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a b s t r a c t

In this paper, we are concerned with existence/non-existence of traveling waves of
a diffusive SIR epidemic model with general incidence rate of the form of f(S)g(I)
and infinitely distributed latency but without demography. We show that the
existence of traveling waves only depends on the basic reproduction number of the
corresponding spatial-homogeneous system of delay differential equations, which is
determined by the recovery rate, the local properties of f and g and a minimal
wave speed c∗ that is affected by the distributed delay. The proof of existence of
traveling waves is by employing Schauder’s fixed point theorem, and the proof of
nonexistence is completed with the aid of the bilateral Laplace transform.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

When considering transmission and spread of some infectious diseases that have much short infection
duration, one may often neglects the demographic structure of the host population and just focus on
the transmission dynamics. A classic example is the following Kermack–McKendrick ordinary differential
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equation (ODE) model [1] ⎧⎪⎨⎪⎩
S′(t) = −βS(t)I(t),
I ′(t) = βS(t)I(t) − γI(t),
R′(t) = γI(t),

(1.1)

here S(t), I(t) and R(t) represent the sizes of the susceptible, infected and removed individuals at time t
espectively, β > 0 denotes the transmission coefficient, and γ > 0 is the recovery/remove rate.

When the spatial spread is concerned, one can incorporate spatial diffusion into (1.1), leading to the
ollowing diffusive version: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂S(x, t)
∂t

= d1
∂2S(x, t)
∂x2 − βS(x, t)I(x, t),

∂I(x, t)
∂t

= d2
∂2I(x, t)
∂x2 + βS(x, t)I(x, t) − γI(x, t),

∂R(x, t)
∂t

= d3
∂2R(x, t)
∂x2 + γI(x, t),

(1.2)

here S(x, t), I(x, t) and R(x, t) represent the populations of the susceptible, infected and removed
ndividuals at location x and time t, respectively. Here, d1, d2 and d3 are positive constants representing the
diffusion rates of the susceptible, infective and removed individuals, respectively. For more details, see [2,3]
and references cited therein.

In (1.1) and (1.2), mass action infection mechanism is adopted. Since the demographic structure is ignored,
the infection mechanism plays a crucial or even a decisive role in such models without demography, and
there have been some efforts of exploring various infection mechanisms. For example, Kennedy and Aris [4]
replaced the mass action term by an incidence term of the form f(S)I and conducted some linear analysis
for the special case with zero diffusion rate of susceptible individuals. Capasso and Serio [5] introduced a
saturated incidence rate βSI/(1 + kI) into epidemic models to prevent the unboundedness of the contact
rate. Liu et al. [6] proposed the incidence rate kI lS/(1 + αIh) (l, h > 0) which was also used in many
papers, where kI l measures the infection force of the disease and 1/(1 +αIh) measures the inhibition effect
rom the behavioral change of the susceptible individuals when their number increases or from the crowding
ffect of the infective individuals; see also [7]. The effect of nonlinear incidence rate of the general form
(S)g(I) on the dynamics of epidemiological models is also studied in [8]. More examples about nonlinear

ncidence rates can be found in [9] and the references therein; and it is known that a nonlinear incidence can
ave important impact on the disease dynamics, see, e.g. [6,7,10] and the references therein. In particular,
ecently Wang et al. [11] replaced the mass action in (1.2) by the standard incidence function βSI/(S + I)

and investigated the existence/non-existence of traveling waves. We point out that βSI/(S+I) is not in the
form of separated functions of S and I respectively. More recently, Shu et al. [12] further considered a more
general form ϕ(S, I,R) for the incidence function and explored the existence and non-existence of traveling
waves of the model system resulted from replacing the mass action in (1.2) by such a general form ϕ(S, I,R)
satisfying some conditions.

The aforementioned works are for SIR type dynamics of diseases that are transmitted within a single
host population. When considering transmission of SIR type vector-borne (e.g., mosquito-borne) diseases,
the number of variables will typically be doubled. However, following the work of Cooke [13], one can
actually reduce the number of variables in vector-borne disease models. The main idea is that, because
the new infection of mosquitoes is a result of biting infectious hosts, one may assume that the population
of infectious vectors is proportional to the populations of infectious host at some previous time due to
latency. This idea has been used by some other researchers, see, e.g. [14–18]. To demonstrate this idea, let
us denote the populations of susceptible and infectious hosts (e.g., humans) and vectors (e.g. mosquitoes)
by S(t), I(t), V (t) and V (t) respectively. Assume that it takes an infected vector τ time units to become
S I
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f

infectious. Since a vector population is usually quite large, it is assumed in [13] that VI(t) is proportional to
I(t− τ), that is, VI(t) = pI(t− τ) for some p > 0. If the host’s infection rate is of the form f(S)h(VI), then
the force of infection for host at time t is given by

f(S(t))h(VI(t)) = f(S(t))h(pI(t− τ)) =: f(S(t))g(I(t− τ)), (1.3)

where g(u) = h(pu). Considering the fact that the time it takes an infected vector to become infectious
varies from individual to individual, we introduce a function k(τ) to denote the probability that an infected
vector becomes infectious τ time units after infection. With this consideration of variance in latency between
individuals, we obtain the infection rate for the host at time t as

f(S(t))
∫ ∞

0
k(ξ)g(I(t− ξ))dξ = f(S(t))

∫ t

−∞
k(t− s)g(I(s))ds. (1.4)

Adding spatial variable x, this immediately leads to the following model system parallel to (1.2):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂S(x, t)
∂t

= d1
∂2S(x, t)
∂x2 − f(S(x, t))

∫ t

−∞
k(t− s)g(I(x, s))ds,

∂I(x, t)
∂t

= d2
∂2I(x, t)
∂x2 + f(S(x, t))

∫ t

−∞
k(t− s)g(I(x, s))ds− γI(x, t),

∂R(x, t)
∂t

= d3
∂2R(x, t)
∂x2 + γI(x, t).

(1.5)

We point out that Bai and Zhang [14] recently considered a spatial case of (1.5) in the sense that
(S) = βS and the kernel k(ξ) has support only on a bounded interval [0, r]. That is, they studied⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂S(x, t)
∂t

= d1
∂2S(x, t)
∂x2 − βS(x, t)

∫ t

t−r

k(t− s)g(I(x, s))ds,

∂I(x, t)
∂t

= d2
∂2I(x, t)
∂x2 + βS(x, t)

∫ t

t−r

k(t− s)g(I(x, s))ds− γI(x, t).
(1.6)

Allowing non-compact support for the kernel k(ξ) and allowing a more general f(S) will bring in some
challenges. In addition, as we give our assumptions on the function g in the next section and compare with
those in [14], we find that the conditions in [14] are strong in some aspects but are still not sufficient for one
of its key lemmas. See Remarks 2.1 and 2.2 in Section 2. Obviously, our model system (1.5) can include many
(if not all) diffusive SIR models without demography in previous works, and is more difficult to analyze.

For diffusive disease models without demography, typically there is a continuum of disease free equilibria
and hence, when considering traveling wave solutions for such model systems, one is naturally confined to,
after dropping the R equation since it is decoupled from the other two, those connecting two equilibria (S∗, 0)
and (S∞, 0) with S∞ < S∗. Here S∗ is related to the initial susceptible population and S∞ is related to the
population size of the susceptible class after the epidemics, which is often referred to as the final size (of the
susceptible population). For more details of such traveling waves and the various approaches in exploring
the existence of such traveling waves, see [2,3,11,12,19–24].

If there exists such a traveling wave solution, the wave speed accounts for how fast the disease spreads
geographically and S∞ reflects how severe the disease is. Non-existence of such traveling waves implies that
the disease cannot invade spatially. Thus, existence/non-existence of traveling wave solutions of the above
mentioned type for the model system (1.5) is of practical significance. Mathematically, (1.5) is a diffusive
system with predator–prey type interaction, time delay and spatial non-locality, and the research on its
existence/non-existence of traveling waves is challenging and is of theoretical importance.

The main goal of this paper is to discuss the existence/non-existence of traveling wave solutions of system

(1.5). Our methods in this paper are mainly based on those in [11] and several early studies [24–27]. To prove
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the existence theorem, we will employ the Schauder’s fixed point theorem for a partially quasi-monotone
apping, and the challenging and difficult task is to construct an appropriate convex set that is invariant
nder this mapping. In particular, we give some useful properties of a second-order linear differential operator
nd its inverse to provide a general scheme for verifying the compact of the mapping. The proof of the
onexistence theorem is based on an idea of applying bilateral Laplace transform, which was first introduced
y Carr and Chmaj [28], and further used in [11,14,24]. But our argument in the proof of nonexistence is
ifferent from those in the aforementioned works [14,24] and we deduce a contradiction in a new way. More

precisely, unlike proving the unboundedness of the left-hand of the characteristic equation Υ(c, λ) = 0, we
iscuss the analyticity of the bilateral Laplace transform of the populations of the infected individuals I at
ome finite point to derive a contradiction.

The rest of the paper is organized as follows. In Section 2, we give some simple assumptions about
he incidence functions and state the two main theorems on the existence and nonexistence of traveling
ave solution respectively. Some remarks are also given to compare our results with some previous ones. In
ection 3, some preliminary results are given. Similar to [11], notations of differential and integral operators
re introduced, and some useful properties of the integral operator are discussed more detailedly. In Section 4,
e construct a profile set in which, the task of looking for a traveling wave can be reduced to the existence
f fixed point of a mapping. To apply the Schauder’s fixed point theorem, we also prove the continuity
nd compactness of the mapping and the invariance of the profile set under this mapping. In Section 5, to
omplete the proof of the existence theorem, we further verify that the fixed point satisfies the boundary
onditions for the desired traveling wave solution. In Section 6, the nonexistence theorem is proven for the
wo sub-cases respectively if the existence conditions are violated. In particular, we accomplish it by a way
f contradiction different from the existing ones for the first sub-case.

. Main results

We are interested in positive traveling wave solutions of (1.5). Since R(x, t) does not appear in the
quations of ∂S

∂t and ∂I
∂t , we only need to study the following system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂S(x, t)
∂t

= d1
∂2S(x, t)
∂x2 − f(S(x, t))

∫ t

−∞
k(t− s)g(I(x, s))ds,

∂I(x, t)
∂t

= d2
∂2I(x, t)
∂x2 + f(S(x, t))

∫ t

−∞
k(t− s)g(I(x, s))ds− γI(x, t).

(2.1)

Letting ξ = x+ ct, where c is a positive constant corresponding to the wave speed, we will look for special
solutions of (2.1) in the form of (S(ξ), I(ξ)) where the profile (S(ξ), I(ξ)) satisfies the following associated
ystem of differential equations:

cS′(ξ) = d1S
′′(ξ) − f(S(ξ))

∫ ∞

0
k(s)g(I(ξ − cs))ds, (2.2a)

cI ′(ξ) = d2I
′′(ξ) + f(S(ξ))

∫ ∞

0
k(s)g(I(ξ − cs))ds− γI(ξ) (2.2b)

with the boundary conditions:

S(−∞) = S∗, S(+∞) = S∞ ∈ [0, S∗), I(±∞) = 0. (2.3)

Here S∗ > 0 is a constant reflecting the initial homogeneous population distribution for the susceptible class.
Throughout this paper, we make the following assumptions.

(A1) k(s) is a nonnegative and Lebesgue integrable function on [0,∞), and
∫∞

k(s)ds = 1,
∫∞

sk(s)ds < ∞.
0 0
4
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(A2) f, g are nonnegative and continuous functions on [0,∞) satisfying f(0) = 0, f(S∗) > 0, g(0) = 0. The
function g has a right-hand derivative at origin with g′

+(0) > 0, and g(u) ≤ g′
+(0)u for u ∈ [0, S∗].

Further assume that there exist positive constants L1 and L2 such that

0 ≤ f(u) − f(v)
u− v

≤ L1, (2.4)

0 ≤ g(u) − g(v)
u− v

≤ L2 (2.5)

hold for all u, v ∈ [0, S∗] with u ̸= v.
(A3) There exist δ0 > 0, θ > 1 and ω > 0 such that g(u) ≥ g′

+(0)u− ωuθ for u ∈ [0, δ0].

emark 2.1. The inequalities (2.4) and (2.5) are equivalent to the conditions that f and g are
ondecreasing and Lipschitz continuous on [0, S∗]. In this paper, we do not need to assume the monotonicity
nd Lipschitz continuity of f and g on [S∗,∞).

emark 2.2. The assumption (A3) is used to construct a lower solution (see Lemma 4.3). The condition
hat g′′

+(0) exists can guarantee that this assumption holds. Note that although (A3) is relatively weak, it
s not implied by (A2). Indeed, we can find a function g which satisfies (A2), but not (A3). For example,

g(u) =

⎧⎨⎩0, u = 0,
u+ u

ln u , u ∈ (0, e−2),
1
4 (u+ e−2), u ∈ [e−2,∞).

t is worth noting that the example g above satisfies g′
+(0) = 1 and the conditions (H1) and (H2) in [14].

owever, since this function does not satisfy the assumption (A3), neither can it satisfy the inequality
− g(I) ≤ I2 for all 0 < I < δ0 which was used in the proof of Lemma 2.4 in [14]. This indicates that

he proof of Lemma 2.4 in [14] is incorrect.

We are now in a position to state main results on the existence of a traveling wave solution to (2.1).

heorem 2.1. Assume that (A1)–(A3) hold. If R0 := f(S∗)g′
+(0)/γ > 1, there exists a c∗ > 0 such that

or each c > c∗ system (2.1) admits a non-trivial and positive traveling wave solution (S, I) satisfying the
oundary conditions (2.3). Furthermore, S is nonincreasing on R, 0 < I(ξ) ≤ S∗ − S∞ for all ξ ∈ R, and

γ

∫ ∞

−∞
I(ξ)dξ =

∫ ∞

−∞
f(S(ξ))

(∫ ∞

0
k(s)g(I(ξ − cs))ds

)
dξ = c(S∗ − S∞). (2.6)

emark 2.3. Suppose that a function g satisfies the associated conditions in the assumption (A2). Let

g̃(u) =
{
g(u), u ∈ [0, S∗],
g(S∗), u ∈ (S∗,∞).

t is easily seen that, if for the function g̃ above there exists a traveling wave solution of system (2.1) satisfying
he boundary conditions (2.3) and 0 < I(ξ) ≤ S∗ − S∞ ≤ S∗ for all ξ ∈ R, this traveling wave solution is
lso the one of system (2.1) with the function g. Therefore, we only need to prove Theorem 2.1 under the
ollowing additional condition:

g(u) ≡ g(S∗) for all u > S∗.

ogether with the assumption (A2), this implies that g is a bounded function and g(u) ≤ g′
+(0)u for all

≥ 0. We can also easily verify that g is nondecreasing and Lipschitz continuous on [0,∞), that is, (2.5)
olds for all u, v ∈ [0,∞) with u ̸= v.
5



H. Hu and X. Zou Nonlinear Analysis: Real World Applications 58 (2021) 103224

p
m
f
c
i
o
W
t

t

T
n

3

M

f

T

W

Remark 2.4. In order to prove the existence of traveling wave, the key step of a method via Schauder fixed
oint theorem is to construct a convex set bounded by some upper and lower solutions. Different from the
onotone systems in which comparison principle guarantees the upper and lower solutions are independent,

or non-monotone systems, the upper and lower solutions are coupled [12]. Moreover, it is more difficult to
onstruct the upper and lower solutions for nonmonotone systems with time delay [24–27]. In this paper, the
ncidence infection function we consider is separable. A non-separable infection function incorporated into
ur model with time delay will make the construction of upper and lower solutions even more challenging.
e also need to find some constraints on the non-separable infection function to ensure the invariance of

he convex set under the mapping. We leave them as our future work.

On the other hand, we can state the following theorem on the nonexistence of a traveling wave solution
o (2.1), which implies that c∗ is the minimal wave speed.

heorem 2.2. Assume that (A1)–(A3) hold. If R0 > 1 and c < c∗, or R0 < 1, there is no nontrivial and
onnegative traveling wave solution (S, I) to system (2.1), satisfying the boundary conditions (2.3).

. Preliminaries

Given µ > 0, we first introduce the function spaces

Lµ =
{
ϕ : R → R

⏐⏐⏐ e−µ|·|ϕ(·) ∈ L∞(R,R)
}
,

Bµ =
{
ϕ ∈ C(R,R)

⏐⏐⏐⏐⏐ sup
ξ∈R

e−µ|ξ||ϕ(ξ)| < ∞

}
,

Bµ × Bµ = {Φ = (ϕ1, ϕ2) |ϕi ∈ Bµ, i = 1, 2} .

oreover, Bµ is equipped with the exponential decay norm defined by

|ϕ|µ = sup
ξ∈R

e−µ|ξ||ϕ(ξ)|,

and Bµ × Bµ is equipped with the norm defined by

|Φ|µ = max{|ϕ1|µ, |ϕ2|µ}.

It is easy to show that (Bµ, | · |µ) and (Bµ × Bµ, | · |µ) are Banach spaces.
Next, similar to [11], we will introduce the second-order linear differential operator ∆i and its inverse ∆−1

i

or i = 1, 2. Note that for any positive number αi(i = 1, 2), the equation

−diλ
2 + cλ+ αi = 0

has two real roots
− λ1i = c−

√
c2 + 4diαi

2di
< 0, λ2i = c+

√
c2 + 4diαi

2di
> 0. (3.1)

hen the second-order linear differential operator ∆i is defined as

∆ih := −dih
′′ + ch′ + αih. (3.2)

e can also define the corresponding integral operator ∆−1
i as

(∆−1
i h)(ξ) := 1

[∫ ξ

e−λ1i(ξ−x)h(x)dx+
∫ ∞

eλ2i(ξ−x)h(x)dx
]
. (3.3)
di(λ2i + λ1i) −∞ ξ

6
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The fact that λ2i > λ1i for i = 1, 2 implies that the integral ∆−1
i h is well-defined for any h ∈ Lλ1i

. Let µ0
and µ be two positive numbers such that

µ0 < µ < min{λ11, λ12}. (3.4)

ote that
Bµ0 ⊂ Bµ ⊂ Lλ1i

.

ence, the operator ∆−1
i can be restricted in the Banach space Bµ0 or Bµ, and we have the following Lemma

bout the properties of ∆−1
i .

emma 3.1. For any µ0 and µ satisfying 0 < µ0 < µ < min{λ11, λ12}, we have

i) ∆−1
i : Bµ → Bµ is a bounded linear operator;

ii) ∆−1
i : Bµ0 → Bµ is a compact operator.

roof. Assume that h ∈ Bµ, then

|(∆−1
i h)(ξ)|e−µ|ξ| ≤ |h|µM(ξ)

or all ξ ∈ R, where

M(ξ) := e−µ|ξ|

di(λ2i + λ1i)

[∫ ξ

−∞
e−λ1i(ξ−x)+µ|x|dx+

∫ ∞

ξ

eλ2i(ξ−x)+µ|x|dx
]
.

M(ξ) is continuous and differentiable with respect to ξ on R, and by L’Hôpital’s rule we can show that

M(−∞) = 1
λ1i − µ

+ 1
λ2i + µ

, M(∞) = 1
λ1i + µ

+ 1
λ2i − µ

.

Hence, there exists a constant M1 > 0 such |M(ξ)| < M1 for all ξ ∈ R, and

|(∆−1
i h)(ξ)|e−µ|ξ| ≤ M1|h|µ. (3.5)

This inequality implies that ∆−1
i h ∈ Bµ for all h ∈ Bµ, and

|∆−1
i h|µ ≤ M1|h|µ.

Therefore, ∆−1
i : Bµ → Bµ is a bounded linear operator.

To prove that ∆−1
i : Bµ0 → Bµ is compact, we shall employ Arzela–Ascoli theorem and a standard

diagonal process. First, similar to the proof above, we have ∆−1
i : Bµ0 → Bµ0 is also bounded, that is,

there exists a constant M0 > 0 such that

|∆−1
i h|µ0

≤ M0|h|µ0
.

Assume that {hn} is a bounded sequence in Bµ0 , and denote un = ∆−1
i hn. Thus, {un} is a bounded sequence

in Bµ0 . Note that |un(ξ)| ≤ eµ0|ξ||un|µ0
for all ξ ∈ R. Hence, for each fixed k ∈ N, {un} can be viewed as a

bounded sequence in C([−k, k],R) with respect to the maximum norm, i.e., {un(ξ)} is uniformly bounded
n [−k, k]. Since

⏐⏐(∆−1
i h)′(ξ)

⏐⏐ = 1
di(λ2i + λ1i)

⏐⏐⏐⏐⏐−λ1i

∫ ξ

−∞
e−λ1i(ξ−x)h(x)dx+ λ2i

∫ ∞

ξ

eλ2i(ξ−x)h(x)dx

⏐⏐⏐⏐⏐
≤ λ2i|h|

⏐⏐⏐[∆−1(eµ0|·|)](ξ)
⏐⏐⏐
µ0 i

7
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⏐

{
p
r
t

f

≤ λ2i|h|µ0
M0

⏐⏐eµ0|·|
⏐⏐⏐
µ0

eµ0|ξ|

= λ2i|h|µ0
M0eµ0|ξ|,

un(ξ)} is also equi-continuous on [−k, k]. According to the Arzela–Ascoli theorem and the standard diagonal
rocess, we can extract a subsequence {hnk

} such that unk
= ∆−1

i hnk
converges in any C([−k, k],R) with

espect to the maximum norm. We shall also prove that the subsequence {unk
} converges in Bµ with respect

o the norm | · |µ.
Given any ϵ > 0, there exists an integer N > 0 independent to unk

such that

e−µ|ξ||unk
(ξ) − unm(ξ)| ≤ e−µ|ξ|(|unk

(ξ)| + |unm(ξ)|)
≤ e−(µ−µ0)|ξ|(|unk

|
µ0

+ |unm |µ0
)

< ϵ

or any |ξ| > N and k,m ∈ N. Since {unk
} converges uniformly on the interval IN = [−N,N ], we can find

K ∈ N such that
e−µ|ξ||unk

(ξ) − unm(ξ)| ≤ |unk
(ξ) − unm(ξ)| < ϵ

for any ξ ∈ [−N,N ] and k,m > K. The above two inequalities imply that {unk
} is a Cauchy sequence

in Bµ. Since Bµ is a Banach space, {unk
} converges in Bµ. This proves the compactness of the operator

∆−1
i : Bµ0 → Bµ. The proof of the lemma is complete. □

From Lemma 3.1 in [11], we can obtain that

∆i(∆−1
i h) = h (3.6)

for any h ∈ Bµ (in fact, it also holds for any h ∈ Lλ1i
), and

∆−1
i (∆ih) = h (3.7)

for any h ∈ Bµ such that h′, h′′ ∈ Bµ. Thus, ∆−1
i is actually the inverse operator of ∆i in some

sense. Furthermore, according to the theory of impulsive systems [29], we have the following more general
conclusion, which is an extension to Lemma 2.1 in [30] and is useful for the proof of invariance of the cone
in the sequel.

Lemma 3.2. Let i = 1 or 2. Assume that h ∈ Lλ1i
satisfies the following conditions: (i) h′, h′′ ∈ Lλ1i

;(ii)
h′′ is continuous on R\{ξj}, where {ξj} is a finite increasing sequence; (iii) h(ξj+), h(ξj−), h′(ξj+) and
h′(ξj−) exist. Then ∆−1

i (∆ih) ∈ C(R,R) and

[∆−1
i (∆ih)](ξ) = h(ξ) + 1

λ2i + λ1i

⎛⎝∑
ξj>ξ

(bj + λ1iaj)eλ2i(ξ−ξj) +
∑
ξj<ξ

(bj − λ2iaj)e−λ1i(ξ−ξj)

⎞⎠ (3.8)

for any ξ /∈ {ξj}, where aj = h(ξj+) − h(ξj−) and bj = h′(ξj+) − h′(ξj−). In particular, further assume
h ∈ C(R,R), (3.8) can be reduced to

[∆−1
i (∆ih)](ξ) = h(ξ) + 1

λ2i + λ1i

⎛⎝∑
ξj≥ξ

bjeλ2i(ξ−ξj) +
∑
ξj<ξ

bje−λ1i(ξ−ξj)

⎞⎠ (3.9)

for all ξ ∈ R.
8
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Proof. The assumptions of h imply that ∆ih = −dih
′′ + ch′ +αih ∈ Lλ1i

. Thus, ∆−1
i (∆ih) is well defined,

nd the function [∆−1
i (∆i)h](ξ) is continuous with respect to ξ on R. By Theorem 87 in [29], (3.8) holds for

ny ξ /∈ {ξj}. Furthermore, the continuity of h is equivalent to aj = 0 for all j. Thus, with this additional
assumption, the continuity of [∆−1

i (∆ih)] implies that (3.9) holds for all ξ ∈ R. □

Finally, note that the characteristic equation corresponding to the linearization of Eq. (2.2b) at (S∗, 0) is

Υ(c, λ) := d2λ
2 − cλ+ f(S∗)g′

+(0)
∫ ∞

0
k(s)e−λcsds− γ = 0. (3.10)

Since

Υ(c, 0) = f(S∗)g′
+(0) − γ,

lim
λ→∞

Υ(c, λ) = ∞ for all c ≥ 0, lim
c→∞

Υ(c, λ) = −∞ for all λ > 0,

∂Υ(c, λ)
∂c

= −λ[1 + f(S∗)g′
+(0)

∫ ∞

0
sk(s)e−λcsds] < 0,

∂2Υ(c, λ)
∂λ2 = 2d2 + c2f(S∗)g′

+(0)
∫ ∞

0
s2k(s)e−λcsds > 0,

hen it is easy to obtain the following lemma, which is similar to Lemma 2.5 in [31] and Lemma 2.1 in [32]
nd Lemma 2.2 in [33].

emma 3.3. Assume that R0 = f(S∗)g′
+(0)/γ > 1. Then there exists a positive constant

c∗ := sup {c > 0 |Υ(c, λ) > 0 for all λ > 0} ,

nd the following statements hold.

i) If c = c∗, then Υ(c, λ) = 0 has a unique positive root λ∗.

ii) If c > c∗, then Υ(c, λ) = 0 has two distinct positive roots λ1 < λ2, and

Υ(c, λ)
{
< 0, λ ∈ (λ1, λ2),
> 0, λ ∈ [0, λ1) ∪ (λ2,∞).

In what follows, we always suppose R0 > 1 and fix c > c∗ except for Section 6.

4. Construction of an invariant cone

In order to construct a profile set, we firstly state three lemmas.

Lemma 4.1. The function I+(ξ) = eλ1ξ satisfies the following differential inequality

cI ′
+(ξ) ≥ d2I

′′
+(ξ) + f(S∗)

∫ ∞

0
k(s)g(I+(ξ − cs))ds− γI+(ξ). (4.1)

Proof. By the characteristic equation (3.10), it is easy to verify that

cI ′
+(ξ) = d2I

′′
+(ξ) + f(S∗)g′

+(0)
∫ ∞

0
k(s)I+(ξ − cs)ds− γI+(ξ).

Noting that g(u) ≤ g′
+(0)u for all u ≥ 0 (see Remark 2.3), we obtain that g(I+(ξ − cs)) ≤ g′

+(0)I+(ξ − cs)
always holds. Therefore, (4.1) is true and the proof is completed □
9
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Lemma 4.2. There exist β ∈ (0, λ1) and ϱ ≥ S∗ such that the function S−(ξ) = max{S∗ −ϱeβξ, 0} satisfies

cS′
−(ξ) ≤ d1S

′′
−(ξ) − f(S−(ξ))

∫ ∞

0
k(s)g(I+(ξ − cs))ds (4.2)

for any ξ ̸= ζ1, where ζ1 := 1
β ln S∗

ϱ .

roof. We first choose a positive number β = 1
2 min{λ1,

c
d1

}, then cβ − d1β
2 > 0. Let

ϱ := max
{
S∗,

f(S∗)g′
+(0)

∫∞
0 k(s)e−λ1csds

cβ − d1β2

}
,

then ζ1 = 1
β ln S∗

ϱ ≤ 0 and

−(cβ − d1β
2)ϱ+ f(S∗)g′

+(0)
∫ ∞

0
k(s)e−λ1csds ≤ 0.

If ξ > ζ1, then S−(ξ) = 0. Clearly, (4.2) holds for ξ > ζ1.
If ξ < ζ1, then S−(ξ) = S∗ − ϱeβξ. Recalling the choice of β and ϱ, and noting that g(u) ≤ g′

+(0)u for all
u ≥ 0 (see Remark 2.3), we have

cS′
−(ξ) − d1S

′′
−(ξ) + f(S−(ξ))

∫ ∞

0
k(s)g(I+(ξ − cs))ds

= −(cβ − d1β
2)ϱeβξ + f(S∗ − ϱeβξ)

∫ ∞

0
k(s)g(eλ1ξ−λ1cs)ds

≤ −(cβ − d1β
2)ϱeβξ + f(S∗)g′

+(0)eλ1ξ

∫ ∞

0
k(s)e−λ1csds

≤
[
−(cβ − d1β

2)ϱ+ f(S∗)g′
+(0)

∫ ∞

0
k(s)e−λ1csds

]
eβξ

≤ 0.

Hence, (4.2) also holds for ξ < ζ1. This completes the proof. □

Lemma 4.3. Let η = min{β, (θ − 1)λ1,
1
2 (λ2 − λ1)}. Then there exists M ≥ 1 such that I−(ξ) =

max{eλ1ξ(1 −Meηξ), 0} satisfies

cI ′
−(ξ) ≤ d2I

′′
−(ξ) + f(S−(ξ))

∫ ∞

0
k(s)g(I−(ξ − cs))ds− γI−(ξ) (4.3)

for any ξ ̸= ζ2, where ζ2 := 1
η ln 1

M .

Proof. Since λ1 < η + λ1 < λ2, by Lemma 3.3(ii) we have Υ(c, λ1 + η) < 0. Denote

D := 1
−Υ(c, λ1 + η)

(
L1g

′
+(0)ϱ

∫ ∞

0
k(s)e−λ1csds+ ωf(S∗)

∫ ∞

0
k(s)e−θλ1csds

)
, (4.4)

hich is a positive constant. In fact, this expression is deduced later.
Let

M := max{e−ζ1η, δ
− η

λ1
0 , D}, (4.5)

here ζ1 is in Lemma 4.2, then we have

ζ2 = 1 ln 1 ≤ ζ1 ≤ 0, ζ2 ≤ 1 ln δ0.

η M λ1

10
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(

If ξ > ζ2, then I−(ξ) = 0. Noting that

f(S−(ξ))
∫ ∞

0
k(s)g(I−(ξ − cs))ds ≥ 0,

4.3) holds for ξ > ζ2.
If ξ < ζ2, then I−(ξ) = eλ1ξ(1 − Meηξ), S−(ξ) = S∗ − ϱeβξ. Thus, I−(ξ) ≤ eλ1ξ ≤ eλ1ζ2 ≤ δ0. By the

assumption (A3), we can obtain that g(I−(ξ − cs)) ≥ g′
+(0)I−(ξ − cs) − ωIθ

−(ξ − cs) for s ≥ 0. Therefore,

d2I
′′
−(ξ) − cI ′

−(ξ) + f(S−(ξ))
∫ ∞

0
k(s)g(I−(ξ − cs))ds− γI−(ξ)

≥ d2I
′′
−(ξ) − cI ′

−(ξ) + f(S−(ξ))
∫ ∞

0
k(s)

[
g′

+(0)I−(ξ − cs) − ωIθ
−(ξ − cs)

]
ds− γI−(ξ)

≥ d2
[
λ2

1 − (λ1 + η)2Meηξ
]

eλ1ξ − c
[
λ1 − (λ1 + η)Meηξ

]
eλ1ξ − γeλ1ξ(1 −Meηξ)

+g′
+(0)f(S−(ξ))

∫ ∞

0
k(s)eλ1(ξ−cs)

[
1 −Meη(ξ−cs)

]
ds− ωf(S−(ξ))

∫ ∞

0
k(s)eλ1θ(ξ−cs)ds

≥ −Υ(c, λ1 + η)Me(λ1+η)ξ − g′
+(0)

[
f(S∗) − f(S∗ − ϱeβξ)

] ∫ ∞

0
k(s)eλ1(ξ−cs)ds

+Mg′
+(0)

[
f(S∗) − f(S∗ − ϱeβξ)

] ∫ ∞

0
k(s)e(λ1+η)(ξ−cs)ds− ωf(S∗ − ϱeβξ)

∫ ∞

0
k(s)eλ1θ(ξ−cs)ds

≥
[
−Υ(c, λ1 + η)Meηξ − L1g

′
+(0)ϱeβξ

∫ ∞

0
k(s)e−λ1csds− ωf(S∗)e(θ−1)λ1ξ

∫ ∞

0
k(s)e−θλ1csds

]
eλ1ξ

≥
[
−Υ(c, λ1 + η)M − L1g

′
+(0)ϱ

∫ ∞

0
k(s)e−λ1csds− ωf(S∗)

∫ ∞

0
k(s)e−θλ1csds

]
e(λ1+η)ξ.

Here, in the last step we have used the fact that ξ < ζ2 ≤ 0, η ≤ β and η ≤ (θ − 1)λ1. It follows from (4.4)
and (4.5) that (4.3) holds for ξ < ζ2. This completes the proof of the lemma. □

Setting
α1 := max{d1λ

2
1 + cλ1 + 1, L1g(S∗)}, α2 := max{d2λ

2
1 + cλ1 + 1, γ},

it follows from (3.1) that the inequality

λ1 < min{λ11, λ12}

holds. Then we can choose µ0, µ so that

λ1 < µ0 < µ < min{λ11, λ12}.

Let S+(ξ) ≡ S∗. Using these four functions S+, S−, I+ and I− to specify the boundary of a profile set, we
can define this set as

Γ := {(S, I) ∈ Bµ × Bµ : S− ≤ S ≤ S+, I− ≤ I ≤ I+}. (4.6)

Clearly, Γ is a nonempty, bounded, closed and convex set in Bµ × Bµ. We will look for traveling wave
solutions of system (2.1) in Γ , that is, (S, I) ∈ Γ satisfying system (2.2) with the boundary conditions (2.3).

We are now ready to define H1(S, I), H2(S, I) by

H1(S, I)(ξ) := α1S(ξ) − f(S(ξ))
∫ ∞

0
k(s)g(I(ξ − cs))ds,

H2(S, I)(ξ) := α2I(ξ) + f(S(ξ))
∫ ∞

0
k(s)g(I(ξ − cs))ds− γI(ξ)

for any (S, I) ∈ Γ . We give the following lemma about the properties of the operators H1 and H2.
11
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Lemma 4.4. The following statements hold.
i) Hi(Γ ) is a bounded set in Bµ0 for i = 1, 2;
ii) Hi : Γ → Bµ is a continuous mapping for i = 1, 2.

roof. Due to the monotonicity of f and the boundedness of g (see Remark 2.3), for any (S, I) ∈ Γ we
ave

|H1(S, I)(ξ)| ≤ α1S(ξ) + f(S(ξ))
∫ ∞

0
k(s)g(I(ξ − cs))ds

≤ α1S∗ + f(S∗)
∫ ∞

0
k(s)g(S∗)ds

≤ α1S∗ + f(S∗)g(S∗),

|H2(S, I)(ξ)| ≤ (α2 − γ)I(ξ) + f(S(ξ))
∫ ∞

0
k(s)g(I(ξ − cs))ds

≤ (α2 − γ)I+(ξ) + f(S∗)
∫ ∞

0
k(s)g(S∗)ds

≤ (α2 − γ)eλ1ξ + f(S∗)g(S∗).

ince λ1 < µ0, |H1(S, I)|µ0
≤ α1S∗ + f(S∗)g(S∗) and |H2(S, I)|µ0

≤ α2 − γ + f(S∗)g(S∗). Hence, the sets
1(Γ ) and H2(Γ ) are bounded in Bµ0 .
Recalling that Bµ0 ⊂ Bµ, the operator H1 can also be viewed as a mapping from Γ to Bµ. Given ϵ > 0,

here exists A > 0 such that ∫ ∞

A

k(s)ds < ϵ.

or any (S1, I1), (S2, I2) ∈ Γ , we have

|H1(S1, I1)(ξ) −H1(S2, I2)(ξ)|e−µ|ξ|

≤ α1|S1(ξ) − S2(ξ)|e−µ|ξ| + |f(S1(ξ)) − f(S2(ξ))|e−µ|ξ|
∫ ∞

0
k(s)g(I2(ξ − cs))ds

+f(S1(ξ))e−µ|ξ|
∫ ∞

0
k(s)|g(I1(ξ − cs)) − g(I2(ξ − cs))|ds

≤
(
α1 + L1

∫ ∞

0
k(s)g(S∗)ds

)
|S1(ξ) − S2(ξ)|e−µ|ξ|

+f(S∗)e−µ|ξ|
∫ ∞

0
k(s)|g(I1(ξ − cs)) − g(I2(ξ − cs))|ds

≤ [α1 + L1g(S∗)]|S1 − S2|µ + f(S∗)e−µ|ξ|
∫ A

0
k(s)|g(I1(ξ − cs)) − g(I2(ξ − cs))|ds

+f(S∗)e−µ|ξ|
∫ ∞

A

k(s)|g(I1(ξ − cs)) − g(I2(ξ − cs))|ds

≤ [α1 + L1g(S∗)]|S1 − S2|µ + L2f(S∗)
∫ A

0
k(s)|I1(ξ − cs) − I2(ξ − cs)|e−µ|ξ−cs|eµ(|ξ−cs|−|ξ|)ds

+f(S∗)e−µ|ξ|
∫ ∞

A

k(s)(|g(I1(ξ − cs))| + |g(I2(ξ − cs))|)ds

≤ [α1 + L1g(S∗)]|S1 − S2|µ + L2f(S∗)|I1 − I2|µ
∫ A

0
k(s)eµcsds+ 2f(S∗)g(S∗)

∫ ∞

A

k(s)ds.

Here in the last two steps we have used the Lipschitz continuity of g and the boundedness of g on [0,∞)
respectively; see Remark 2.3. Let

δ := min
{
ϵ,

ϵ∫ A µcs

}
,

0 k(s)e ds
12
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then for any (S1, I1), (S2, I2) ∈ Γ satisfying |S1 − S2|µ < δ and |I1 − I2|µ < δ, we have

|H1(S1, I1) −H1(S2, I2)|µ

≤ [α1 + L1g(S∗)]δ + L2f(S∗)δ
∫ A

0
k(s)eµcsds+ 2f(S∗)g(S∗)ϵ

≤ C0ϵ,

here C0 = α1 + L1g(S∗) + L2f(S∗) + 2f(S∗)g(S∗) is a positive constant. This implies that the operator
1 : Γ → Bµ is continuous. Similarly, we can prove that the operator H2 : Γ → Bµ is also continuous. This

ompletes the proof.

Next, we define an operator F := (F1(S, I), F2(S, I)) by

Fi(S, I) := ∆−1
i Hi(S, I), i = 1, 2. (4.7)

y Lemmas 3.1 and 4.4, the operator F is also well defined on Γ and the following conclusion holds.

emma 4.5. F = (F1, F2) is a continuous and compact mapping from Γ to Bµ × Bµ.

roof. It suffices to prove that Fi : Γ → Bµ is continuous and compact for i = 1, 2. Firstly, Fi = ∆−1
i Hi

an be viewed as the composite of mappings Hi : Γ → Bµ and ∆−1
i : Bµ → Bµ. Then, Lemmas 3.1(i) and

4.4(ii) imply that Fi : Γ → Bµ is continuous. Secondly, Fi = ∆−1
i Hi can also be viewed as the composite of

mappings Hi : Γ → Bµ0 and ∆−1
i : Bµ0 → Bµ. Therefore, it follows from Lemmas 3.1(ii) and 4.4(i) that

Fi : Γ → Bµ is compact. This completes the proof. □

For (S, I) ∈ Γ , we can rewrite (2.2) as {
∆1S = H1(S, I),
∆2I = H2(S, I). (4.8)

Thus, from (3.6) we can obtain that if the mapping F has a fixed point in Γ , i.e., there exists (S, I) ∈ Γ

satisfying {
S = F1(S, I),
I = F2(S, I), (4.9)

then it must be a solution of system (4.8) or (2.2). If this solution further satisfies the boundary conditions
(2.3), then it gives a traveling wave solution of system (2.1), which is our search target.

In order to employ the Schauder’s fixed point theorem to prove the existence of a fixed point of the
mapping F in Γ , we also need to verify the cone invariance of Γ under F .

Lemma 4.6. F = (F1, F2) maps Γ into Γ .

Proof. By Lemma 4.5, F (Γ ) ⊂ Bµ × Bµ. Therefore, we only need to verify

S− ≤ F1(S, I) ≤ S+ ≡ S∗,

I− ≤ F2(S, I) ≤ I+
for all (S, I) ∈ Γ .
13
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Due to the assumptions (A1)–(A2), the boundedness of g (see Remark 2.3), and α1 ≥ L1g(S∗), we have

H1(S, I)(ξ) −H1(S−, I+)(ξ)

≥ α1[S(ξ) − S−(ξ)] − [f(S(ξ)) − f(S−(ξ))]
∫ ∞

0
k(s)g(I(ξ − cs))ds

≥ α1[S(ξ) − S−(ξ)] − g(S∗)[f(S(ξ)) − f(S−(ξ))]
≥ [α1 − L1g(S∗)][S(ξ) − S−(ξ)]
≥ 0.

Thus, F1(S, I) ≥ F1(S−, I+). It follows from (4.2) in Lemma 4.2 that

F1(S−, I+) = ∆−1
1 H1(S−, I+) ≥ ∆−1

1 (∆1S−).

Noting that S− is a continuous function on R satisfying all of the assumptions in Lemma 3.2, S′
−(ζ1−) < 0

and S′
−(ζ1+) = 0, in view of (3.9) we obtain that ∆−1

1 (∆1S−) ≥ S−. Thus, F1(S, I) ≥ S−. Note that
H1(S, I) ≤ α1S ≤ α1S+ = ∆1S+. Since S+ is a constant function, it follows from (3.7) that

F1(S, I) = ∆−1
1 H1(S, I) ≤ ∆−1

1 (∆1S+) = S+.

So far, we have proven that
S− ≤ F1(S, I) ≤ S+.

Since α2 ≥ γ, the monotonicity of f and g implies that the operator H2(S, I) is monotone with respect
to variables S and I. Thus, we have

F2(S−, I−) ≤ F2(S, I) ≤ F2(S+, I+).

It follows from (4.3) in Lemma 4.3 that

F2(S−, I−) = ∆−1
2 H2(S−, I−) ≥ ∆−1

2 (∆2I−).

Note that I− is continuous on R satisfying all of the assumptions in Lemma 3.2, I ′
−(ζ2−) < 0 and

I ′
−(ζ2+) = 0. By (3.9) we obtain that ∆−1

2 (∆2I−) > I−. Hence, F2(S−, I−) > I−. Since λ1 < µ, we have
I+, I

′
+, I

′′
+ ∈ Bµ. It follows from (4.1) in Lemma 4.1 and (3.7) that

F2(S+, I+) = ∆−1
2 H2(S+, I+) ≤ ∆−1

2 (∆2I+) = I+.

Hence, we have also shown that
I− ≤ F2(S, I) ≤ I+.

This completes the proof of the lemma. □

5. Proof of the existence of traveling wave

By Lemmas 4.5–4.6, we know that F is a continuous and compact mapping from the bounded closed
convex set Γ of Bµ into itself. It follows from the Schauder fixed point theorem that the mapping F has a
fixed point (S, I) ∈ Γ , that is, there exists a point (S, I) ∈ Γ such that (4.9) holds. Consequently, we obtain
that this point (S, I) satisfies the system (2.2). In the following, we shall verify this solution (S, I) satisfies
the boundary conditions (2.3).

Firstly, since S− ≤ S ≤ S+ and I− ≤ I ≤ I+, we can get that

lim S(ξ) = S∗, lim I(ξ) = 0, (5.1)

ξ→−∞ ξ→−∞

14
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and
lim

ξ→−∞
e−λ1ξI(ξ) = 1. (5.2)

The equality (5.2) also implies that I is non-trivial. In fact, it can be shown that I(ξ) > 0 for any ξ ∈ R.
Assume by contradiction that there is ξ0 ∈ R such that I(ξ0) = 0, then there exist constants a, b ∈ R such
that ξ0, ζ2 ∈ (a, b). It follows that I attains its minimum in (a, b) for ξ ∈ [a, b]. From (2.2b), we obtain that

−d2I
′′(ξ) + cI ′(ξ) + γI(ξ) ≥ 0, ξ ∈ [a, b].

y the elliptic strong maximum principle, it follows that I(ξ) ≡ 0 for ξ ∈ [a, b], which contradicts the fact
hat I(ξ) > 0 for ξ ∈ [a, ζ2) from Lemma 3.2. The monotonicity of g and g′

+(0) > 0 imply that g(u) > 0 for
ll u > 0; see the assumption (A2) and Remark 2.3. Together with the assumption (A1), we have∫ ∞

0
k(s)g(I(ξ − cs))ds > 0

or all ξ ∈ R. Therefore, by (2.2a) and (5.1), it is easy to see that S is also non-trivial.
Recalling the definition of ∆−1

i , we have

(∆−1
i h)′(ξ) = 1

di(λ2i + λ1i)

(
−λ1i

∫ ξ

−∞
e−λ1i(ξ−x)h(x)dx+ λ2i

∫ ∞

ξ

eλ2i(ξ−x)h(x)dx
)
, (5.3)

(∆−1
i h)′′(ξ) = 1

di(λ2i + λ1i)

(
λ2

1i

∫ ξ

−∞
e−λ1i(ξ−x)h(x)dx+ λ2

2i

∫ ∞

ξ

eλ2i(ξ−x)h(x)dx
)

− 1
di
h(ξ) (5.4)

or any h ∈ Bµ. Hence, if limξ→−∞ h(ξ) exists, then by L’Hôpital’s rule, we have

lim
ξ→−∞

(∆−1
i h)′(ξ) = lim

ξ→−∞
(∆−1

i h)′′(ξ) = 0.

y Lemma 4.4, we know that H1(S, I), H2(S, I) ∈ Bµ. It is easily seen that H1(S, I)(ξ) → α1S∗ and
2(S, I)(ξ) → 0 as ξ → −∞. Consequently, from (4.9) we obtain that

lim
ξ→−∞

S′(ξ) = lim
ξ→−∞

[∆−1
1 H1(S, I)]′(ξ) = 0, lim

ξ→−∞
S′′(ξ) = lim

ξ→−∞
[∆−1

1 H1(S, I)]′′(ξ) = 0, (5.5)

nd

lim
ξ→−∞

I ′(ξ) = lim
ξ→−∞

[∆−1
2 H2(S, I)]′(ξ) = 0, lim

ξ→−∞
I ′′(ξ) = lim

ξ→−∞
[∆−1

2 H2(S, I)]′′(ξ) = 0. (5.6)

Secondly, we intend to study the asymptotic behavior of S and I as x → ∞. For the sake of convenience,
e denote

ψ(ξ) := f(S(ξ))
∫ ∞

0
k(s)g(I(ξ − cs))ds. (5.7)

e will rewrite (2.2a) as
d1S

′′(ξ) − cS′(ξ) = ψ(ξ). (5.8)

ntegrating (5.8) from −∞ to ξ yields

d1S
′(ξ) = c(S(ξ) − S∗) +

∫ ξ

−∞
ψ(x)dx. (5.9)

ue to the boundedness of S, it can be shown that the integral in the equality above should be uniformly
ounded by contradiction. Thus, it follows that∫ ∞

ψ(x)dx < ∞, (5.10)

−∞

15
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which in turn yields S′ is bounded on R. Since

|ψ(ξ)| ≤ f(S∗)g(S∗) (5.11)

for all ξ ∈ R, it follows from (5.8) that S′′ is also bounded on R. Note that (5.8) implies that

[e−cξ/d1S′(ξ)]′ = 1
d1

e−cξ/d1ψ(ξ).

ntegrating this equality from ξ to ∞ gives

e−cξ/d1S′(ξ) = − 1
d1

∫ ∞

ξ

e−cx/d1ψ(x)dx.

Thus, S is nonincreasing. Since we have shown that S is non-trivial, one can obtain that

0 ≤ S(∞) < S(−∞) = S∗.

Moreover, since S′ is a non-positive and integrable function on R and we have shown that S′′ is bounded on
R, it is easily seen that S′(ξ) → 0 as ξ → ∞. Therefore, letting ξ → ∞, it follows from (5.9) that

c(S∗ − S(∞)) =
∫ ∞

−∞
ψ(x)dx. (5.12)

Note that (2.2b) can also be rewritten as

− d2I
′′(ξ) + cI ′(ξ) + γI(ξ) = ψ(ξ). (5.13)

y the fundamental theory of second-order linear ordinary differential equations, we obtain that

I(ξ) = C1e−λ̃1ξ + C2eλ̃2ξ + 1
d2(λ̃2 + λ̃1)

(∫ ξ

−∞
e−λ̃1(ξ−x)ψ(x)dx+

∫ ∞

ξ

eλ̃2(ξ−x)ψ(x)dx
)
, (5.14)

where C1, C2 are constants, and

λ̃1 = −c+
√
c2 + 4d2γ

2d2
, λ̃2 = c+

√
c2 + 4d2γ

2d2
.

ote that (5.11) guarantees the integral in (5.14) is well defined, and⏐⏐⏐⏐⏐ 1
d2(λ̃2 + λ̃1)

(∫ ξ

−∞
e−λ̃1(ξ−x)ψ(x)dx+

∫ ∞

ξ

eλ̃2(ξ−x)ψ(x)dx
)⏐⏐⏐⏐⏐ ≤ 1

γ
f(S∗)g(S∗). (5.15)

ince I(ξ) → 0 as ξ → −∞, then C1 = 0. Note that I(ξ) ≤ I+(ξ) = eλ1ξ. Recalling the definition of λ1 in
emma 3.3, together with (3.10), it is easily seen that λ1 < λ̃2. Hence, we can also get C2 = 0. Consequently,

I(ξ) = 1
d2(λ̃2 + λ̃1)

(∫ ξ

−∞
e−λ̃1(ξ−x)ψ(x)dx+

∫ ∞

ξ

eλ̃2(ξ−x)ψ(x)dx
)
. (5.16)

Since (5.10) holds, it follows from the equality above and Fubini’s theorem that I is also integrable on R,
and ∫ ∞

−∞
I(ξ)dξ = 1

γ

∫ ∞

−∞
ψ(x)dx < ∞, (5.17)

hich together with (5.12) implies that (2.6) in Theorem 2.1 holds. Moreover, by (5.16) and (5.15), we obtain
hat for any ξ ∈ R,

|I ′(ξ)| =

⏐⏐⏐⏐⏐ 1
d2(λ̃2 + λ̃1)

(
−λ̃1

∫ ξ

−∞
e−λ̃1(ξ−x)ψ(x)dx+ λ̃2

∫ ∞

ξ

eλ̃2(ξ−x)ψ(x)dx
)⏐⏐⏐⏐⏐

≤ λ̃2
f(S∗)g(S∗).
γ
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Hence, a combination of the two conclusions that I ′ is bounded and I is a positive and integrable function
on R yields I(ξ) → 0 as ξ → ∞. Together with (5.1) and (5.6), an integration of (5.13) from −∞ to ξ yields

−d2I
′(ξ) + cI(ξ) + γ

∫ ξ

−∞
I(x)dx =

∫ ξ

−∞
ψ(x)dx,

hich implies that I ′(ξ) → 0 as ξ → ∞. Since g is a bounded and continuous function with g(0) = 0 and
(ξ) → 0 as ξ → ∞, by Lebesgue’s dominated convergence theorem, we have

lim
ξ→∞

∫ ∞

0
k(s)g(I(ξ − cs))ds = 0.

herefore, it follows from (2.2) that S′′(ξ) → 0 and I ′′(ξ) → 0 as ξ → ∞. We conclude the asymptotic
ehavior of S and I as ξ → ∞.

lim
ξ→∞

S(ξ) = S∞ < S∗, lim
ξ→∞

S′(ξ) = lim
ξ→∞

S′′(ξ) = 0, (5.18)

lim
ξ→∞

I(ξ) = lim
ξ→∞

I ′(ξ) = lim
ξ→∞

I ′′(ξ) = 0. (5.19)

Finally, we are ready to prove I(ξ) ≤ S∗ − S∞ for all ξ ∈ R. Since I is a positive and integrable function
n R, we can define

G(ξ) := I(ξ) + γ

c

∫ ξ

−∞
I(x)dx+ γ

c

∫ ∞

ξ

ec/d2(ξ−x)I(x)dx. (5.20)

It follows from (5.1), (5.19), (5.12), (5.17) and L’Hôpital’s rule that

lim
ξ→−∞

G(ξ) = 0, lim
ξ→∞

G(ξ) = γ

c

∫ ∞

−∞
I(x)dx = S∗ − S(∞).

By (5.20), we can obtain that

G′(ξ) = I ′(ξ) + γ

d2

∫ ∞

ξ

ec/d2(ξ−x)I(x)dx,

G′′(ξ) = I ′′(ξ) − γ

d2
I(ξ) + γc

d2
2

∫ ∞

ξ

ec/d2(ξ−x)I(x)dx

and
lim

ξ→−∞
G′(ξ) = 0, lim

ξ→∞
G′(ξ) = 0.

It follows from (5.13) that
−d2G

′′(ξ) + cG′(ξ) = ψ(ξ).

Noting that G′(∞) = 0, integrating the equation above from ξ to ∞ yields

G′(ξ) = 1
d2

∫ ∞

ξ

ec/d2(ξ−x)ψ(x)dx ≥ 0,

hich implies that G is a nondecreasing function on R. Since G(∞) = S∗ − S(∞), we obtain that

I(ξ) ≤ G(ξ) ≤ S∗ − S∞

for all ξ ∈ R. This completes the proof of Theorem 2.1.
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6. Proof of the nonexistence of traveling wave

For R0 > 1 and c < c∗, or R0 < 1, assume by contradiction that there exists a non-trivial and nonnegative
raveling wave solution (S(x + ct), I(x + ct)) of (2.1), that is, (S(ξ), I(ξ)) satisfies system (2.2) with the
oundary conditions (2.3). Firstly, note that if I(ξ) ≡ 0, then S(ξ) ≡ S∗. Hence I is non-trivial. Similar to the
iscussion in Section 5, we can know that I(ξ) > 0 for all ξ ∈ R. Secondly, since (S, I) is a bounded solution
f system (2.2), then by the fundamental theory of second-order linear ordinary differential equations, we
btain that

S(ξ) = 1
d1(λ̂2 + λ̂1)

(∫ ξ

−∞
e−λ̂1(ξ−x)φ(x)dx+

∫ ∞

ξ

eλ̂2(ξ−x)φ(x)dx
)
, (6.1)

I(ξ) = 1
d2(λ̃2 + λ̃1)

(∫ ξ

−∞
e−λ̃1(ξ−x)ψ(x)dx+

∫ ∞

ξ

eλ̃2(ξ−x)ψ(x)dx
)
, (6.2)

where
λ̂1 = −c+

√
c2 + 4d1γ

2d1
, λ̂2 = c+

√
c2 + 4d1γ

2d1
,

λ̃1 = −c+
√
c2 + 4d2γ

2d2
, λ̃2 = c+

√
c2 + 4d2γ

2d2
,

φ(x) = γS(x) − f(S(x))
∫ ∞

0
k(s)g(I(x− cs))ds,

nd
ψ(x) = f(S(x))

∫ ∞

0
k(s)g(I(x− cs))ds. (6.3)

y Lebesgue’s dominated convergence theorem, it is easily seen that φ(±∞) and ψ(±∞) exist. Therefore,
rom (6.1) and (6.2), by L’Hôpital’s rule we can show that

S′(±∞) = S′′(±∞) = I ′(±∞) = I ′′(±∞) = 0. (6.4)

urthermore, it is easily seen from (6.2) that

− λ̃1I(ξ) ≤ I ′(ξ) ≤ λ̃2I(ξ). (6.5)

hirdly, from (2.2a), we can obtain that

[e−cξ/d1S′(ξ)]′ = 1
d1

e−cξ/d1ψ(ξ).

ince we have shown that S′(∞) = 0, integrating the equality above from ξ to ∞ yields

e−cξ/d1S′(ξ) = − 1
d1

∫ ∞

ξ

e−cx/d1ψ(x)dx.

Thus, S is nonincreasing and for all ξ ∈ R,

S∗ ≥ S(ξ) ≥ S∞ ≥ 0. (6.6)

Finally, let J(ξ) :=
∫ ξ

−∞ I(x)dx, which is well defined on R since

J(ξ) = 1
γ

[d1S
′(ξ) + d2I

′(ξ) − cS(ξ) + cS∗ − cI(ξ)].

Moreover,
J(∞) =

∫ ∞

−∞
I(x)dx = c(S∗ − S∞) < ∞.

In the following, we distinguish two cases.

18
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6.1. The case R0 > 1 and c < c∗

In this case, we will first show that a claim about the function J(·).

Claim. (I) There exist two constants ξ0 < 0 and K1 > 0 such that I(ξ) ≤ K1J(ξ) for any ξ ≤ ξ0; (II) there
s ρ > 0 such that J(ξ) = O(eρξ) as ξ → −∞.

Since I(−∞) = 0, there exists ξ1 < 0 such that for any ξ ≤ ξ1, I(ξ) < min{δ0, S∗}. According the
ssumptions (A2)–(A3), we have for any ξ ≤ ξ1,

g′
+(0) −

ω
∫∞

0 k(s)Iθ(ξ − cs)ds∫∞
0 k(s)I(ξ − cs)ds

≤
∫∞

0 k(s)g(I(ξ − cs))ds∫∞
0 k(s)I(ξ − cs)ds

≤ g′
+(0).

Noting that I(−∞) = 0 and θ > 1, it is easy to show that

lim
ξ→−∞

∫∞
0 k(s)Iθ(ξ − cs)ds∫∞
0 k(s)I(ξ − cs)ds

= 0.

ence, together with R0 > 1, we have

lim
ξ→−∞

f(S(ξ))
∫∞

0 k(s)g(I(ξ − cs))ds∫∞
0 k(s)I(ξ − cs)ds

= f(S∗)g′
+(0) > γ(R0 + 1)

2 .

hus, there exists ξ0 < 0 such that for any ξ ≤ ξ0,

f(S(ξ))
∫ ∞

0
k(s)g(I(ξ − cs))ds ≥ γ(R0 + 1)

2

∫ ∞

0
k(s)I(ξ − cs)ds.

herefore, by (2.2b) we have for any ξ ≤ ξ0,

cI ′(ξ) ≥ d2I
′′(ξ) + γ(R0 + 1)

2

(∫ ∞

0
k(s)I(ξ − cs)ds− I(ξ)

)
+ γ(R0 − 1)

2 I(ξ). (6.7)

ntegrating both sides of (6.7) from −∞ to ξ yields

γ(R0 − 1)
2 J(ξ) ≤ cI(ξ) − d2I

′(ξ) + γ(R0 + 1)
2

(
J(ξ) −

∫ ∞

0
k(s)J(ξ − cs)ds

)
(6.8)

for any ξ ≤ ξ0. Integrating both sides of (6.8) from −∞ to ξ gives

γ(R0 − 1)
2

∫ ξ

−∞
J(u)du+ d2I(ξ)

≤ cJ(ξ) + γ(R0 + 1)
2

∫ ξ

−∞

∫ ∞

0
k(s)[J(x) − J(x− cs)]dsdx

= cJ(ξ) + γ(R0 + 1)
2

∫ ξ

−∞

∫ ∞

0

∫ 1

0
csk(s)I(x−mcs)dmdsdx

= cJ(ξ) + γ(R0 + 1)
2

∫ ∞

0
csk(s)

∫ 1

0
J(ξ −mcs)dmds

≤
(

1 + γ(R0 + 1)
2

∫ ∞

0
sk(s)ds

)
cJ(ξ) (6.9)

for any ξ ≤ ξ0. Let
K0 := c

(
1 + γ(R0 + 1) ∫ ∞

sk(s)ds
)
, K1 := K0

.
2 0 d2
19
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From (6.9), we have for any ξ ≤ ξ0,
I(ξ) ≤ K1J(ξ),

nd
γ(R0 − 1)

2

∫ ξ

−∞
J(u)du ≤ K0J(ξ).

ince J is a nondecreasing and positive function, then for any ξ ≤ ξ0 and any τ > 0 we have

γ(R0 − 1)
2 τJ(ξ − τ) ≤ K0J(ξ).

e can choose τ = 2eK0
γ(R0−1) , then for any ξ ≤ ξ0,

J(ξ − τ) ≤ 1
eJ(ξ). (6.10)

Let
ρ = 1

τ
= γ(R0 − 1)

2eK0
,

then ρ > 0, and by (6.10) we have

J(ξ − τ)e−ρ(ξ−τ) ≤ 1
eJ(ξ)e−ρ(ξ−τ) = J(ξ)e−ρξ

or any ξ ≤ ξ0. This implies that

sup
ξ∈(−∞,ξ0]

J(ξ)e−ρξ = max
ξ∈[ξ0−τ,ξ0]

J(ξ)e−ρξ.

herefore, J(ξ) = O(eρξ) as ξ → −∞. This completes the proof of the claim.
For λ ∈ C, we define a bilateral Laplace transform of I by

L(λ) :=
∫ ∞

−∞
e−λξI(ξ)dξ =

∫ ∞

−∞
e−λξdJ(ξ). (6.11)

et a, b ∈ R ∪ {±∞} with a ≤ b denote the abscissas of convergence for L(λ), that is, the integral (6.11)
onverges in the strip a < ℜλ < b and diverges for ℜλ > b and for ℜλ < a. Since I is bounded,

∫∞
0 e−λξI(ξ)dξ

onverges for any λ with ℜλ > 0. Hence, together with the claim (II) above, we know that (0, ρ) ⊂ (a, b).
urthermore, by (6.5) and the claim (I), it is easily seen that

J(ξ) ≥ 1
K1

I(ξ) ≥ K2eλ̃2ξ (6.12)

or any ξ < ξ0, where K2 = I(ξ0)
K1

e−λ̃2ξ0 > 0. The inequality (6.12) implies that b is a finite real number
ot greater than λ̃2. Since J(ξ) is nondecreasing, by properties of Laplace transforms (Theorem 2.5a and
.5b, [34]), one can obtain that L(λ) is analytic in the strip a < ℜλ < b and λ = b is a singular point of
(λ). In the following, we will prove that λ = b is an analytic point of L(λ), which causes a contradiction.
From Theorem 2.2.2a in [34], we obtain that for any sufficiently small ϵ > 0, J(ξ) = o(e(b−ϵ)ξ) as ξ → −∞.

herefore, it follows from the claim (I) and (6.5) that for any sufficiently small ϵ > 0, as ξ → −∞,

I(ξ) = o(e(b−ϵ)ξ) (6.13)

nd
I ′(ξ) = o(e(b−ϵ)ξ).
20
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Hence, together with the boundedness of I and I ′, we know that the integrals
∫∞

−∞ e−λξI ′(ξ)dξ and∫∞
−∞ e−λξI ′′(ξ)dξ converge at least in the trip 0 < ℜλ < b (see Theorem 2.2.1 in [34]), and∫ ∞

−∞
e−λξI ′(ξ)dξ = λL(λ), (6.14)

∫ ∞

−∞
e−λξI ′′(ξ)dξ = λ2L(λ). (6.15)

Integrating both sides of (2.2b) from −∞ to ξ gives∫ ξ

−∞
ψ(x)dx = cI(ξ) − d2I

′(ξ) + γJ(ξ),

where ψ(x) is defined as (6.3). Therefore, from the discussion above we obtain that for any sufficiently small
ϵ > 0, as ξ → −∞, ∫ ξ

−∞
ψ(x)dx = o(e(b−ϵ)ξ). (6.16)

By Fubini’s theorem, we have∫ ∞

−∞
e−λξ

∫ ∞

0
k(s)I(ξ − cs)dsdξ = L(λ)

∫ ∞

0
k(s)e−λcsds, (6.17)

which also implies that the integral on left-hand side converges in the trip a < ℜλ < b. Eq. (2.2b) can be
rewritten as

d2I
′′(ξ) − cI ′(ξ) + f(S∗)g′

+(0)
∫ ∞

0
k(s)I(ξ − cs)ds− γI(ξ) = P (ξ), (6.18)

where
P (ξ) := f(S∗)g′

+(0)
∫ ∞

0
k(s)I(ξ − cs)ds− f(S(ξ))

∫ ∞

0
k(s)g(I(ξ − cs))ds.

Taking the bilateral Laplace transforms of both sides of (6.18) and using (6.14), (6.15) and (6.17), we get

Υ(c, λ)L(λ) =
∫ ∞

−∞
e−λξP (ξ)dξ. (6.19)

By the boundary conditions (2.3) and the assumptions (A2)–(A3), there exist M1 > 0 and ξ2 < 0 such
that for any ξ < ξ2,

f(S(ξ)) < M1

and
0 ≤ g′

+(0)I(ξ) − g(I(ξ)) ≤ ωIθ(ξ).

Therefore, together with (6.6), we have for any ξ < ξ2,

|P (ξ)| ≤ g′
+(0)|f(S∗) − f(S(ξ))|

∫ ∞

0
k(s)I(ξ − cs)ds

+ f(S(ξ))
∫ ∞

0
k(s)|g(I(ξ − cs)) − g′

+(0)I(ξ − cs)|ds.

≤ g′
+(0)L1|S∗ − S(ξ)|

∫ ∞

0
k(s)I(ξ − cs)ds

+ωM1

∫ ∞

0
k(s)Iθ(ξ − cs)ds. (6.20)

Integrating both sides of (2.2a) from −∞ to ξ gives

d1S
′(ξ) = c(S(ξ) − S∗) +

∫ ξ

ψ(x)dx.

−∞

21
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F

∫
s

H

C

Then
S∗ − S(ξ) = [S∗ − S(0)]e

c
d1

ξ + 1
d1

∫ 0

ξ

e
c

d1
(ξ−s)

∫ s

−∞
ψ(x)dxds.

Noting (6.16), it follows from L’Hôpital’s rule that for any σ with 0 < σ < min{b, c/d1},

S∗ − S(ξ) = o(eσξ) (6.21)

as ξ → −∞. In addition, (6.13) implies that for any sufficiently small ϵ > 0, as ξ → −∞,∫ ∞

0
k(s)I(ξ − cs)ds = o(e(b−ϵ)ξ), (6.22)

and ∫ ∞

0
k(s)Iθ(ξ − cs)ds = o(e(b−ϵ)θξ). (6.23)

Let
σ0 := min{b, c

d1
, (θ − 1)b}.

rom (6.20), together with (6.21), (6.22) and (6.23), we have for any σ with 0 < σ < σ0,

|P (ξ)| = o(e(b+σ)ξ) (6.24)

as ξ → −∞. This implies that
∫ 0

−∞ e−λξP (ξ)dξ converges for any λ with ℜλ < b+ σ0. On the other hand,
noting that P (ξ) is bounded,

∫∞
0 e−λξP (ξ)dξ converges for any λ with ℜλ > 0. Therefore, the integral

∞
−∞ e−λξP (ξ)dξ converges at least in the strip 0 < ℜλ < b + σ0 and is analytic with respect to λ in this
trip.

By Lemma 3.3, we know that when 0 < c < c∗, Υ(c, λ) > 0 for all λ > 0. This implies that Υ(c, b) ̸= 0.
ence, in a neighborhood of λ = b, (6.19) can be rewritten as

L(λ) = 1
Υ(c, λ)

∫ ∞

−∞
e−λξP (ξ)dξ. (6.25)

onsequently, λ = b is an analytic point of L(λ), which is a contradiction.

6.2. The case R0 < 1

Recalling J(∞) < ∞, together with (6.4), an integration of (2.2b) on the real line yields

J(∞) =
∫ ∞

−∞
I(ξ)dξ = 1

γ

∫ ∞

−∞
f(S(ξ))

∫ ∞

0
k(s)g(I(ξ − cs))dsdξ. (6.26)

Similar to the discussion in the last part of Section 5, it can also be shown that for all ξ ∈ R,

I(ξ) ≤ S∗ − S∞ ≤ S∗.

Hence, by the assumption (A2), we have for all ξ ∈ R,

g(I(ξ − cs)) ≤ g′
+(0)I(ξ − cs). (6.27)

Therefore, together with (6.6) and (6.27), it follows from (6.26) that

J(∞) ≤
f(S∗)g′

+(0)
γ

∫ ∞

−∞

∫ ∞

0
k(s)I(ξ − cs)dsdξ

= R0

∫ ∞

0
k(s)

∫ ∞

−∞
I(ξ)dξds

= R0

∫ ∞

−∞
I(ξ)dξ

< J(∞).

This is a contradiction, which completes the proof of Theorem 2.2. □
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