑
j=1

βkj

∫ t

0
Sk(u)Ij(u)g(t − u)e−δ(t−u)du− (δ + εk + γk)Ik, k = 1, . . . ,m,

(1.10)

where g(u) is given by (1.9) and ϕk is a C1 non-increasing function and there exists S0k > 0 such that

ϕk(S0k ) = 0, ϕk(u) > 0 for 0 ≤ u < S0k , and ϕk(u) < 0 for u > S0k . (1.11)

In Section 2, by using the well-known ‘‘linear chain trick’’, we re-formulate the model system (1.10) into an equivalent
ordinary differential equations system, about which the main results will be stated. More precisely, we will identify the
basic reproduction number R0 for the model, and prove that this number completely determines the global dynamics of
the model system, as stated in Theorem 2.1.
We point out that this work is motivated by Guo et al. [7] where a SIR type multi-group model was considered. When

the function g(u) = δ(u), the Dirac function at 0, the model (1.10) reduces to a system of the form studied in [7]. The
most difficult part is, as in the study of many epidemic models, the proof of the global asymptotic stability of the endemic
equilibrium under R0 > 1. For this, we construct a Lyapunov function which is a very traditional approach. It is well-
known that estimating the derivative of a Lyapunov function along the system as efficiently as possible is the key for this
classical approach to work out, and better estimate gives better result. By combining the strategy in [7] based on graph
theory for organizing terms in the derivative with some subtle skills in maximization of functions, we are able to obtain the
optimal estimate leading to the global asymptotic stability of the endemic equilibrium. The same technique has also been
successfully applied recently in [8,9] for models with delays in pathogen production within hosts; in [10] to an epidemic
model with stage progression which corresponds a special case of (1.8) with m = 1 (one group) and g(u) given by (1.9);
in [11] to a model for diseases with latency in an homogeneous population, and in [12] to a two-group SIR model with
random perturbation. We point out that recent work by [13] is also along this line, but the focus there is on the nonlinear
incidence rates, and hence only negatively exponential decay functions are adopted for the probability density functions
gk(t), k = 1, 2, . . . ,m, leading to an SEIR model with a lower dimension (3m versusm(n+ 2)with n ≥ 1).

2. Main results

In this section, we firstly use the ‘‘linear chain trick’’ to transfer (1.10) into a system of ordinary differential equations. To
this end, we absorb the exponential term e−δu into the delay kernel by defining

b̂ ≡
b

1+ δb
.
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The second equation in (1.10) can be rewritten as

I ′k(t) =
m∑
j=1

βkj

(1+ δb)n

∫ t

0
Sk(u)Ij(u)gn,b̂(t − u)du− (δ + εk + γk)Ik. (2.1)

For l = 1, . . . , n, let

yk,l(t) =
m∑
j=1

βkjb̂
(1+ δb)n

∫ t

0
Sk(u)Ij(u)gl,b̂(t − u)du, k = 1, 2, . . . ,m.

Then, for l ∈ {2, . . . , n},

y′k,l(t) = gl,b̂(0)
m∑
j=1

βkjb̂
(1+ δb)n

Sk(t)Ij(t)+
m∑
j=1

βkjb̂
(1+ δb)n

∫ t

−∞

(l− 1)(t − u)l−2

(l− 1)!b̂l
e−(t−u)/b̂Sk(u)Ij(u)du

−

m∑
j=1

βkjb̂
(1+ δb)n

∫ t

−∞

(t − u)l−1

(l− 1)!b̂l+1
e−(t−u)/b̂Sk(u)Ij(u)du

= [yk,l−1(t)− yk,l(t)]/b̂. (2.2)

For l = 1, we have

yk,1(t) =
m∑
j=1

βkjb̂
(1+ δb)n

∫ t

−∞

e−(t−u)/b̂

b̂
Sk(u)Ij(u)du, k = 1, 2, . . . ,m,

yielding

y′k,1(t) =
m∑
j=1

βkj

(1+ δb)n
Sk(t)Ij(t)−

m∑
j=1

βkj

(1+ δb)n

∫ t

−∞

e−(t−u)/b̂

b̂
Sk(u)Ij(u)du

=

m∑
j=1

βkj

(1+ δb)n
Sk(t)Ij(t)−

1

b̂
yk,1(t), k = 1, 2, . . . ,m. (2.3)

Thus, the integro-differential system (1.10) is now equivalent to the following system of ordinary differential equations:

S ′k = ϕk(Sk)−
m∑
j=1

βkjSkIj,

y′k,1 =
1

(1+ δb)n

m∑
j=1

βkjSkIj −
1

b̂
yk,1,

y′k,2 =
1

b̂
(yk,1 − yk,2),

· · · · · · · · ·

y′k,n =
1

b̂
(yk,n−1 − yk,n),

I ′k =
1

b̂
yk,n − (δ + εk + γk)Ik.

k = 1, 2, . . . ,m. (2.4)

It is easy to show (say, by Theorem 2.1 in page 81 on [14]) that for a set of non-negative initial values, the corresponding
solution remains non-negative. Let ε > 0 be a given real number. By the hypothesis (1.11) on ϕk, for any initial condition in
the non-negative orthant there exists a time T > 0 such that for t ≥ T we have Sk(t) ≤ S0k + ε.
Let Nϕk be the maximum of the function ϕk on R+, and let q be a positive real number such that q > b̂Nϕk . Denote by Yk

the k-th tube for the system (2.4), that is,

Yk = (Sk, yk,1, yk,2, . . . , yk,n, Ik).

By a similar argument to that in [8], we can show that the set Dε defined by

Dε =

(Y1, Y2, . . . , Ym) ∈ Rm(n+2)+

∣∣∣∣∣∣∣∣
Sk ≤ S0k + ε, Sk + (1+ δb)nyk,1 ≤ q+ S0k ,

yk,l ≤
q+ S0k + lε
(1+ δb)n

, Ik ≤
q+ S0k + (n+ 1)ε

b̂(1+ δ)n(δ + εk + γk)
,

k = 1, 2, . . . ,m, and for l = 2, 3, . . . , n


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is a forward invariant compact absorbing set for the system for ε > 0, and that the set D0 (i.e., when ε = 0) is a forward
invariant compact set.
From the condition (1.11), we know that system (1.10) always has the disease-free equilibrium P0 = (S01 , 0, S

0
2 , 0, . . . ,

S0m, 0), where S
0
k given in (1.11). An endemic equilibrium P

∗ of (1.10) is one with the disease related components being
positive, that is, P∗ has the form P∗ = (S∗1 , I

∗

1 , S
∗

2 , I
∗

2 , . . . , S
∗
m, I
∗
m) ∈ R2m with S∗k > 0, I

∗

k > 0, k = 1, 2, . . . ,m. Translating
to the equivalent system (2.4), P0 corresponding to the equilibrium for (2.4):

P
0
= (S01 , 0, . . . , 0, S

0
2 , 0, · · · , 0, . . . , S

0
m, 0 · · · , 0) ∈ Rm(n+2) (2.5)

and P∗ corresponding to the equilibrium for (2.4):

P
∗
= (S∗1 , y

∗

1,1, . . . , y
∗

1,n, I
∗

1 , S
∗

2 , y
∗

2,1, . . . , y
∗

2,n, I
∗

2 , . . . , S
∗

m, y
∗

m,1, . . . , y
∗

m,n, I
∗

m) (2.6)

with

y∗k,l = b̂(δ + εk + γk)I
∗

k > 0, k = 1, . . . ,m, l = 1, . . . , n. (2.7)

In epidemic models, the existence of an endemic equilibrium (EE) is usually closely related to the stability of the disease
free equilibrium (DFE) in the sense of equilibrium bifurcation: when the DFE is stable, then there is no EE; andwhen the DFE
becomes unstable, then there will be an EE. The switch of stability of the DFE is usually described by the basic reproduction
number—the average number of new infections caused by a single infectious individual during the mean infection time. For
model system (2.4) (equivalently model (1.10)), by applying the theory in [15], we can obtain its basic reproduction number
asR0 = ρ(M0), the spectral radius of the matrixM0 = (M0ij )m×m where

M0ij =
βijS0i

(1+ δb)n(δ + εi + γi)
, i, j = 1, . . . ,m. (2.8)

We will show that whenR0 ≤ 1 there is no endemic equilibrium and whenR0 > 1 there is a unique endemic equilibrium.
Moreover, in the former case, we will prove that the disease free equilibrium is globally asymptotically stable, while in the
latter case, the endemic equilibrium is globally asymptotically stable. These are summarized in the followingmain theorem,
stated in terms of system (2.4).

Theorem 2.1. Assume that B = (βij) is irreducible. Then

(i) The disease free equilibrium P
0
of system (2.4) given by (2.5) is globally asymptotically stable on Rm(n+2)+ if R0 ≤ 1, and is

unstable if R0 > 1;
(ii) When R0 > 1, there exists a unique endemic equilibrium P

∗
for (2.4), in the form of (2.6) and (2.7), which is globally

asymptotically stable on Rm(n+2)+ excepted for initial values satisfying yk,l(0) = 0 for k = 1, 2, . . . ,m and l = 1, 2, . . . , n.

By the equivalence, we have the following version for (1.10).

Theorem 2.2. Assume that B = (βij) is irreducible. Then

(i) The disease free equilibrium P0 of system (1.10) is globally asymptotically stable onR2m
+
if R0 ≤ 1, and is unstable if R0 > 1;

(ii) WhenR0 > 1, there exists a unique endemic equilibriumP∗ for (1.10)which is globally asymptotically stable onR2m
+
excepted

for initial values satisfying Ik(0) = 0 for k = 1, 2, . . . ,m.

In Section 2, we will give the proof of Theorem 2.1. We point out that when ϕk(u) = qk − λku and g(u) is the Dirac delta
function at zero, (i.e., b→ 0+), (1.10) reduces to the multi-group SIR model studied in [7] and Theorem 2.1 reproduces the
main results in [7].

3. Proof of main results

By the properties of Dε and D0 stated in Section 2, we only need to prove the global stability of P
0
in D0 whenR0 ≤ 1,

and the global stability of P
∗
in the interior of D0 (denoted by IntD0) whenR0 > 1.

For S = (S1, . . . , Sm) ∈ Rm+, letM(S) be them×mmatrix defined by

M(S) =
(

βijSi
(1+ δb)n(δ + εi + γi)

)
m×m

.

It is obvious that M0 = M(S0) where S0 = (S01 , S
0
2 , . . . , S

0
m) is specified in the assumption (A). Moreover, if 0 ≤ Sk ≤ S

0
k

for k = 1, . . . ,m, then 0 ≤ M(S) ≤ M(S0) = M0; and if S 6= S0, then M(S) < M0. Here, the inequalities for matrices are
in the component-wise sense. On the other hand, since B is irreducible, using the theory of non-negative matrices in [16],



Author's personal copy

3484 Z. Yuan, X. Zou / Nonlinear Analysis: Real World Applications 11 (2010) 3479–3490

we know that when Sk > 0 for k = 1, . . . ,m, M(S) and M0 are irreducible. Furthermore, M(S) + M0 is also irreducible.
Therefore, for S ∈ D0 with S 6= S0, ρ(M(S)) < ρ(M0) = R0, and hence, ρ(M(S)) < 1 provided thatR0 ≤ 1. It follows that

M(S)I = I

only has the trivial solution I = 0 where I = (I1, . . . , Im), and thus, P
0
is the only equilibrium of system (2.4) in the positive

orthant ifR0 ≤ 1.
We now consider the stability of P

0
in D0 underR0 ≤ 1. By the theory of non-negative matrices, ρ(M0) is an eigenvalue

ofM0, corresponding to which, there is a positive left eigenvector (ω1, ω2, . . . , ωm), i.e.,

(ω1, ω2, . . . , ωm)ρ(M0) = (ω1, ω2, . . . , ωm)M0.

Using this positive eigenvector, we construct the following Lyapunov function

VDFE =
m∑
k=1

ωk

δ + εk + γk

(
n∑
j=1

yk,j + Ik

)
. (3.1)

Computing the derivative of VFE along the trajectories of (2.4) in D0, we get

V̇DFE =
m∑
k=1

[
m∑
j=1

ωkβkj

(1+ δb)n(δ + εk + γk)
SkIj − ωkIk

]
= (ω1, ω2, . . . , ωm)[M(S)I − I]
≤ (ω1, ω2, . . . , ωm)[M0I − I]

= [ρ(M0)− 1](ω1, ω2, . . . , ωm)I. (3.2)

Thus, under the assumption R0 = ρ(M0) < 1, V ′FE ≤ 0; and V
′

FE = 0 if and only if I = 0 and S = S
0. It can be verified

that for (2.4), the only compact invariant subset of the set where V ′FE = 0 is the singleton {P
0
}. It follows from [17] that the

disease free equilibrium P
0
is asymptotically stable in the positive orthant.

IfR0 > 1, then,

(ω1, ω2, . . . , ωm)M0 − (ω1, ω2, . . . , ωm) = [ρ(M0)− 1](ω1, ω2, . . . , ωm) > 0.

By continuity, this implies that

V ′FE = (ω1, ω2, . . . , ωm)[M(S)I − I] > 0

in a neighborhood of P
0
in IntD0, leading to the instability of P

0
. This completes the proof of the Part (i) of the Theorem 2.1.

AssumeR0 > 1. Using the uniform persistence result from [18] and by a similar argument to that in the proof in [7], we
can show that,whenR0 > 1, the instability of P

0
implies the uniformpersistence of (2.4). This togetherwith the dissipativity

of (2.4) resulted from the forward invariant and compact property of D0 stated in Section 2, implies (2.4) has an equilibrium
in IntD0, denoted by P

∗
(see,e.g, Theorem D.3 in [19]). In the rest of this paper, we prove that P

∗
is globally asymptotically

stable.
For convenience of notations, set

β ij = βijS
∗

i I
∗

j , 1 ≤ i, j ≤ m, (3.3)

and

B =



∑
l6=1

β1l −β21 · · · −βm1

−β12

∑
l6=2

β2l · · · −βm2

...
...

. . .
...

−β1m −β2m · · ·

∑
l6=m

βml


. (3.4)

Then, B is also irreducible. By Lemma 2.1 in [7], the solution space of the linear system

Bv = 0 (3.5)

has dimension 1 and

(v1, v2, . . . , vm) = (c11, . . . , cmm), (3.6)
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gives a base of this space where ckk > 0 (k = 1, 2, . . . ,m) is the co-factor of the k-th diagonal entry of B. Using the
components of this base, we construct the following Lyapunov function:

VEE =
m∑
k=1

vk

{
Sk − S∗k − S

∗

k ln
Sk
S∗k
+ (1+ δb)n

[
n∑
j=1

(
yk,j − y∗k,j − y

∗

k,j ln
yk,j
y∗k,j

)
+ Ik − I∗k − I

∗

k ln
Ik
I∗k

]}
.

This function has a linear part LEE expressed as

LEE =
m∑
k=1

vk

{
Sk − S∗k + (1+ δb)

n

[
n∑
j=1

(
yk,j − y∗k,j

)
+ Ik − I∗k

]}
.

The derivative of LEE along the trajectories of (2.4) in IntD0 can be calculated as

L′EE =
m∑
k=1

vk
[
ϕ(Sk)− (1+ δb)n(δ + εk + γk)Ik

]
. (3.7)

Using the above and Eq. (2.7), we can further calculate the derivatives of VEE along the solutions of system (2.4) in IntD0 as
follows:

V ′EE = L
′

EE −

m∑
k=1

vk

{
S∗k
Sk
S ′k + (1+ δb)

n

[
n∑
j=1

y∗k,j
yk,j
y′k,j +

I∗k
Ik
I ′k

]}

=

m∑
k=1

vk[ϕ(Sk)− (1+ δb)n(δ + εk + γk)Ik] −
m∑
k=1

vk

{(
ϕ(Sk)−

m∑
j=1

βkjSkIj

)
S∗k
Sk

− (1+ δb)n
[
m∑
j=1

βkj

(1+ δb)n
SkIjy∗k,1
yk,1

−
y∗k,1
b̂
−
1

b̂

n∑
i=2

y∗k,i(
yk,i−1
yk,i
− 1)+

1

b̂

yk,nI∗k
Ik
− (δ + εk + γk)I∗k

]}

=

m∑
k=1

vk

{
ϕ(Sk)

(
1−

S∗k
Sk

)
−

m∑
j=1

βkjS∗k I
∗

j

y∗k,1SkIj
yk,1S∗k I

∗

j
−
(1+ δb)n

b̂

n∑
i=2

y∗k,iyk,i−1
yk,i

+
(1+ δb)n

b̂
ny∗k −

(1+ δb)n

b̂
y∗k,n
yk,nI∗k
y∗k,nIk

+ (1+ δb)n(δ + εk + γk)I∗k

+

m∑
j=1

βkjS∗k Ij − (1+ δb)
n(δ + ε + γk)Ik

}
.

From (3.5), we know that
m∑
j=1

βkjvk =

m∑
j=1

β jkvj, k = 1, 2, . . . ,m.

This, together with the fact that

ϕk(S∗k ) =
m∑
j=1

βkjS∗k I
∗

j =
(1+ δb)n

b̂
y∗k = (1+ δb)

n(δ + εk + γk)I∗k , k = 1, 2, . . . ,m

leads to
m∑
k=1

vk

m∑
j=1

βkjS∗k Ij =
m∑
k=1

m∑
j=1

(βjkSj∗vj)Ik =
m∑
k=1

[
m∑
j=1

(βjkSj∗I∗k vj)

]
Ik
I∗k

=

m∑
k=1

[
m∑
j=1

(β jkvj)

]
Ik
I∗k
=

m∑
k=1

[
m∑
j=1

(βkjvk)

]
Ik
I∗k

=

m∑
k=1

[
m∑
j=1

(βkjS∗k I
∗

j )

]
vkIk
I∗k
=

m∑
k=1

vk(1+ δb)n(δ + εk + γk)Ik.

Therefore

V ′EE =
m∑
k=1

vk

{
ϕ(Sk)

(
1−

S∗k
Sk

)
−

m∑
j=1

βkjS∗k I
∗

j

y∗k,1SkIj
yk,1S∗k I

∗

j
−
(1+ δb)n

b̂
y∗k

n∑
i=2

y∗k,iyk,i−1
yk,iy∗k,i−1
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+
(1+ δb)n

b̂
ny∗k −

(1+ δb)n

b̂
y∗k,n
yk,nI∗k
y∗k,nIk

+ ϕ(S∗k )

}

=

m∑
k=1

vk

{
ϕ(Sk)

(
1−

S∗k
Sk

)
−

(
m∑
j=1

βkjS∗k I
∗

j

)
y∗k,1SkIj
yk,1S∗k I

∗

j
−

(
m∑
j=1

βkjS∗k I
∗

j

)
n∑
i=2

y∗k,iyk,i−1
yk,iy∗k,i−1

+n
m∑
j=1

βkjS∗k I
∗

j −

(
m∑
j=1

βkjS∗k I
∗

j

)
yk,nI∗k
y∗k,nIk

+ ϕ(S∗k )

}

=

m∑
k=1

vk

{
ϕ(Sk)

(
1−

S∗k
Sk

)
− ϕ(S∗k )

(
1−

S∗k
Sk

)

+

m∑
j=1

βkjS∗k I
∗

j

[
n+ 2−

S∗k
Sk
−
SkIjy∗k,1
S∗k I
∗

j yk,1
−

n∑
i=2

y∗k,iyk,i−1
yk,iy∗k,i−1

−
yk,nI∗k
y∗k,nIk

]}

=

m∑
k=1

vk

{
(Sk − S∗k )(ϕk(Sk)− ϕk(S

∗

k ))

Sk

+

m∑
j=1

βkj

[
n+ 2−

S∗k
Sk
−
SkIjy∗k,1
S∗k I
∗

j yk,1
−

n∑
i=2

yk,i−1y∗k,i
y∗k,i−1yk,i

−
yk,nI∗k
y∗k,nIk

]}

=

m∑
k=1

vk
(Sk − S∗k )

2ϕ′k(u)
Sk

+

m∑
k,j=1

vkβkj

[
n+ 2−

S∗k
Sk
−
SkIjy∗k,1
S∗k I
∗

j yk,1
−

n∑
i=2

yk,i−1y∗k,i
y∗k,i−1yk,i

−
yk,nI∗k
y∗k,nIk

]

≤

m∑
k,j=1

vkβkj

[
n+ 2−

S∗k
Sk
−
SkIjy∗k,1
S∗k I
∗

j yk,1
−

n∑
i=2

yk,i−1y∗k,i
y∗k,i−1yk,i

−
yk,nI∗k
y∗k,nIk

]
=: Hm (3.8)

where u ∈ [Sk, S∗k ] ⊂ [0, S
0
k ] or u ∈ [S

∗

k , Sk] ⊂ [0, S
0
k ]. Obviously, the equality in (3.8) holds if and only if Sk = S

∗

k for
k = 1, . . . ,m.
We need to show{

V ′EE ≤ 0 for (Sk, yk,1, . . . , yk,m, Ik) ∈ IntRn+2+ for k = 1, 2, . . . ,m;
V ′EE = 0 if and only if (Sk, yk,1, yk,2, . . . , yk,n, Ik) = (S∗k , y

∗

k,1, y
∗

k,2, . . . , y
∗

k,n, I
∗

k ), k = 1, . . . ,m. (3.9)

The proof of (3.9) for a general m requires more preparations for notions and results from graph theory (see, e.g., [7] for a
proof for generalm but for a special case ofmodel (1.10)). In the following,we only give the proofs of (3.9) form = 1, m = 2
andm = 3, which would give a reader the basic yet clear ideas without being hidden by the complexity of terms caused by
larger values ofm.
When m = 1, H1 ≤ 0 is a direct result of the inequality between the arithmetical mean and the geometrical mean, and

H1 vanishes if and only if

(S1, y1,1, y1,2, . . . , y1,n, I1) = (S∗1 , y
∗

1,1, y
∗

1,2, . . . , y
∗

1,n, I
∗

1 ).

This confirms (3.9) form = 1.
Whenm = 2, we have

H2 =
2∑

k,j=1

vkβkj

[
n+ 2−

S∗k
Sk
−
SkIjy∗k,1
S∗k I
∗

j yk,1
−

n∑
i=2

yk,i−1y∗k,i
y∗k,i−1yk,i

−
yk,nI∗k
y∗k,nIk

]
.

Formula (3.6) gives v1 = β21 and v2 = β12 in this case. Expanding H2 yields

H2 = β21β11

(
n+ 2−

S∗1
S1
−
S1I1y∗1,1
S∗1 I
∗

1y1,1
−

n∑
i=2

y1,i−1y∗1,i
y∗1,i−1y1,i

−
y1,nI∗1
y∗1,nI1

)

+β21β12

(
n+ 2−

S∗1
S1
−
S1I2y∗1,1
S∗1 I
∗

2y1,1
−

n∑
i=2

y1,i−1y∗1,i
y∗1,i−1y1,i

−
y1,nI∗1
y∗1,nI1

)

+β12β21

(
n+ 2−

S∗2
S2
−
S2I1y∗2,1
S∗2 I
∗

1y2,1
−

n∑
i=2

y2,i−1y∗2,i
y∗2,i−1y2,i

−
y2,nI∗2
y∗2,nI2

)
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+β12β22

(
n+ 2−

S∗2
S2
−
S2I2y∗2,1
S∗2 I
∗

2y2,1
−

n∑
i=2

y2,i−1y∗2,i
y∗2,i−1y2,i

−
y2,nI∗2
y∗2,nI2

)

= β21β11

(
n+ 2−

S∗1
S1
−
S1I1y∗1,1
S∗1 I
∗

1y1,1
−

n∑
i=2

y1,i−1y∗1,i
y∗1,i−1y1,i

−
y1,nI∗1
y∗1,nI1

)

+β12β22

(
n+ 2−

S∗2
S2
−
S2I2y∗2,1
S∗2 I
∗

2y2,1
−

n∑
i=2

y2,i−1y∗2,i
y∗2,i−1y2,i

−
y2,nI∗2
y∗2,nI2

)

+β21β12

(
2n+ 4−

S∗1
S1
−
S1I2y∗1,1
S∗1 I
∗

2y1,1
−

n∑
i=2

y1,i−1y∗1,i
y∗1,i−1y1,i

−
y1,nI∗1
y∗1,nI1

−
S∗2
S2
−
S2I1y∗2,1
S∗2 I
∗

1y2,1
−

n∑
i=2

y2,i−1y∗2,i
y∗2,i−1y2,i

−
y2,nI∗2
y∗2,nI2

)
. (3.10)

Again by the relation between the arithmetical mean and the geometrical mean, we obtain

β21β11

(
n+ 2−

S∗1
S1
−
S1I1y∗1,1
S∗1 I
∗

1y1,1
−

n∑
i=2

y1,i−1y∗1,i
y∗1,i−1y1,i

−
y1,nI∗1
y∗1,nI1

)
≤ 0, (3.11)

β12β22

(
n+ 2−

S∗2
S2
−
S2I2y∗2,1
S∗2 I
∗

2y2,1
−

n∑
i=2

y2,i−1y∗2,i
y∗2,i−1y2,i

−
y2,nI∗2
y∗2,nI2

)
≤ 0, (3.12)

and

β21β12

(
2n+ 4−

S∗1
S1
−
S1I2y∗1,1
S∗1 I
∗

2y1,1
−

n∑
i=2

y1,i−1y∗1,i
y∗1,i−1y1,i

−
y1,nI∗1
y∗1,nI1

−
S∗2
S2
−
S2I1y∗2,1
S∗2 I
∗

1y2,1
−

n∑
i=2

y2,i−1y∗2,i
y∗2,i−1y2,i

−
y2,nI∗2
y∗2,nI2

)
≤ 0, (3.13)

which, together with (3.10), imply that V ′EE ≤ H2 ≤ 0. Moreover, by (3.8), (3.10)–(3.13), we see that V
′

EE = 0 if and only if
Sk = S∗k , k = 1, 2, and H2 = 0. The irreducibility of matrix B implies β21β12 > 0, and consequently, H2 = 0 if and only if

S∗1
S1
=
S1I1y∗1,1
S∗1 I
∗

1y1,1
=
y1,i−1y∗1,i
y∗1,i−1y1,i

=
y1,nI∗1
y∗1,nI1

;

S∗2
S2
=
S2I2y∗2,1
S∗2 I
∗

2y2,1
=
y2,i−1y∗2,i
y∗2,i−1y2,i

=
y2,nI∗2
y∗2,nI2

;

S∗1
S1
=
S1I2y∗1,1
S∗1 I
∗

2y1,1
=
y1,i−1y∗1,i
y∗1,i−1y1,i

=
y1,nI∗1
y∗1,nI1

S∗2
S2
=
S2I1y∗2,1
S∗2 I
∗

1y2,1
=
y2,i−1y∗2,i
y∗2,i−1y2,i

=
y2,nI∗2
y∗2,nI2

,

for i = 2, 3, . . . , n (3.14)

By simple calculation, it follows from (3.8) and (3.14) that V ′EE = 0 if and only if

Sk = S∗k , Ik = aI∗k , yk,i =
1
a
y∗ki, k = 1, 2, i = 2, . . . , n (3.15)

where a is a positive number. Substituting Sk = S∗k and Ik = aI
∗

k into the first equation of system (2.4), we obtain

0 = ϕk(S∗k )− a
2∑
j=1

βkjS∗k I
∗

j , k = 1, 2. (3.16)

Since the right-hand-side of (3.16) is strictly decreasing in a, it follows that (3.16) holds if and only if a = 1. Thus Ik = I∗k
and yk,i = y∗k for k = 1, 2 and i = 1, 2, . . . , n. Hence, V

′

EE = 0 if and only if Sk = S
∗

k , yk,i = y
∗

k,i and Ik = I
∗

k for k = 1, 2 and
i = 1, 2, . . . , n, that is, at P

∗
. This confirms (3.9) for the casem = 2.

Whenm = 3, we have

H3 =
3∑

k,j=1

vkβkj

[
n+ 2−

S∗k
Sk
−
SkIjy∗k,1
S∗k I
∗

j yk,1
−

n∑
i=2

yk,i−1y∗k,i
y∗k,i−1yk,i

−
yk,nI∗k
y∗k,nIk

]
.
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By (3.6) and simple calculation, we obtain

v1 = β32β21 + β31β21 + β23β31,

v2 = β31β12 + β13β32 + β12β32,

v3 = β12β23 + β21β13 + β13β23.

(3.17)

Substituting expression of vk in (3.17) into H3, we observe that H3 is the sum of 33 = 27 terms of forms

βrlβ lkβkj

(
n+ 2−

S∗k
Sk
−
SkIjy∗k,1
S∗k I
∗

j yk,1
−

n∑
i=2

yk,i−1y∗k,i
y∗k,i−1yk,i

−
yk,nI∗k
y∗k,nIk

)
, (3.18)

or

βrkβ lkβkj

(
n+ 2−

S∗k
Sk
−
SkIjy∗k,1
S∗k I
∗

j yk,1
−

n∑
i=2

yk,i−1y∗k,i
y∗k,i−1yk,i

−
yk,nI∗k
y∗k,nIk

)
, (3.19)

where {r, l, k} is a permutation of {1, 2, 3}, and 1 ≤ j ≤ 3. Write the subindices of β ij’s in (3.18) and (3.19) in the form of
transformations(

r l k
l k j

)
and

(
r l k
k k j

)
, (3.20)

respectively. When j = k, l or r , both transformations in (3.20) contain cycles of length 1, 2, or 3. In the following, the terms
in H3 will be grouped according to the lengths of cycles appearing in (3.20).

When j = k, both transformations in (3.20) have a 1-cycle
{
∗ ∗ k
∗ ∗ k

}
, and the corresponding 9 terms of the forms (3.18)

and (3.19) satisfy

βrlβ lkβkk

(
n+ 2−

S∗k
Sk
−
SkIky∗k,1
S∗k I
∗

k yk,1
−

n∑
i=2

yk,i−1y∗k,i
y∗k,i−1yk,i

−
yk,nI∗k
y∗k,nIk

)
≤ 0, (3.21)

and

βrkβ lkβkk

(
n+ 2−

S∗k
Sk
−
SkIky∗k,1
S∗k I
∗

k yk,1
−

n∑
i=2

yk,i−1y∗k,i
y∗k,i−1yk,i

−
yk,nI∗k
y∗k,nIk

)
≤ 0. (3.22)

When j = r , the first transformation in (3.20) produces two distinct 3-cycle patterns
{
r l k
l k r

}
and

{
r k l
k l r

}
. Thus,

there are 6 terms inH3 of 3-cycle form, three of them correspond to each cycle pattern and hence have the same coefficients
βrlβ lkβkr or βrkβklβ lr . Therefore, the sum of these six terms falls into two parts with each part being a sum of form

βrlβ lkβkr

(
n+ 2−

S∗k
Sk
−
SkIry∗k,1
S∗k I∗r yk,1

−

n∑
i=2

yk,i−1y∗k,i
y∗k,i−1yk,i

−
yk,nI∗k
y∗k,nIk

)

+β lkβkrβrl

(
n+ 2−

S∗r
Sr
−
Sr Ily∗r,1
S∗r I
∗

l yr,1
−

n∑
i=2

yr,i−1y∗r,i
y∗r,i−1yr,i

−
yr,nI∗r
y∗r,nIr

)

+βkrβrlβ lk

(
n+ 2−

S∗l
Sl
−
SlIky∗l,1
S∗l I
∗

k yl,1
−

n∑
i=2

yl,i−1y∗l,i
y∗l,i−1yl,i

−
yl,nI∗l
y∗l,nIl

)

= βrlβ lkβkr

(
3n+ 6−

S∗k
Sk
−
SkIry∗k,1
S∗k I∗r yk,1

−

n∑
i=2

yk,i−1y∗k,i
y∗k,i−1yk,i

−
yk,nI∗k
y∗k,nIk

−
S∗r
Sr
−
Sr Ily∗r,1
S∗r I
∗

l yr,1
−

n∑
i=2

yr,i−1y∗r,i
y∗r,i−1yr,i

−
yr,nI∗r
y∗r,nIr

−
S∗l
Sl
−
SlIky∗l,1
S∗l I
∗

k yl,1
−

n∑
i=2

yl,i−1y∗l,i
y∗l,i−1yl,i

−
yl,nI∗l
y∗l,nIl

)
≤ 0. (3.23)

When j = r , the second transformation in (3.20) has a 2-cycle
{
r ∗ k
k ∗ r

}
. Also, when j = l, both transformations in (3.20)

have a 2-cycle
{
∗ l k
∗ k l

}
. Thus, there are altogether 12 terms in H3 corresponding to 2-cycle patterns. Each 2-cycle pattern
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corresponds to 2 terms in H3 with the same coefficients (products of β ’s). These 12 terms can be grouped into 6 pairs and
each pair has a sum of the form

βrkβ lkβkr

(
n+ 2−

S∗k
Sk
−
SkIry∗k,1
S∗k I∗r yk,1

−

n∑
i=2

yk,i−1y∗k,i
y∗k,i−1yk,i

−
yk,nI∗k
y∗k,nIk

)

+βkrβ lkβrk

(
n+ 2−

S∗r
Sr
−
Sr Iky∗r,1
S∗r I
∗

k yr,1
−

n∑
i=2

yr,i−1y∗r,i
y∗r,i−1yr,i

−
yr,nI∗r
y∗r,nIr

)

= βrkβ lkβkr

(
2n+ 4−

S∗k
Sk
−
SkIry∗k,1
S∗k I∗r yk,1

−

n∑
i=2

yk,i−1y∗k,i
y∗k,i−1yk,i

−
yk,nI∗k
y∗k,nIk

−
S∗r
Sr
−
Sr Iky∗r,1
S∗r I
∗

k yr,1
−

n∑
i=2

yr,i−1y∗r,i
y∗r,i−1yr,i

−
yr,nI∗r
y∗r,nIr

)
≤ 0, (3.24)

or

βrlβ lkβkl

(
n+ 2−

S∗k
Sk
−
SkIly∗k,1
S∗k I
∗

l yk,1
−

n∑
i=2

yk,i−1y∗k,i
y∗k,i−1yk,i

−
yk,nI∗k
y∗k,nIk

)

+βrlβklβ lk

(
n+ 2−

S∗l
Sl
−
SlIky∗l,1
S∗l I
∗

k yl,1
−

n∑
i=2

yl,i−1y∗l,i
y∗l,i−1yl,i

−
yl,nI∗l
y∗l,nIl

)

= βrlβ lkβkl

(
2n+ 4−

S∗k
Sk
−
SkIly∗k,1
S∗k I
∗

l yk,1
−

n∑
i=2

yk,i−1y∗k,i
y∗k,i−1yk,i

−
yk,nI∗k
y∗k,nIk

−
S∗l
Sl
−
SlIky∗l,1
S∗l I
∗

k yl,1
−

n∑
i=2

yl,i−1y∗l,i
y∗l,i−1yl,i

−
yl,nI∗l
y∗l,nIl

)
≤ 0. (3.25)

In summary, each term in H3 corresponds to a transformation in (3.20) which possesses a unique cycle of length 1, 2 or
3 and all terms in H3 are accounted for in our grouping according to cycle patterns and lengths in (3.20). Therefore, we have
shown H3 ≤ 0. Thus, we see that V ′EE = 0 if and only if Sk = S

∗

k , k = 1, 2, 3, and H3 = 0. By the irreducibility of B = (βij)
and a similar argument to that in [7], we know that if Sk = S∗k , k = 1, 2, 3, then

H3 = 0⇔ Ik = aI∗k , yk,i =
1
a
y∗k,i, k = 1, 2, 3 and i = 1, 2, . . . , n (3.26)

where a is positive number. By the same argument as for the case m = 2, we derive that a = 1, implying that Ik = I∗k and
yk,i = y∗k,i for k = 1, 2, 3 and i = 1, 2, . . . , n. Hence, V

′

EE = 0 if and only if Sk = S
∗

k , yk,i = y
∗

k,i and Ik = I
∗

k for k = 1, 2, 3 and
i = 1, 2, . . . , n, that is, at P

∗
. Therefore, V ′EE is negative along the solutions of (2.4) in IntD0 except at the endemic equilibrium

{P
∗
}. This completes the proof of Theorem 2.1.

4. Conclusions

In this paper, we have proposed a general epidemic model that allows heterogeneity of the host population and that has
taken into consideration latency of the disease. The new model includes many existing ones as special cases. For a simpler
version that assumes an identical natural death rate for all groups, and with a gamma distribution for the latency, the global
dynamics of the model is fully determined by the basic reproduction number R0 of the model system: if R0 ≤ 1, the
disease-free equilibrium is globally asymptotically stable in the positive orthant, whereas if R0 > 1, a unique endemic
equilibrium exists and is globally asymptotically stable in the interior of the positive orthant. The former corresponds to the
case in which the disease will eventually die out, and the latter case implies that the disease (with any initial inoculation)
will persist in all groups of the population and will eventually settle at a constant level in each group.
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