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a b s t r a c t

In this paper, we consider a reaction diffusion model for competing pioneer and climax
species. A previous work has established the existence of traveling wave fronts connecting
two competition-exclusion equilibria in certain range of the parameters, while in this
paper, we explore the possibility of travelingwave fronts connecting the pioneer-invasion-
only equilibrium and the co-invasion equilibrium. By combining the Schauder’s fixed point
theorem with a pair of the so called desired functions, we show that the model does
support such co-invasion waves in some other ranges of parameters. We also determine
theminimal speed for such co-invasionwaves in terms of the parameters, and discuss some
biological implications and significance of the results.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In ecology and evolution, interactions among species could be very complicated but play a crucial role in the process of
evolution and inmaintaining the biological diversity of nature. Animal or plant populationsmay in some occasions compete,
while in other situations cooperate with one another in order to obtain sufficient natural resources such as food, shelter,
light, space, carbon dioxide, and soil nutrients to sustain growth and survival. As a result, the population growth rates of the
involving species may depend more on the total density of all populations in an ecosystem than on any individual species.
Such observations have led to the development of population models where a species’ per capita growth rate (i.e., fitness) is
a function of a weighted average of the populations of all interacting species. Themost classic example of such amodel is the
Lotka-Volterra system, in which the per capita growth rate is a linear combination of the densities of the interacting popu-
lations. Other pioneering work along this line include those of Buchanan [2,3], Comins and Hassell [4], Cushing [5,6], Franke
and Yakubu [7,8], Hofbauer et al. [11], May [16], Selgrade and Namkoong [18,19], Selgrade [20–22], and Summer[23,24].
The interaction between a pioneer species and a climax species provides a more specific example. As is known, some

species thrive best at lower densities and thus are good candidates for pioneering. For example, certain varieties of pine and
poplar have a fitness which decreases with total population density, mainly due to the effects of crowding on reproduction
and survival. Such species are often referred to as ‘‘pioneer’’ species. In contrast, some other species have higher survival
and reproduction rates at higher densities, due to group defense for prey, increased gene pools, enhanced soil nutrients and
photosynthetic adaption to shade etc. Such species are referred to as ‘‘climax’’ species. The differential equations describing
the interaction between a pioneer species and a climax species offer a class of important population models where the
fitness functions are described as pioneer and climax fitness respectively. By the features of the interaction, a pioneer fitness
function should be a decreasing function of a weighted total population density. Ricker [17] has hypothesized that some fish
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Fig. 1. Typical fitness functions for climax species and pioneer species.

populations have pioneer fitness of exponential decay type. Hassell and Comins [10] analyzed some discrete time Lotka-
Volterra models containing rational pioneer fitness functions. Climax species express a different response to environmental
crowding. The fitness of a climax species increases at lower total densities to a maximum before decreasing at higher
densities. Such a ‘‘one-humped’’ fitness functions reflects the beneficial effects of increasing density between certain lower
range and the disadvantageous effects of extreme overcrowding on reproduction and survival. For more details on such
responses, interested readers are referred to Cushing [6], Freedman and Wolkowicz [9], and Wolkowicz [26].
Ignoring spatial variances and considering continuous time, a typical model for the interaction of a pioneering species

and a climax species is given by the following system of ordinary differential equations:
du
dt
= uf (c11u+ c12v),

dv
dt
= vg(c21u+ c22v),

(1.1)

where the variables u and v represent densities of the pioneer and the climax species respectively, f and g are continuous
functions and denote pioneer fitness function and climax fitness function respectively. The matrix(

c11 c12
c21 c22

)
with cij > 0 (i, j = 1, 2) gives the weight distribution among species, and is called the interaction matrix. A rescaling
c21u→ u, c12v→ v transforms (1.1) to

du
dt
= uf (c11u+ v),

dv
dt
= vg(u+ c22v).

(1.2)

The pioneer fitness function f ∈ C1(−∞,∞) and satisfies:

f ′(y) < 0, f (z0) = 0 for y ∈ R, some z0 > 0. (1.3)

The climax fitness g ∈ C1(−∞,∞) is a lumped function which attains its maximum at the intermediate density w∗ while
negative below a low densityw1 and above a high densityw2, that is,{

g(w1) = g(w2) = 0, for 0 < w1 < w2
(w∗ − w)g ′(w) > 0, forw > 0 andw 6= w∗ ∈ (w1, w2).

(1.4)

Fig. 1 depicts typical fitness functions for climax species and pioneer species.
It turns out that depending on the locations of the three nullclines:

c11u+ v = z0,
u+ c22 = w1,
u+ c22 = w2,

the long term behavior of solutions to (1.2) can be qualitatively different. Selgrade and Namkoong [18,19], Selgrade and
Roberds [22] and Sumner [23] analyzed the Hopf bifurcation of (1.2). Selgrade and Namkoong [18,19] presented examples
where the pioneer and the climax populations may coexist in the sense that there is a stable coexistence equilibrium.
Buchanan [2] has given a good classification for (1.2).
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In reality, spatial variancemay be significant and speciesmay disperse. For simplicity, we only consider one-dimensional
space R. Assuming a random dispersal mechanism and by incorporating a spatial variable x into (1.2), we are given the
following reaction-diffusion system{

ut = uf (c11u+ v)+ d1uxx,
vt = vg(u+ c22v)+ d2vxx.

(1.5)

Here, u ≡ u(x, t) and v ≡ v(x, t) represent densities of the pioneer and the climax species respectively at location x at
time t , and di > 0, i = 1, 2, account for the species dispersion in the spatially continuous space R. An immediate problem
for (1.5) is the impact of the diffusion on the dynamics of solutions. Indeed, Buchanan [3] already investigated the Turing
instability for (1.5), the instability caused by diffusion. Another important topic for (1.5) is traveling wave solutions, because
such solutions explain spatial spread or invasion of the species. A traveling wave solution of (1.5) is a solution of the form
u(t, x) = φ(x+ ct) and v(t, x) = ψ(x+ ct) with φ,ψ ∈ C2(R, R) being called the profile of the traveling wave and c > 0
being the wave speed. When d2 is small relative to d1, using the singular perturbation method, Brown et al. [1] studied the
existence of traveling wave solution of (1.5) connecting two boundary equilibria. These traveling waves gives a pattern of
switching: spatial domain initially occupied by pioneering specie will be eventually taken over fully by the climax species
with certain speed. Thus, no co-existence is observed in such a situation. On the other hand, co-existence is common in
the real world. As we mentioned above, Selgrade and Namkoong [18,19] obtained stable co-existence equilibrium for (1.2).
One may naturally ask: does system (1.5) allow traveling wave solutions connecting a boundary equilibrium (the pioneer-
invasive equilibrium) and a co-existence equilibrium? This question constitutes the purpose of this paper. In this paper,
we combine the techniques developed in recent work [27,31] with the Schauder’s fixed point theorem to show that in
some parameter ranges, system (1.5) does support traveling waves connecting the pioneer-invasion-only equilibrium and a
co-existence equilibrium. We point out that this approach has also been applied recently by [12–15,28] to various reaction-
diffusion systems with delays. The main results are summarized in the following theorem:

Theorem 1. Assume that (1.3) and (1.4) and d2 ≥ d1/2 hold. Then,
(i) for any c ≥ 2

√
d2g(z0/c11), system (1.5) has a co-invasion traveling wave front connecting the pioneer-invasion-only

equilibrium (z0/c11, 0) and a coexistence equilibrium (u∗, v∗), with speed c.
(ii) c∗ := 2

√
d2g(z0/c11) is the minimal wave speed in the sense for any c ∈ (0, c∗) there will be no traveling front with speed

c, connecting these two equilibria.

The rest of this paper is organized as follows: Section 2 contains somepreliminary results about the approach. In Section 3,
by constructing a pair of appropriated upper and lower solutions, we obtain a subset. Applying the Schauder’s fixed point
theorem to the corresponding operator in this subset, we prove the existence of monotone traveling wave fronts connecting
a boundary equilibrium and a co-existence equilibrium. We also indentify the minimal wave speed for such monotone
traveling wave fronts in this section. Section 4 concludes the paper with a brief discussion.

2. Preliminaries

A traveling wave solution of (1.5) is a solution of the form u(t, x) = φ(x + ct) and v(t, x) = ψ(x + ct), where
φ,ψ ∈ C2(R, R) and c > 0 is a constant corresponding to the wave speed. Substituting u(t, x) = φ(x + ct) and
v(t, x) = ψ(x+ ct) into (1.5) and letting s = x+ ct , one finds that the profile functions φ(s) andψ(s) satisfy the following
system of ordinary differential equations{

d1φ′′(s)− cφ′(s)+ φ(s)f (c11φ(s)+ ψ(s)) = 0,
d2ψ ′′(s)− cψ ′(s)+ ψ(s)g(φ(s)+ c22ψ(s)) = 0.

(2.1)

If lims→±∞ φ(s) = u± and lims→±∞ ψ(s) = v± exist, the traveling wave solution is referred to as a traveling wave front
which explains the transition from the state (u−, v−) to the other state (u+, v+). It is known that these two states must be
equilibria of (1.5) (as well as (1.2), meaning that

u+f (c11u+ + v+) = 0, v+g(u+ + c22v+) = 0,
u−f (c11u− + v−) = 0, v−g(u− + c22v−) = 0.

Asmentioned in the introduction,we are interested in travelingwave fronts accounting for co-invasion of the two species,
and hence it is natural to pose conditions that guarantee existence of a co-existence equilibrium. By the properties of f and
g , a co-existence equilibrium is obtained by solving either{

c11u+ v = z0
u+ c22v = w1

(2.2)

or {
c11u+ v = z0
u+ c22v = w2

(2.3)
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Fig. 2. Typical fitness functions for climax species and pioneer species.

for positive solution. Here we consider the following range of parameters:

z0 >
w2

c22
, w1 <

z0
c11

< w2, and c11c22 > 1. (2.4)

Under the above assumption, it is easy to see that in addition to the trivial equilibrium (0, 0), (1.5) has the following four
non-trivial equilibria: ( z0c11 , 0), (0,

w2
c22
), (0, w1c22 ) and the co-existence equilibrium (u

∗, v∗)where

u∗ =
c22z0 − w2
c11c22 − 1

, v∗ =
c11w2 − z0
c11c22 − 1

.

It is obvious that u∗ < z0/c11. For a detailed discussion of all equilibria of (1.1), we refer to Buchanan [2]. For convenience
of discussion, we further assume, in the remainder of the paper, the following technical condition

w∗ ≤ u∗. (2.5)

See Fig. 2 the positions of the involving points corresponding to our assumptions.
With the above conditions, our aim becomes to seek traveling wave fronts of (1.5) connecting the two equilibria ( z0c11 , 0)

and (u∗, v∗). Thus, we need assign to (2.1) the following asymptotic boundary conditions: lim
s→−∞

φ(s) =
z0
c11
, lim

s→∞
φ(s) = u∗,

lim
s→−∞

ψ(s) = 0, lim
s→∞

ψ(s) = v∗.
(2.6)

In the sequel, we need to investigate positive solutions of (2.1)–(2.6). To this end, we need some preparation.
Let

D = {(φ, ψ) ∈ C(R, R2) : u∗ ≤ φ(s) ≤ z0/c11, 0 ≤ ψ(s) ≤ v∗, s ∈ R}.

For constants β1 and β2, define the operator H = (H1,H2) : D→ C(R, R2) by{
H1(φ, ψ)(t) = φ(t)f (c11φ(t)+ ψ(t))+ β1φ(t),
H2(φ, ψ)(t) = ψ(t)g(φ(t)+ c22ψ(t))+ β2ψ(t).

(2.7)

Then (2.1) can be rewritten as{
d1φ′′(t)− cφ′(t)− β1φ(t)+ H1(φ(t), ψ(t)) = 0,
d2ψ ′′(t)− cψ ′(t)− β2ψ(t)+ H2(φ(t), ψ(t)) = 0.

(2.8)

Let

λ1 =
c −

√
c2 + 4d1β1
2d1

, λ2 =
c +

√
c2 + 4d1β1
2d1

,

λ3 =
c −

√
c2 + 4d2β2
2d2

, λ4 =
c +

√
c2 + 4d2β2
2d2

.

Then it is easy to verify that

λ1 < 0 < λ2, λ3 < 0 < λ4,

d1λ2i − cλi − β1 = 0, i = 1, 2,

d2λ2i − cλi − β2 = 0, i = 3, 4.
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Define the operator F = (F1, F2) : D→ C(R, R2) by
F1(φ, ψ)(t) =

1
d1(λ2 − λ1)

[∫ t

−∞

eλ1(t−s)H1(φ, ψ)(s)ds+
∫
∞

t
eλ2(t−s)H1(φ, ψ)(s)ds

]
,

F2(φ, ψ)(t) =
1

d2(λ4 − λ3)

[∫ t

−∞

eλ3(t−s)H2(φ, ψ)(s)ds+
∫
∞

t
eλ4(t−s)H2(φ, ψ)(s)ds

]
.

(2.9)

It is obvious that (F1(φ, ψ), F2(φ, ψ)) ∈ C2(R, R2) if φ,ψ are continuous and bounded in R (see, [15,28,30]).
One can verify that the operator F is well defined and for any (φ, ψ) ∈ D,{

d1(F1(φ, ψ))′′(t)− c(F1(φ, ψ))′(t)− β1(F1(φ, ψ))(t)+ H1(φ(t), ψ(t)) = 0,
d2(F2(φ, ψ))′′(t)− c(F2(φ, ψ))′(t)− β2(F2(φ, ψ))(t)+ H2(φ(t), ψ(t)) = 0.

(2.10)

Thus, a fixed point of F is a solution of (2.1).
Next, we introduce the exponential decay norm in C(R, R2). For µ > 0, define

Bµ(R, R2) = {Φ ∈ C(R, R2) : sup
t∈R
|Φ(t)|e−µ|t| <∞}

and

|Φ|µ = sup
t∈R
|Φ(t)|e−µ|t|.

Then it is easy to check that (Bµ(R, R2), | · |µ) is a Banach space. For our purpose, we will take µ > 0 such that

µ < min{−λ1, λ2,−λ3, λ4}. (2.11)

Now we explore some basic properties of H .

Lemma 1. For sufficiently large β1, β2 > 0 and for (φi, ψi) ∈ D, i = 1, 2 with φ1(s) ≤ φ2(s) and ψ1(s) ≤ ψ2(s),
s ∈ R, i = 1, 2, we have

H1(φ2, ψ1)(t) ≥ H1(φ1, ψ1)(t),
H1(φ1, ψ2)(t) ≤ H1(φ1, ψ1)(t),
H2(φ1, ψ2)(t) ≥ H2(φ1, ψ1)(t),
H2(φ2, ψ1)(t) ≤ H2(φ1, ψ1)(t)

(2.12)

for all t ∈ R.

Proof. Let f1(x, y) = xf (c11x + y) + β1x and f2(x, y) = yg(x + c22y) + β2y. For u∗ ≤ x ≤ z0/c11 and 0 ≤ y ≤ v∗ and
sufficiently large numbers β1 > 0 and β2 > 0, it follow that

∂

∂x
f1(x, y) = f (c11x+ y)+ c11xf ′(c11x+ y)+ β1 ≥ 0

and
∂

∂y
f2(x, y) = g(x+ c22y)+ c22yg ′(x+ c22y)+ β2 ≥ 0.

Thus, the first and the third inequalities hold.
From (1.3) it follows that

H1(φ1, ψ2)(t)− H1(φ1, ψ1)(t) = φ1(t) [f (c11φ1(t)+ ψ2(t))− f (c11φ1(t)+ ψ1(t))] ≤ 0

for all t ∈ R. On the other hand, since φ + c22ψ ≥ u∗ ≥ w∗ for u∗ ≤ φ ≤ z0/c11 and 0 ≤ ψ ≤ v∗, it follows that

H2(φ2, ψ1)(t)− H2(φ1, ψ1)(t) = ψ1(t) [g(φ2(t)+ c22ψ1(t))− g(φ1(t)+ c22ψ1(t))] ≤ 0

for all t ∈ R, competing the proof. �

Lemma 2. Assume β1 > 0 and β2 > 0 are sufficiently large. For (φ, ψ) ∈ D with φ(t) nonincreasing and ψ(s) nondecreasing
in R, H1(φ, ψ)(t) is nonincreasing and H2(φ, ψ)(t) is nondecreasing in R.

Proof. For any s > 0, φ(t + s) ≤ φ(t) and ψ(t + s) ≥ ψ(t). It follows from Lemman 1 that

H1(φ, ψ)(t + s)− H1(φ, ψ)(t) = [H1(φ(t + s), ψ(t + s))− H1(φ(t), ψ(t + s))]
+ [H1(φ(t), ψ(t + s))− H1(φ(t), ψ(t))]

≤ 0, for s ≥ 0.

Similarly, we can prove that H2(φ, ψ)(t) is nondecreasing, completing the proof. �
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By Lemmas 1 and 2 and (2.9), we can easily see that F = (F1, F2) also enjoys the same properties as those forH = (H1,H2)
stated in Lemmas 1 and 2.

Lemma 3. For sufficiently large β1, β2 > 0 and for (φi, ψi) ∈ D, i = 1, 2 with φ1(s) ≤ φ2(s) and ψ1(s) ≤ ψ2(s),
s ∈ R, i = 1, 2, we have

F1(φ2, ψ1)(t) ≥ F1(φ1, ψ1)(t),
F1(φ1, ψ2)(t) ≤ F1(φ1, ψ1)(t),
F2(φ1, ψ2)(t) ≥ F2(φ1, ψ1)(t),
F2(φ2, ψ1)(t) ≤ F2(φ1, ψ1)(t)

(2.13)

for all t ∈ R.

Lemma 4. Assume β1 > 0 and β2 > 0 are sufficiently large. For (φ, ψ) ∈ D with φ(t) nonincreasing and ψ(s) nondecreasing
in R, F1(φ, ψ)(t) is nonincreasing and F2(φ, ψ)(t) is nondecreasing in R.

Denote

Λ+ =

{
(φ, ψ) ∈ D ∩ C2(R, R2)

∣∣∣∣d1φ′′(t)− cφ′(t)− β1φ(t)+ H1(φ(t), ψ(t)) ≥ 0;d2ψ ′′(t)− cψ ′(t)− β2ψ(t)+ H2(φ(t), ψ(t)) ≤ 0,
for t ∈ R,

}
,

and

Λ− =

{
(φ, ψ) ∈ D ∩ C2(R, R2)

∣∣∣∣d1φ′′(t)− cφ′(t)− β1φ(t)+ H1(φ(t), ψ(t)) ≤ 0;d2ψ ′′(t)− cψ ′(t)− β2ψ(t)+ H2(φ(t), ψ(t)) ≥ 0,
for t ∈ R,

}
.

In what follows, we assume that there existΦ = (φ, ψ) ∈ Λ+ andΦ = (φ, ψ) ∈ Λ− satisfying

(P1) u∗ ≤ φ ≤ φ ≤ z0/c11, 0 ≤ ψ ≤ ψ ≤ v∗;
(P2) φ(t) ≤ infs≤t φ(s) and sups≤t ψ(s) ≤ ψ(t) for t ∈ R;
(P3) (uf (c11u + v), vg(u + c22v)) 6= (0, 0) for u ∈ [supt∈R φ(t), z0/c11) ∪ (u∗, inft∈R φ(t)] and v ∈ (0, inft∈R ψ(t)] ∪
[supt∈R ψ(t), v∗).

Using this pair of desirable functions, we define the following profile set:

Γ (Φ,Φ) =

(φ, ψ) ∈ D, (i) φ(t) ≤ φ(t) ≤ φ(t), ψ(t) ≤ ψ(t) ≤ ψ(t)
(ii) φ(t) is non-increasing in R
(iii) ψ(t) is nondecreasing in R

 .
Obviously, Γ (Φ,Φ) is non-empty since (ϕ1(t), ϕ2(t)) ∈ Γ (Φ,Φ)with ϕ1(t) = infs≤t φ(s) and ϕ2(t) = sups≤t ψ(s).
In the rest of this section, wewill apply Schauder’s fixed point theorem to F on the setΓ (Φ,Φ) to establish the existence

of solution to (2.1). The following lemmas verify the conditions for this fixed point theorem. The proofs are similar to those
in [12–14], but for the sake of completeness and for readers’ convenience, we will give their proofs here.

Lemma 5. The map F = (F1, F2) : D→ C(R, R2) is continuous with respect to the norm | · |µ in Bµ(R, R2).

Proof. We first prove that H1 : D → C(R, R2) is continuous with respect to the norm | · |µ. For Φ = (φ1, ψ1),Ψ =

(φ2, ψ2) ∈ D, since the functions f , g ∈ C1(−∞,∞), it follows that there exist constants L1 > 0, L2 > 0 such that

|f (c11φ1(t)+ ψ1(t))| ≤ L1

and

|f (c11φ1(t)+ ψ1(t))− f (c11φ2(t)+ ψ2(t))| ≤ L2(c11|φ1(t)− φ2(t)| + |ψ1(t)− ψ2(t)|).

Thus,

|H1(φ1, ψ1)(t)− H1(φ2, ψ2)(t)|e−µ|t|

= |φ1(t)f (c11φ1(t)+ ψ1(t))− φ2(t)f (c11φ2(t)+ ψ2(t))+ β1(φ1(t)− φ2(t))|e−µ|t|

= |(φ1(t)− φ2(t))f (c11φ1(t)+ ψ1(t))+ φ2(t)(f (c11φ1(t)+ ψ1(t))− f (c11φ2(t)+ ψ2(t)))
+β1(φ1(t)− φ2(t))|e−µ|t|

≤ [L1|φ1(t)− φ2(t)| + z0c−111 L2(c11|φ1(t)− φ2(t)| + |ψ1(t)− ψ2(t)|)+ β1|φ1(t)− φ2(t)|]e
−µ|t|

≤ (L1 + z0L2 + z0L2c−111 + β1) sup
t∈R
|Φ(t)− Ψ (t)|e−µ|t|

= (L1 + z0L2 + z0L2c−111 + β1)|Φ − Ψ |µ.
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Now for any fixed ε > 0, let δ < ε(L1 + z0L2 + z0L2c−111 + β1)
−1. IfΦ = (φ1, ψ1),Ψ = (φ2, ψ2) ∈ D satisfy |Φ − Ψ |µ < δ,

then

|H1(φ1, ψ1)− H1(φ2, ψ2)|µ = |H1(φ1, ψ1)(t)− H1(φ2, ψ2)(t)|e−µ|t|

≤ (L1 + z0L2 + z0L2c−111 + β1)|Φ − Ψ |µ < ε.

That is, H1 : D→ C(R, R2) is continuous with respect to the norm | · |µ.
Now, we show that F1 : D→ C(R, R2) is also continuous with respect to the norm | · |µ. For t ≥ 0, we find

|F1(φ1, ψ1)(t)− F1(φ2, ψ2)(t)| ≤
1

d1(λ2 − λ1)

[∫ t

−∞

eλ1(t−s)|H1(φ1, ψ1)(s)− H1(φ2, ψ2)(s)|ds

+

∫
∞

t
eλ2(t−s)|H1(φ1, ψ1)(s)− H1(φ2, ψ2)(s)|ds

]
=

1
d1(λ2 − λ1)

[∫ t

−∞

eλ1(t−s)+µ|s||H1(φ1, ψ1)(s)− H1(φ2, ψ2)(s)|e−µ|s|ds

+

∫
∞

t
eλ2(t−s)+µ|s||H1(φ1, ψ1)(s)− H1(φ2, ψ2)(s)|e−µ|s|ds

]
≤

1
d1(λ2 − λ1)

[∫ t

0
eλ1(t−s)+µsds+

∫ 0

−∞

eλ1(t−s)−µsds

+

∫
∞

t
eλ2(t−s)+µsds

]
|H1(φ1, ψ1)− H1(φ2, ψ2)|µ

=
1

d1(λ2 − λ1)

[
λ2 − λ1

(µ− λ1)(λ2 − µ)
eµt +

2µ
λ21 − µ

2
eλ1t
]
|H1(φ1, ψ1)− H1(φ2, ψ2)|µ.

Hence, for t ≥ 0 we have

|F1(φ1, ψ1)(t)− F1(φ2, ψ2)|e−µ|t|

≤
1

d1(λ2 − λ1)

[
λ2 − λ1

(µ− λ1)(λ2 − µ)
+

2µ
λ21 − µ

2
e(λ1−µ)t

]
|H1(φ1, ψ1)− H1(φ2, ψ2)|µ

≤
1

d1(λ2 − λ1)

[
λ2 − λ1

(µ− λ1)(λ2 − µ)
+

2µ
λ21 − µ

2

]
|H1(φ1, ψ1)− H1(φ2, ψ2)|µ.

Similarly, for t ≤ 0, we have

|F1(φ1, ψ1)(t)− F1(φ2, ψ2)|e−λ|t|

≤
1

d1(λ2 − λ1)

[
λ2 − λ1

−(µ+ λ1)(λ2 + µ)
+

2µ
λ21 − µ

2

]
|H1(φ1, ψ1)− H1(φ2, ψ2)|µ.

The above two inequalities together with the continuity of H1 establish the continuity of F1. By a similar argument, we can
obtain the continuity of F2. Therefore the map F = (F1, F2) : D→ C(R, R2) is continuous with respect to the norm | · |µ in
Bµ(R, R2). This completes the proof. �

Lemma 6. For sufficiently large β1 > 0 and β2 > 0, we have F(Γ (Φ,Φ)) ⊂ Γ (Φ,Φ).

Proof. For any (φ, ψ) ∈ Γ (Φ,Φ), by Lemma 3, it is easy to see that

F1(φ, ψ) ≤ F1(φ, ψ) ≤ F1(φ, ψ),

F2(φ, ψ) ≤ F2(φ, ψ) ≤ F2(φ, ψ).

Now, in order to verify the condition (i) in the set Γ (Φ,Φ) for F(φ, ψ) = (F1(φ, ψ), F2(φ, ψ)), we need to prove

φ ≤ F1(φ, ψ) ≤ F1(φ, ψ) ≤ φ,

ψ ≤ F2(φ, ψ) ≤ F2(φ, ψ) ≤ ψ.

Employing the integration by parts and by the definitions of λ1 and λ2, we obtain

F1(φ, ψ)(t) =
1

d1(λ2 − λ1)

[∫ t

−∞

eλ1(t−s) +
∫
∞

t
eλ2(t−s)

]
H1(φ, ψ)(s)ds
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≥
1

d1(λ2 − λ1)

[∫ t

−∞

eλ1(t−s) +
∫
∞

t
eλ2(t−s)

]
(β1φ(s)+ cφ

′
(s)− d1φ

′′
(s))ds

= φ(t), t ∈ R.

In a similar way, we can prove that F1(φ, ψ) ≤ φ, ψ ≤ F2(φ, ψ), and F2(φ, ψ) ≤ ψ . On the other hand, Lemma 4 implies
that F1(φ, ψ)(t) is nonincreasing and F2(φ, ψ)(t) is nondecreasing in R verifying conditions (ii) and (iii) for F(φ, ψ). The
proof is complete. �

Lemma 7. For sufficiently large β1 > 0 and β2 > 0, F : Γ (Φ,Φ)→ Γ (Φ,Φ) is compact.

Proof. We first establish an estimate for F . For any (φ, ψ) ∈ Γ (Φ,Φ),

(F1(φ, ψ))′(t) =
λ1eλ1t

d1(λ2 − λ1)

∫ t

−∞

e−λ1sH1(φ, ψ)(s)ds+
λ2eλ2t

d1(λ2 − λ1)

∫
∞

t
e−λ2sH1(φ, ψ)(s)ds.

Thus,

|(F1(φ, ψ))′|µ ≤ sup
t∈R

[
e−µ|t|

|λ1|eλ1t

d1(λ2 − λ1)

∫ t

−∞

e−λ1sH1(φ, ψ)(s)ds+ e−µ|t|
λ2eλ2t

d1(λ2 − λ1)

∫
∞

t
e−λ2sH1(φ, ψ)(s)ds

]
≤

|λ1|

d1(λ2 − λ1)
sup
t∈R
eλ1t−µ|t|

∫ t

−∞

e−λ1seµ|s|e−µ|s|H1(φ, ψ)(s)ds

+
λ2

d1(λ2 − λ1)
sup
t∈R
eλ2t−µ|t|

∫
∞

t
e−λ2seµ|s|e−µ|s|H1(φ, ψ)(s)ds

≤
|λ1|

d1(λ2 − λ1)
|H1(φ, ψ)|µ sup

t∈R
eλ1t−µ|t|

∫ t

−∞

e−λ1s+µ|s|ds

+
λ2

d1(λ2 − λ1)
|H1(φ, ψ)|µ sup

t∈R
eλ2t−µ|t|

∫
∞

t
e−λ2s+µ|s|ds.

Therefore, for t > 0, we have

|(F1(φ, ψ))′|µ ≤
|λ1|

d1(λ2 − λ1)(−λ1 − µ)
|H1(φ, ψ)|µ +

λ2

d1(λ2 − λ1)(λ2 − µ)
|H1(φ, ψ)|µ

=
1

d1(λ2 − λ1)

[
λ1

λ1 + µ
+

λ2

λ2 − µ

]
|H1(φ, ψ)|µ.

Similarly, for t ≤ 0, we have

|(F1(φ, ψ))′|µ ≤
|λ1|

d1(λ2 − λ1)(−λ1 − µ)
|H1(φ, ψ)|µ

+
λ2

d1(λ2 − λ1)(λ2 − µ)

[∣∣∣∣ 1
λ2 − µ

−
1

λ2 + µ

∣∣∣∣+ 1
λ2 + µ

]
|H1(φ, ψ)|µ

=
1

d1(λ2 − λ1)

[
λ1

λ1 + µ
+

λ2

λ2 − µ

]
|H1(φ, ψ)|µ.

Since H : D→ C(R, R2) is continuous with respect to the norm | · |µ and the set Γ (Φ,Φ) is uniformly bounded, there exists
a constant M1 such that |(F1(φ, ψ))′|µ ≤ M1. Similarly, there exists a constant M2 such that |(F2(φ, ψ))′|µ ≤ M2. Hence F
is equicontinuous on Γ (Φ,Φ) and FΓ (Φ,Φ) is uniformly bounded.
Define F n(φ, ψ) by

F n(φ, ψ)(t) =

{F(φ, ψ)(t), t ∈ [−n, n];
F(φ, ψ)(n), t ∈ (n,∞);
F(φ, ψ)(−n), t ∈ (−∞,−n).

Then, for any n ≥ 1, F n is also equicontinuous and uniformly bounded. Ascoli–Arzela lemma implies that F n is compact. The
following estimate is obvious:

sup
t∈R
|F n(φ, ψ)(t)− F(φ, ψ)(t)|e−µ|t| = sup

t∈(−∞,−n)∪(n,∞)
|F n(φ, ψ)(t)− F(φ, ψ)(t)|e−µ|t|

≤ 2M0e−µn → 0 as n→∞.

whereM0 is a positive constant such that

|(φ, ψ)| ≤ M0 for any (φ, ψ) ∈ Γ (Φ,Φ),
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Thus, the sequence of compact operators {F n}∞0 converges to F in Γ (Φ,Φ) with respect to the norm | · |µ. By Proposition
2.1 in [29], we conclude that F is also compact. �

Lemma 8. Assume that φ,ψ , φ and ψ satisfy properties (P1)–(P3), then (2.1) has a monotone solution (φ, ψ) in Γ (Φ,Φ)
satisfying (2.6).

Proof. By Lemmas 5–7 and the obvious fact that the set Γ (Φ,Φ) is closed, bounded and convex in the space Bµ(R, R2),
Schauder’s fixed point is applicable to the map F , implying that F has a fixed point Φ = (φ, ψ) in Γ (Φ,Φ). That is, (2.1)
has a solution (φ, ψ) in Γ (Φ,Φ).
Also, we have

sup
t∈R

φ(t) ≤ φ− =: lim
t→−∞

φ(t) ≤ z0/c11, u∗ ≤ φ+ =: lim
t→∞

φ(t) ≤ inf
t∈R
φ(t) (2.14)

and

0 ≤ ψ− =: lim
t→−∞

ψ(t) ≤ inf
t∈R
ψ(t), sup

t∈R
ψ(t) ≤ ψ+ =: lim

t→∞
ψ(t) ≤ v∗. (2.15)

Then by a similar argument as in [15,27], we have

φ+f (c11φ+ + ψ+) = 0, ψ+g(φ+ + c22ψ+) = 0,
φ−f (c11φ− + ψ−) = 0, ψ−g(φ− + c22ψ−) = 0.

Therefore, it follows follows from (2.14), (2.15), and Property (P3) that

φ− = lim
t→−∞

φ(t) = z0/c11, φ+ = lim
t→∞

φ(t) = u∗,

ψ− = lim
t→−∞

ψ(t) = 0, ψ+ = lim
t→∞

ψ(t) = v∗.

Thus (φ, ψ) is a monotone solution of (2.1) satisfying (2.6) in Γ (Φ,Φ), giving a the profile of a co-invasion wave front
of (1.5). This completes the proof. �

3. The existence of wave fronts

From the results in Section 2, we see that if we can find a pair of desirable functions Φ ∈ Λ− and Φ ∈ Λ+ satisfying
(P1)–(P3), then we can claim that there exists a traveling wave front for (1.5) connecting pioneer-invasion-only equilibrium
(z0/c11, 0) and the co-invasion equilibrium (u∗, v∗). In this section, we construct such a pair of functions within certain
range of parameters, via the following lemmas.

Lemma 9. Suppose d2 ≥ d1/2 and c ≥ 2
√
d2g(z0/c11). Define

ρ1(t) = max
{
z0
c11
− eλ0t , u∗

}
, ρ2(t) = min{c11e

λ0t , v∗}, (3.1)

where

λ0 =:
c −

√
c2 − 4d2g(z0/c11)
2d2

. (3.2)

Then

(φ(t), ψ(t)) 1
= F(ρ1(t), ρ2(t)) ∈ Λ

+.

Proof. Let t11 and t12 be such that
z0
c11
− eλ0t11 = u∗, c11eλ0t12 = v∗.

Notice that c11u∗ + v∗ = z0, we solve that t11 = t12
1
=

1
λ0
ln v∗

c11
. Using d2 ≥ d1/2, we have

d1ρ ′′1(t)− cρ
′

1(t)+ ρ1(t)f (c11ρ1(t)+ ρ2(t)) = e
λ0t(−d1λ20 + cλ0)+

(
z0
c11
− eλ0t

)
f (z0)

= λ0eλ0t(−d1λ0 + c) ≥ 0, t < t0;

d1ρ ′′1(t)− cρ
′

1(t)+ ρ1(t)f (c11ρ1(t)+ ρ2(t)) = 0, t > t0,
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and

d2ρ ′′2(t)− cρ
′

2(t)+ ρ2(t)g (ρ1(t)+ c22ρ2(t)) = c11e
λ0t(d2λ20 − cλ0)+ c11e

λ0tg
(
z0
c11
− eλ0t + c11c22eλ0t

)
≤ c11eλ0t [d2λ20 − cλ0 + g(z0/c11)] = 0, t < t0,

and

d2ρ ′′2(t)− cρ
′

2(t)+ ρ2(t)g(ρ1(t)+ c22ρ2(t)) = v
∗g(u∗ + c22v∗) = v∗g(w2) = 0, t > t0.

By integration by parts (see [15,28,30]) and the fact that ρ ′2(t0+) < ρ ′2(t0−) (see e.g., [15,28,30]), we have

ψ(t) = F2(ρ1, ρ2)

≤
1

d2(λ4 − λ3)

[∫ t

−∞

eλ3(t−s)(−d2ρ ′′2(s)+ cρ
′

2(s)+ β2ρ2(s))

+

∫
∞

t
eλ4(t−s)(−d2ρ ′′2(s)+ cρ

′

2(s)+ β2ρ2(s))
]

= ρ2(t)+
1

d2(λ4 − λ3)
eλ(t−t0)[ρ ′2(t0+)− ρ

′

2(t0−)] (λ = λ3 or λ4)

≤ ρ2(t), t ∈ R.

By a similar argument, we have

φ(t) = F1(ρ1, ρ2)

≥
1

d1(λ2 − λ1)

[∫ t

−∞

eλ1(t−s)(−d1ρ ′′1(s)+ cρ
′

1(s)+ β1ρ1(s))

+

∫
∞

t
eλ2(t−s)(−d1ρ ′′1(s)+ cρ

′

1(s)+ β1ρ1(s))
]

= ρ1(t)+
1

d2(λ2 − λ1)
eλ(t−t0)[ρ ′1(t0+)− ρ

′

1(t0−)] (λ = λ1 or λ2)

≥ ρ1(t), t ∈ R.

Now, (φ, ψ) ∈ C2(R, R2) and Lemma 1 leads to

d1φ
′′
(t)− cφ

′
(t)+ φ(t)f (c11φ(t)+ ψ(t)) = d1φ

′′
(t)− cφ

′
(t)− β1φ(t)+ H1(φ(t), ψ(t))

≥ d1φ
′′
(t)− cφ

′
(t)− β1φ(t)+ H1(ρ1(t), ρ2(t)) = 0

and

d2ψ
′′
(t)− cψ

′
(t)+ φ(t)g(φ(t)+ c22ψ(t)) = d2ψ

′′
(t)− cψ

′
(t)− β2ψ(t)+ H2(φ, ψ)(t)

≤ d2ψ
′′
(t)− cψ

′
(t)− β2ψ(t)+ H2(ρ1, ρ2)(t) = 0.

Noticing that F(ρ1, ρ2) ∈ D ∩ C2(R, R2), we conclude that (φ, ψ) ∈ Λ+. This completes the proof. �

Lemma 10. If c ≥ 2
√
d2g(z0/c11), then

(φ(t), ψ(t)) 1
= F(ρ

1
(t), ρ

2
(t))

satisfies (φ, ψ) ∈ Λ− with

ρ
1
(t) = z0/c11, ρ

2
(t) = max{c11(1− Leεt)eλ0t , 0}, (3.3)

where λ0 is given by (3.2), L > 0 is sufficiently large and ε > 0 is sufficiently small.

Proof. Notice that

d2λ20 − cλ0 + g(z0/c11) = 0

has exactly two positive real zeros 0 ≤ λ0 < λ∗, so we choose ε > 0 sufficiently small such that

0 < ε < λ0, d2(λ0 + ε)2 − c(λ0 + ε)+ g(z0/c11) < 0. (3.4)
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Let L > 1 be sufficiently large so that

− L[d2(λ0 + ε)2 − c(λ0 + ε)+ g(z0/c11)] −mc11c22 ≥ 0, (3.5)

where

m = − min
s∈[z0/c11,z0/c11+c22v∗]

g ′(s) > 0.

By simple calculation, we know that

max
t∈R
{ρ
2
(t)} =

c11ε
λ0 + ε

(
λ0

L(λ0 + ε)

) λ0
ε

≤ v∗,

for L sufficiently large. Thus (ρ
1
, ρ
2
) ∈ D if L is sufficiently large.

Let t1 = 1
ε
ln 1L . Then, for t < t1,

(1− Leεt)g(z0/c11 + c11c22(1− Leεt)eλ0t) = (1− Leεt){[g(z0/c11 + c11c22(1− Leεt)eλ0t)− g(z0/c11)] + g(z0/c11)}
≥ (1− Leεt)[−mc11c22(1− Leεt)eλ0t + g(z0/c11)]
≥ g(z0/c11)− Lg(z0/c11)eεt −mc11c22eλ0t .

Hence, for t < t1,

d2ρ ′′2(t)− cρ
′

2
(t)+ ρ

2
(t)g(ρ

1
(t)+ c22ρ2(t)) = c11(d2λ

2
0 − cλ0)e

λ0t − Lc11[d2(λ0 + ε)2 − c(λ0 + ε)]e(λ0+ε)t

+ c11(1− Leεt)eλ0tg(z0/c11 + c11c22(1− Leεt)eλ0t)

≥ c11[d2λ20 − cλ0 + g(z0/c11)]e
λ0t − c11{L[d2(λ0 + ε)2 − c(λ0 + ε)+ g(z0/c11)] +mc11c22e(λ0−ε)t}e(λ0+ε)t

≥ −c11{L[d2(λ0 + ε)2 − c(λ0 + ε)+ g(z0/c11)] +mc11c22}e(λ0+ε)t ≥ 0.

When t ≥ t1 it is obvious that

d2ρ ′′2(t)− cρ
′

2
(t)+ ρ

2
(t)g(ρ

1
(t)+ c22ρ2(t)) = 0.

Noting that ρ ′
2
(t1+) > ρ ′

2
(t1−), we obtain

ψ(t) = F2(ρ1, ρ2)

≥
1

d2(λ4 − λ3)

[∫ t

−∞

eλ3(t−s)(−d2ρ ′′2(s)+ cρ
′

2
(s)+ β2ρ2(s))+

∫
∞

t
eλ4(t−s)(−d2ρ ′′2(s)+ cρ

′

2
(s)+ β2ρ2(s))

]
= ρ

2
(t)+

1
d2(λ4 − λ3)

eλ(t−t1)[ρ ′
2
(t1+)− ρ ′2(t1−)] (λ = λ3 or λ4)

≥ ρ
2
(t), t ∈ R.

By a similar argument, we obtain

φ(t) = F1(ρ1, ρ2)

≤
1

d1(λ2 − λ1)

[∫ t

−∞

eλ1(t−s)(−d1ρ ′′1(s)+ cρ
′

1
(s)+ β1ρ1(s))

+

∫
∞

t
eλ2(t−s)(−d1ρ ′′1(s)+ cρ

′

1
(s)+ β1ρ1(s))

]
= ρ

1
(t), t ∈ R.

Now, (φ, ψ) ∈ C2(R, R2) and Lemma 1 leads to

d1φ′′(t)− cφ′(t)+ φ(t)f (c11φ(t)+ ψ(t)) = d1φ′′(t)− cφ′(t)− β1φ(t)+ H1(φ(t), ψ(t))

≤ d1φ′′(t)− cφ′(t)− β1φ(t)+ H1(ρ1(t), ρ2(t)) = 0

and

d2ψ ′′(t)− cψ ′(t)+ φ(t)g(φ(t)+ c22ψ(t)) = d2ψ ′′(t)− cψ ′(t)− β2ψ(t)+ H2(φ, ψ)(t)

≥ d2ψ
′′
(t)− cψ

′
(t)− β2ψ(t)+ H2(ρ1, ρ2)(t) = 0.

Noting that F(ρ
1
, ρ
2
) ∈ D ∩ C2(R, R2), we conclude that (φ, ψ) ∈ Λ−. This completes the proof. �
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Lemma 11. If d2 ≥ d1/2 and

c ≥ 2
√
d2g(z0/c11) (3.6)

then functions (φ(t), ψ(t)) and (φ(t), ψ(t)) defined in Lemmas 9 and 10 satisfy (P1)–(P3).

Proof. Obviously ρ1(t) ≤ ρ1(t) and ρ2(t) ≥ ρ2(t). It follows from Lemma 3 that (φ, ψ) and (φ, ψ) satisfy the property
(P1).
In order to complete the proof of (P2) and (P3) for (φ, ψ) and (φ, ψ), we first prove (ρ1, ρ2) and (ρ1, ρ2) satisfy (P2)

and (P3). Noting that ρ1(t) ≤ z0/c11 = infs≤t ρ1(t) and the above argument, we have

sup
s≤t
ρ
2
(s) = ρ

2
(t) ≤ ρ2(t), t ≤ t2

1
=
1
ε
ln

λ0

L(λ0 + ε)
,

and

sup
s≤t
ρ
2
(s) = ρ

2
(t2) ≤ ρ2(t2) ≤ ρ2(t), t > t2,

which imply that

sup
s≤t
ρ
2
(s) ≤ ρ2(t), t ∈ R. (3.7)

Hence, (ρ1, ρ2) and (ρ1, ρ2) satisfy (P2). Noting that in the first quadrant (1.5) has exactly two non-trivial steady states

P0 = (z0/c11, 0), P1 = (u∗, v∗).

Thus, there are exactly two zeros of equations

uf (c11u+ v) = 0, vg(u+ c22v) = 0

for u ∈ [u∗, z0/c11] and v ∈ [0, v∗] and thus,

(uf (c11u+ v), vg(u+ c22v)) 6= (0, 0),
∀u ∈ [sup

t∈R
ρ1(t), z0/c11) ∪ (u

∗, inf
t∈R
ρ
1
(t)] and v ∈ (0, inf

t∈R
ρ2(t)] ∪ [sup

t∈R
ρ
2
(t), v∗).

Therefore, (ρ1, ρ2) and (ρ1, ρ2) satisfy (P1)–(P3) as well.
Finally, we will prove (φ, ψ) = (F1(ρ1, ρ2), F2(ρ1, ρ2)) and (φ, ψ) = (F1(ρ1, ρ2), F2(ρ1, ρ2)) also satisfy (P2) and (P3).

Denote

φ̂(t) 1
= inf
s≤t
ρ
1
(s) = z0/c11, ψ̂(t) 1

= sup
s≤t
ρ
2
(s).

Obviously, ψ̂(t) is nondecreasing in t ∈ R. Since (ρ1, ρ2) and (ρ1, ρ2) satisfy (P1), it follows from Lemmas 3 and 4 that

F1(φ̂(t), ψ̂(t)) is nonincreasing and F2(φ̂(t), ψ̂(t)) is nondecreasing in t ∈ R. In view of φ̂(t) ≥ ρ1(t) and ψ̂(t) ≤ ρ2(t), it
is easy to see from (3.7) that

φ(t) = F1(ρ1, ρ2)(t) ≤ F1(φ̂, ψ̂)(t) = infs≤t
F1(φ̂, ψ̂)(s) ≤ inf

s≤t
F1(ρ1, ρ2)(s) = infs≤t

φ(s),

sup
s≤t
ψ(s) = sup

s≤t
F2(ρ1, ρ2)(s) ≤ sups≤t

F2(φ̂, ψ̂)(s) = F2(φ̂, ψ̂)(t) ≤ F2(ρ1, ρ2)(t) = ψ(t),

implying that (φ, ψ) and (φ, ψ) also satisfy (P2).
On the other hand, from the proof of Lemmas 8 and 9, we have

φ(t) ≥ ρ1(t), ψ(t) ≤ ρ2(t), φ(t) ≤ ρ
1
(t), ψ(t) ≥ ρ

2
(t), t ∈ R, (3.8)

which, together with the fact (ρ1, ρ2) and (ρ1, ρ2) satisfy (P3), implies that (φ, ψ) and (φ, ψ) satisfy the property (P3). This
completes the proof. �

Proof of Theorem 1. Combining the results in Section 2 with Lemmas 9–11, we have proved part (i) of Theorem 1. Part (ii)
can be proved in a similar way to that in [25], by showing that c ≥ 2

√
d2g(z0/c11) is actually a necessary condition for the

wave speed c. Indeed, if we linearize the second equation in (2.1) at (z0/c11, 0), we obtain

d2ψ ′′(s)− cψ ′(s)+ ψg(z0/c11) = 0,
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which has the eigenvalues

µ1 =
c −

√
c2 − 4d2g(z0/c11)
2d2

, µ2 =
c +

√
c2 − 4d2g(z0/c11)
2d2

.

Thus, if c < 2
√
d2g(z0/c11), then µ1 and µ2 are complex, implying that solutions of (2.1) near (z0/c11, 0) oscillate about

(z0/c11, 0) as s → −∞. Hence, the ψ(s) component of solutions would take negative values. Therefore, biologically
meaningful traveling wave front can not exist in such a case. The proof of the theorem is completed. �

4. Conclusion and discussion

We have considered a reaction diffusion model for competing pioneer and climax species. Recent work [1] showed that
the model supports traveling wave fronts connecting two boundary equilibria (two competition-exclusion equilibria) in
certain range of parameters, while our results here have shown that in some other parameter ranges, the model allows
traveling wave fronts connecting the pioneer-invasion-only equilibrium to the co-invasion equilibrium. The existence of
such co-invasion waves may account for a ‘‘friendly competition’’, explaining the situation where the pioneer species first
invades spatially, followed by a climax species competingmildlywith the pioneer species, resulting in co-existence of both
species in the long term.
In addition to the conditions (1.3) and (1.4) determining the distribution of the equilibria, there are other two conditions

for the existence of co-invasion waves. Although we do not have a good explanation for the inequality d1 ≤ 2d2, the whole
condition set seemingly suggests that appropriate diffusion rates for the two species also play a role in determining the co-
invasion waves, and this may partially confirm the argument that spatial diffusion/dispersal is one of the important factors
that lead to biological diversity.
The nature of interaction of pioneer-climax species allows complicated equilibrium structure, as was shown in [2]. The

work [1] and our work here only considered two possible cases. Travelingwave fronts connecting other pair of equilibria are
also possible for some other parameter ranges, among which, the one connecting the trivial equilibrium (0, 0)with another
equilibrium would be of great interest since it corresponds to the concerns of co-extinction.
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