
Studies in Applied Mathematics

ORIGINAL ARTICLE

Dynamics of a Nonlocal Dispersal Population Model With
Annually Synchronized Emergence of Adults
Zhenzhen Li1,2 Binxiang Dai1 Xingfu Zou3

1School of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha, Hunan, China 2Department of Applied Mathematics, The Hong
Kong Polytechnic University, Hung Hom, Hong Kong, China 3Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada

Correspondence: Binxiang Dai (bxdai@csu.edu.cn)

Received: 21 July 2024 Revised: 4 November 2024 Accepted: 17 November 2024

Funding: This study was supported by the National Natural Science Foundation of China and the Natural Sciences and Engineering Research Council of
Canada (No. 12271525 and No. RGPIN-2022-04744).

Keywords: impulsive integro–differential equation | maturation pulse | threshold dynamics | traveling waves | spreading speeds

ABSTRACT
This paper is devoted to studying the spatial dynamics of a nonlocal dispersal speciesmodelwith annually synchronized emergence
of adults. In the situation of a bounded domain, we show threshold dynamics of the adult population, and provide exact persistence
criterion. In the situation of a spatially homogeneous unbounded domain, we obtain the existence and computation formula of
spreading speeds, which coincide with the minimal wave speed for the traveling waves. The above results are obtained in both
monotone and nonmonotone cases of maturation impulse function. Numerical simulations are carried out to demonstrate the
theoretical results.
2020 MSC: 35K57, 37N25, 92D25

1 Introduction

Mathematicalmodels play a very important role in spatial ecology
because they help understand and explain evolution of biological
species in time and space (see, e.g., Cantrell and Cosner [8];
Murray [37, 38]; Okubo and Levin [40]). Reaction–diffusion equa-
tions, which contain random diffusion operators and reaction
functions, can describe the spatial movement and growth of
the population in time and space. Spatial theories about the
spread and persistence of species obtained by reaction–diffusion
equations agree in many cases with field observations (Cantrell
and Cosner [8]; Murray [37, 38]; Shigesada and Kawasaki [43]).

For many biological species, such as birds and large mammal,
there is one (or more for some species) breeding season annually,
reflected by the births occurring at the beginning of the season
and newly born individuals growing into adults before the end of

the year. For instance, in Colorado, big brown bats usually breed
only in late June [16]. For such a species, its long-term population
dynamics can be more properly described by a so-called metered
model that distinguishes the growths of immature and mature
populations which are connected by the producing and maturing
in the beginning and end of the breeding season.Within a season,
the population can move in the space and population mortality
depends continuously on time, while between seasons the popu-
lation gives birth to offsprings in discrete form. In [28], Lewis and
Li constructed an impulsive reaction–diffusion model for species
with distinct reproductive and dispersal stages, which describes
a seasonal birth pulse plus dispersal and nonlinear mortality
throughout the year. In the one-dimensional space, they provided
a critical domain size to determine whether a species is persistent
or extinct in a bounded domain, and also showed the existence of
spreading speed and traveling waves in the unbounded domain.
These resultswere extended byFazly, Lewis, andWang [14, 15] to a
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general impulsive reaction–diffusion–advection system in a high-
dimensional space. For a class of species of stream insects with
different life stages, Vasilyeva, Lutscher, and Lewis [47] proposed
a reaction–diffusion–advection system incorporating nonlocal
impulse to describe the population dynamics. Considering the
effects of climate changes, Wang and Wang [48] studied the
persistence and propagation dynamics of a PDE and discrete-
map hybrid model with habitat shift. Meng, Ge, and Lin [36]
explored the effect of impulsive harvesting on the logistic model
with free boundaries. Recently, Wang and Wang [49] considered
an impulsive reaction–diffusion–advection system with bistable
nonlinearity, and proved the existence, uniqueness, and global
stability of bistable traveling wave.

It has been observed and reported that in addition to reproductive
synchronization in years, many egg-laying animals may also
demonstrate synchronous emergence of mature individuals, and
synchronous hatching and emergence (Santos et al. [42]). One
can refer to the reference [7] for the synchronous maturation of
Xiphophorus variatus, and [22] for the synchronized emergence
of adult cicadas in 13- and 17-year cycles as instances. According
to such an observation, Bai, Lou, and Zhao [3] established the
following impulsive reaction–diffusion population model with
the annually synchronous emergence of mature individuals:

⎧⎪⎪⎨⎪⎪⎩
𝜕𝑡𝑢𝑚 = 𝐷𝑀

𝜕2𝑢𝑚
𝜕𝑥2

− 𝑓(𝑢𝑚), 𝑥 ∈ Ω, 0 < 𝑡 ≤ 1, 𝑡 ≠ 𝜏,

𝑢𝑚(𝑥, 𝑡
+) = 𝑢𝑚(𝑥, 𝑡) +(𝑥;𝑁𝑚), 𝑡 = 𝜏,

𝑢𝑚(𝑥, 0) = 𝑁𝑚(𝑥), 𝑚 ∈ ℕ,

𝑁𝑚+1(𝑥) = 𝑢𝑚(𝑥, 1),

(1.1)

where 𝜏 ∈ (0, 1) and(𝑥;𝑁𝑚) is value of the solution, evaluated
at 𝑡 = 𝜏, of the following equation:

⎧⎪⎨⎪⎩
𝜕𝑡𝑣𝑚 = 𝐷𝐼

𝜕2𝑣𝑚
𝜕𝑥2

− 𝑑𝐼𝑣𝑚, 𝑥 ∈ Ω, 𝑡 ∈ (0, 𝜏],

𝑣𝑚(𝑥, 0) = 𝑔(𝑁𝑚(𝑥)), 𝑥 ∈ Ω,
(1.2)

which is the first modeling study to qualitatively assess the effects
of synchronous development activities on the persistence and
invasion of population in a spatially defined habitat. In model
(1.1)–(1.2), it is assumed that the whole species can be classified
into two stages: mature and immature, and mature individuals
reproduce offsprings at the beginning of the 𝑚th year, with 𝑚 ∈

ℕ = {0, 1, 2, … }. Here, 𝑢𝑚(𝑥, 𝑡) and 𝑣𝑚(𝑥, 𝑡) are the adult and
juvenile population densities, respectively, at location 𝑥 ∈ Ω and
time 𝑡 ∈ [0, 1] within year 𝑚 ∈ ℕ, 𝑁𝑚(𝑥) is the adult population
density at the beginning of year 𝑚, and 𝑣𝑚(𝑥, 0) is the density
of immature population at the beginning of 𝑚th year, which
depends on the adult population density at the beginning of
𝑚th year (i.e., 𝑔(⋅) is a birth function). The constants 𝐷𝑀 > 0

and 𝐷𝐼 > 0 denote the random diffusion rates of mature and
immature individuals, respectively, 𝑓(⋅) is the death rate function
of adult population, including both density-independent and
density-dependent mortalities, 𝑑𝐼 > 0 is the nature death rate of
juvenile population. The parameter 𝜏 ∈ (0, 1) is the impulsive
time, which means that the immature individuals develop into
the adult stage after time 𝜏 at each year. In [3], Bai, Lou, and Zhao

investigated the spreading speed and traveling waves for model
(1.1) on an unbounded spatial domain, and studied the critical
domain size to reserve species persistence on a bounded domain.

The dispersal mode employed in the aforementioned references
[3, 14, 15, 28, 47–49] is assumed to be random diffusion, that is, all
individuals move randomly with a fixed spatial step on the real
line [8]. This dispersal mode appears to be a local behavior [25],
which causes small-scale results for scalar equation model [41]
and may even underestimate the invasion speed [10]. However,
some species can actually disperse in a nonlocal way, that is,
individual walkers can randomly select their own spatial step size
from some distribution [2, 18, 25, 35]. Considering the impact of
birth pulse and nonlocal dispersal, Wu and Zhao [53] constructed
an impulsive nonlocal dispersal population model, which is a
nonlocal version of the model considered in [14, 15, 28]. They
studied the threshold dynamics of such model in a bounded
domain, and showed that the invasion speed of population is the
same as the minimal speed of traveling waves. We point out that
age structure is not considered in [53].

Note that model (1.1) contains the Laplace operator 𝑢𝑥𝑥 , which
represents the local dispersal mode of immature and mature
individuals in the space. However, we adopt an integral operator
[𝐽 ∗ 𝜙 − 𝜙](𝑥) ∶= ∫

Ω
𝐽(𝑥, 𝑦)𝜙(𝑦)𝑑𝑦 − 𝜙(𝑥) to describe the spatial

movement of immature and mature individuals. That is, all indi-
viduals can move from any location to other location regardless
of distance. In this paper, we consider the following nonlocal
dispersal population growth model with annually synchronized
emergence of matured individuals:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝑡𝑢𝑚 = 𝐷𝑀

[
∫
Ω

𝐽(𝑥, 𝑦)𝑢𝑚(𝑦, 𝑡)𝑑𝑦 − 𝑢𝑚

]
− 𝑓𝑀(𝑢𝑚), 𝑥 ∈ Ω,

0 < 𝑡 ≤ 1, 𝑡 ≠ 𝜏,

𝑢𝑚(𝑥, 𝑡
+) = 𝑢𝑚(𝑥, 𝑡) + 𝑣𝑚(𝑥, 𝜏), 𝑡 = 𝜏,

𝑢𝑚(𝑥, 0) = 𝑁𝑚(𝑥), 𝑚 ∈ ℕ,

𝑁𝑚+1(𝑥) = 𝑢𝑚(𝑥, 1),

(1.3)

where 𝑢𝑚(𝑥, 𝑡) and 𝑣𝑚(𝑥, 𝑡) are the adult and juvenile population
densities at location 𝑥 ∈ Ω and time 𝑡 ∈ [0, 1]within year𝑚 ∈ ℕ,
respectively, 𝑣𝑚(𝑥, 𝑡) satisfies

⎧⎪⎪⎨⎪⎪⎩
𝜕𝑡𝑣𝑚 = 𝐷𝐼

[
∫
Ω

𝐽(𝑥, 𝑦)𝑣𝑚(𝑦, 𝑡)𝑑𝑦 − 𝑣𝑚

]
− 𝑓𝐼(𝑣𝑚), 𝑥 ∈ Ω,

𝑡 ∈ (0, 𝜏],

𝑣𝑚(𝑥, 0) = 𝑔(𝑁𝑚(𝑥)), 𝑥 ∈ Ω,

(1.4)

𝐷𝑀 > 0 and 𝐷𝐼 > 0 denote the diffusion rates of mature and
immature individuals, respectively, 𝑓𝑀(⋅) and 𝑓𝐼(⋅) are the death
rate functions depending on the adult and juvenile population,
respectively, 𝑔(⋅) is the birth function, and 𝜏 ∈ (0, 1) is the time
when the immature individuals becomemature. When 𝜏 = 0, the
model (1.3)-(1.4) becomes the scenario of the model in [53].

Throughout this paper, we assume that 𝐽(𝑥, 𝑦) satisfies the
following assumption:
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(J1) 𝐽(𝑥, 𝑦) is nonnegative and continuous on ℝ ×ℝ satisfy-
ing that 𝐽(𝑥, 𝑥) > 0 for any 𝑥 ∈ ℝ, ∫

ℝ
𝐽(𝑥, 𝑦)𝑑𝑥 ≡ 1 and

∫
ℝ
𝐽(𝑥, 𝑦)𝑑𝑦 ≡ 1.

Here, 𝐽(𝑥, 𝑦) is the probability of the species jumping from
location 𝑦 to location 𝑥, ∫

ℝ
𝐽(𝑥, 𝑦)𝑣𝑚(𝑦, 𝑡)𝑑𝑦 represents the rate

where immature individuals are arriving at location 𝑥 from all
other places, and −𝑣𝑚(𝑥, 𝑡) = − ∫

ℝ
𝐽(𝑥, 𝑦)𝑣𝑚(𝑥, 𝑡)𝑑𝑦 is the rate at

which they are leaving location 𝑥 to travel to all other sites. At the
same time, assume that the death rate functions 𝑓𝑀, 𝑓𝐼 and the
birth function 𝑔 satisfy:

(H1) 𝑓𝑀(0) = 0 < 𝑓′
𝑀(0), 𝑓𝑀 is locally Lipschitz continuous in

𝑢 ∈ ℝ+ ∶= [0,∞) and 𝑓𝑀(𝑢)∕𝑢 is strictly increasing in
𝑢 ∈ ℝ+.

(H2) 𝑓𝐼(0) = 0 < 𝑓′
𝐼(0), 𝑓𝐼 is locally Lipschitz continuous in

𝑢 ∈ ℝ+ and 𝑓𝐼(𝑣)∕𝑣 is strictly increasing in 𝑣 ∈ ℝ+.

(H3) 𝑔(0) = 0 < 𝑔′(0), 𝑔(𝑁) > 0 for 𝑁 > 0 and 𝑔 is locally
Lipschitz continuous in 𝑁 ∈ ℝ+. Moreover, 𝑔(𝑁)∕𝑁 is
nonincreasing in𝑁 ∈ ℝ+ and there exists 𝑁̄ > 0 such that
𝑔(𝑁̄) < 𝑁̄.

(H4) There exist real numbers 𝜌𝑀 > 0, 𝜌𝐼 > 0, 𝜎𝑀 > 0, 𝜎𝐼 >

0, 𝜈𝑀 > 1, and 𝜈𝐼 > 1 such that 𝑓𝑀(𝑢) ≤ 𝑓′
𝑀(0)𝑢 + 𝜌𝑀𝑢

𝜈𝑀

for 0 ≤ 𝑢 < 𝜎𝑀 , and 𝑓𝐼(𝑣) ≤ 𝑓′
𝐼(0)𝑣 + 𝜌𝐼𝑣

𝜈𝐼 for 0 ≤ 𝑣 < 𝜎𝐼 .

(H5) There exist real numbers 𝜌𝑔 > 0, 𝜎𝑔 > 0, and 𝜈𝑔 > 1 such
that 𝑔(𝑁) ≥ 𝑔′(0)𝑁 − 𝜌𝑔𝑁

𝜈𝑔 for 0 ≤ 𝑁 ≤ 𝜎𝑔.

A classical form of death functions satisfying assumptions (H1)
and (H2) takes the form

𝑓(𝑢) = 𝑎𝑢 + 𝑏𝑢2,

where the positive constant 𝑎 in the first term is the natural
death rate while the second term can be rewritten as (𝑏𝑢) ⋅ 𝑢with
𝑏𝑢 being the density-dependent death rate due to intraspecific
competition. The birth rate functions satisfying (H3) and (H5)
include the Beverton–Holt function

𝑔(𝑁) =
𝑝𝑁

𝑞 +𝑁
with 𝑝 > 0 and 𝑞 > 0,

and the Ricker function

𝑔(𝑁) = 𝑁e𝑟(1−𝑁) with 𝑟 > 0.

One can refer to [14, 28, 31] and the references therein for more
general forms and biological interpretation of 𝑓 and 𝑔.

We remark that when Ω = ℝ or Ω = [0, 𝐿], the impulsive emer-
gence function (𝑥;𝑁𝑚) in (1.1) can be expressed explicitly
(refer to [3] for details). However, 𝑣𝑚(𝑥, 𝜏) in (1.3) does not
have an explicit expression by 𝑔(𝑁𝑚(𝑥)) due to the occurrence
of nonlinear term 𝑓𝐼 , which causes that system (1.3)-(1.4) is
strongly coupled.

Notice that model (1.3) includes a maturation impulse, and the
impulse occurs at time 𝜏 of each year, that is, this sudden
change happens periodically. Then, we will consider the 1-year
time solution map of system (1.3). Similar to the discussion in

[24, Theorem 2.1] and [57, Lemma 2.4], we can derive that for
any nonnegative, continuous, and bounded initial value 𝑣𝑚(𝑥, 0),
the nonlinear equation (1.4) admits a unique nonnegative and
bounded classical solution 𝑣𝑚(𝑥, 𝑡) for 𝑡 ∈ [0, 1]. Let 𝑇𝑡 be the
time-𝑡 solution map of Equation (1.4). In the same way, let 𝑆𝑡 be
the solution map of 𝑢𝑡 = 𝐷𝑀

[∫
Ω
𝐽(𝑥 − 𝑦)𝑢(𝑦, 𝑡)𝑑𝑦 − 𝑢

]
− 𝑓𝑀(𝑢).

For any density distribution 𝜙(𝑥) of adult population at location
𝑥 at the beginning of the year, the density distribution at time 𝜏 is
𝑆𝜏(𝜙)(𝑥). Since the newborn offsprings will develop into mature
stage after time 𝜏, the density of newly emerging adults at time 𝜏
is 𝑇𝜏𝑔(𝜙)(𝑥). Then, the adult population density will be [𝑆𝜏(𝜙) +
𝑇𝜏𝑔(𝜙)](𝑥) at time 𝜏+ due to the impulsivematuration emergence.
During the remaining time interval (𝜏, 1], the spatial distribution
follows Equation (1.3) and thus becomes 𝑆1−𝜏[𝑆𝜏(𝜙) + 𝑇𝜏𝑔(𝜙)](𝑥)

at the end of year. Thismeans that the time-1 solutionmap of (1.3)
is given by

𝑄[𝜙](𝑥) ∶= 𝑆1−𝜏[𝑆𝜏(𝜙) + 𝑇𝜏𝑔(𝜙)](𝑥), 𝑥 ∈ Ω. (1.5)

Therefore, system (1.3) can be reduced to the following discrete-
time recursion:

𝑁𝑚+1(𝑥) = 𝑄[𝑁𝑚](𝑥), 𝑥 ∈ Ω, 𝑚 ≥ 0. (1.6)

One can also refer to Liang, Yi, and Zhao [30, Section 2], Zhao [59,
Section 3.1] and Wu and Zhao [53] for this type of recursion.

The main purpose of this paper is to explore the evolution
dynamics of discrete-time problem (1.6) in the cases of bounded
and unbounded spatial domains. The remainder of this paper
is organized as follows. Section 2 is dedicated to the threshold
dynamics of (1.6) in a bounded spatial domain. In Section 3,
for the spatially unbounded case, we prove the existence of
invasion speed of system (1.6) and show that it coincides with
the minimal speed of traveling waves of (1.6). In Section 4, we
present some numerical results to demonstrate our theoretical
results. In Section 5, we summarize themain results, compare our
results with those in literature on similar topics, and discuss some
possible future research in this line.

2 Threshold Dynamics in a Bounded Domain

This section is devoted to the threshold dynamics of system (1.6)
when the spatial domain Ω ⊂ ℝ is a bounded and open interval
containing the origin. In this situation, we observe that the
nonlocal dispersal operator 𝜙(𝑥) ↦ ∫

Ω
𝐽(𝑥, 𝑦)𝜙(𝑦)𝑑𝑦 − 𝜙(𝑥) in

(1.4) and (1.3) can be viewed as 𝜙(𝑥) ↦ ∫
ℝ
𝐽(𝑥, 𝑦)[𝜙(𝑦) − 𝜙(𝑥)]𝑑𝑦

with Dirichlet-type boundary condition 𝜙(𝑥) ≡ 0, ∀𝑥 ∈ ℝ ⧵ Ω,
which is the nonlocal counterpart of the elliptic operator 𝜙𝑥𝑥 with
homogeneous Dirichlet-type boundary condition.

We point out that in (1.3) and (1.4), the values of 𝑢𝑚(𝑥, 𝑡) and
𝑣𝑚(𝑥, 𝑡) at the boundary 𝜕Ω are implicitly determined by the
equation itself. To explain this, we look at the equation

𝑢𝑡 = 𝑑

[
∫
Ω

𝐽(𝑥, 𝑦)𝑢(𝑦, 𝑡)𝑑𝑦 − 𝑢

]
, 𝑥 ∈ Ω, 𝑡 > 0. (2.1)
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Let 𝑢(𝑥, 𝑡) be the unique solution to (2.1) with initial condition
𝑢(𝑥, 0) = 𝑢0(𝑥) ∈ 𝐶(Ω). Then, 𝑢(𝑥, 𝑡) satisfies

𝑢(𝑥, 𝑡) = 𝑢0(𝑥) + 𝑑 ∫
𝑡

0

[
∫
Ω

𝐽(𝑥, 𝑦)𝑢(𝑦, 𝑠)𝑑𝑦 − 𝑢(𝑥, 𝑠)

]
𝑑𝑠,

𝑥 ∈ Ω, 𝑡 ≥ 0.

Since 𝑢 ∈ 𝐶(Ω ×ℝ+), for 𝑥0 ∈ 𝜕Ω, there holds that

𝑢(𝑥0, 𝑡) = 𝑢0(𝑥0) + 𝑑 ∫
𝑡

0

[
∫
Ω

𝐽(𝑥0, 𝑦)𝑢(𝑦, 𝑠)𝑑𝑦 − 𝑢(𝑥0, 𝑠)

]
𝑑𝑠,

𝑡 ≥ 0.

Therefore, in order to avoid the incompatible definitions of
𝑢𝑚, 𝑣𝑚 for 𝑥 ∈ 𝜕Ω, we assume that 𝑢𝑚(𝑥, 𝑡) = 0 for 𝑚 ≥ 0, 𝑥 ∈

ℝ ⧵ Ω, 𝑡 ∈ [0, 1] and 𝑣𝑚(𝑥, 𝑡) = 0 for 𝑚 ≥ 0, 𝑥 ∈ ℝ ⧵ Ω, 𝑡 ∈ [0, 𝜏].
We also mention that under this assumption, the solutionmay be
discontinuous on the boundary.

In next two subsections, we aim to investigate the threshold
dynamics of system (1.6) in bounded domain Ω for two different
cases: (i) the birth function 𝑔 is monotonically increasing in 𝑁,
and (ii) the birth function 𝑔 is not monotone.

2.1 Case 1: 𝒈 is Monotone

First, we note that the spatially homogeneous version of (1.3) has
the form

⎧⎪⎪⎨⎪⎪⎩

𝑢′(𝑡) = −𝑓𝑀(𝑢), 0 < 𝑡 ≤ 1, 𝑡 ≠ 𝜏,

𝑢(𝑡+) = 𝑢(𝑡) + 𝑣(𝜏), 𝑡 = 𝜏,

𝑢(0) = 𝑁𝑚, 𝑚 ∈ ℕ,

𝑁𝑚+1 = 𝑢(1),

(2.2)

where 𝑣(𝜏) is the value of the solution, evaluated at 𝑡 = 𝜏, of the
following initial value problem:{

𝑣′(𝑡) = −𝑓𝐼(𝑣), 0 < 𝑡 ≤ 1

𝑣(0) = 𝑔(𝑁𝑚), 𝑚 ∈ ℕ.

Obviously, problem (2.2) also provides a discrete-time dynamical
system:

𝑁𝑚+1 = 𝑄̂[𝑁𝑚] ∶= 𝑆̂1−𝜏(𝑆̂𝜏(𝑁𝑚) + 𝑇̂𝜏𝑔(𝑁𝑚)), 𝑚 ≥ 0, (2.3)

where 𝑆̂𝑡 (respectively, 𝑇̂𝑡) is the time-𝑡 solution map of 𝑢′(𝑡) =
−𝑓𝑀(𝑢) (respectively, 𝑣′(𝑡) = −𝑓𝐼(𝑣)) for 𝑡 ∈ [0, 1]. One can easily
verify that under the assumptions (H1)–(H5) on birth and death
functions, the map 𝑄̂ is monotone and strongly subhomogeneous
(refer to Zhao [59]). For the recursion relationship (2.3), a
straightforward calculation shows that the Fréchet derivative of
𝑄̂ at zero is

𝑄̂′(0) ∶= e−𝑓′𝑀(0) + 𝑔′(0)e−𝑓′𝑀(0)(1−𝜏)−𝑓′
𝐼
(0)𝜏.

Define 𝑀 ∶= (1 + e−𝑓′𝐼 (0)𝜏)𝑁̄. By (H3), we see that if 0 ≤ 𝑁0 ≤ 𝑁̂

with 𝑁̂ > 𝑀, then 0 ≤ 𝑁𝑚 ≤ 𝑁̂, ∀𝑚 ≥ 1. Hence, the map 𝑄̂ is

continuous and compact on ℝ. Now by [59, Lemma 2.2.1 and
Theorem 2.3.4], the following threshold dynamics for (2.3) can be
obtained.

Proposition 2.1. Assume that 𝑔 is increasing in 𝑁. Then, the
following statements hold:

(i) If 𝑄̂′(0) ≤ 1, then 𝑁𝑚 = 0 is a globally asymptotically stable
fixed point of (2.3) inℝ+.

(ii) If 𝑄̂′(0) > 1, then (2.3) has a unique positive fixed point,
denoted by𝜛, which is globally asymptotically stable inℝ+ ⧵

{0}.

Equip the continuous function space 𝐶(Ω,ℝ) with the norm‖𝜙‖ = max𝑥∈Ω |𝜙(𝑥)|. Let 𝐶(Ω,ℝ+) ∶= {𝜙 ∈ 𝐶(Ω,ℝ)|𝜙(𝑥) ≥
0 ∀𝑥 ∈ Ω}. For any 𝜙, 𝜓 ∈ 𝐶(Ω,ℝ), we write 𝜙 ≥ 𝜓 if
𝜙 − 𝜓 ∈ 𝐶(Ω,ℝ+); 𝜙 > 𝜓 if 𝜙 − 𝜓 ∈ 𝐶(Ω,ℝ+) ⧵ {0}; and 𝜙 ≫ 𝜓 if
𝜙 > 𝜓 for all 𝑥 ∈ Ω.

Linearizing system (1.3) at zero, we obtain

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝑡𝑢̃𝑚 = 𝐷𝑀

[
∫
Ω

𝐽(𝑥, 𝑦)𝑢̃𝑚(𝑦, 𝑡)𝑑𝑦 − 𝑢̃𝑚

]
− 𝑓′

𝑀(0)𝑢̃𝑚, 𝑥 ∈ Ω,

0 < 𝑡 ≤ 1, 𝑡 ≠ 𝜏,

𝑢̃𝑚(𝑥, 𝑡
+) = 𝑢̃𝑚(𝑥, 𝑡) + 𝑣𝑚(𝑥, 𝜏), 𝑡 = 𝜏,

𝑢̃𝑚(𝑥, 0) = 𝑁̃𝑚(𝑥), 𝑚 ∈ ℕ,

𝑁̃𝑚+1(𝑥) = 𝑢̃𝑚(𝑥, 1),

(2.4)

where 𝑣(𝑥, 𝑡) satisfies the linear evolution equation

⎧⎪⎪⎨⎪⎪⎩
𝜕𝑡𝑣𝑚 = 𝐷𝐼

[
∫
Ω

𝐽(𝑥, 𝑦)𝑣𝑚(𝑦, 𝑡)𝑑𝑦 − 𝑣𝑚

]
− 𝑓′

𝐼(0)𝑣𝑚, 𝑥 ∈ Ω,

0 < 𝑡 ≤ 1,

𝑣𝑚(𝑥, 0) = 𝑔′(0)𝑁̃𝑚(𝑥), 𝑥 ∈ Ω.

Similarly, we can derive from (2.4) a discrete-time recursion
system as follows:

𝑁̃𝑚+1(𝑥) = 𝑄̃[𝑁𝑚](𝑥) = 𝑆1−𝜏[𝑆𝜏(𝑁𝑚) + 𝑇̃𝜏𝑔(𝑁𝑚)](𝑥),

∀𝑥 ∈ Ω, ∀𝑚 ≥ 0, (2.5)

where 𝑆𝑡 is the time-𝑡 solution map of the linear equation

𝜕𝑡𝑢̃𝑚 = 𝐷𝑀

[
∫
Ω

𝐽(𝑥, 𝑦)𝑢̃𝑚(𝑦, 𝑡)𝑑𝑦 − 𝑢̃𝑚

]
− 𝑓′

𝑀(0)𝑢̃𝑚, 𝑥 ∈ Ω,

and 𝑇̃𝑡 is the time-𝑡 solution map of the linear equation

𝜕𝑡𝑣𝑚 = 𝐷𝐼

[
∫
Ω

𝐽(𝑥, 𝑦)𝑣𝑚(𝑦, 𝑡)𝑑𝑦 − 𝑣𝑚

]
− 𝑓′

𝐼(0)𝑣𝑚, 𝑥 ∈ Ω.

Look at the nonlocal eigenvalue problem

[𝜑](𝑥) ∶= ∫
Ω

𝐽(𝑥, 𝑦)𝜑(𝑦)𝑑𝑦 = 𝜆𝜑(𝑥), 𝑥 ∈ Ω. (2.6)
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By [20, Lemma 3.5], the operator  ∶ 𝐶(Ω,ℝ+) → 𝐶(Ω,ℝ+) is
compact and positive. Then, it follows from [34, Lemma 3.1] that
the spectral radius 𝑟() is a simple eigenvalue ofwith a positive
eigenfunction 𝜑∗ ∈ 𝐶(Ω,ℝ+), that is, the eigenvalue problem
(2.6) has a principal eigenvalue 𝜆0(Ω) = 𝑟() corresponding to a
positive eigenfunction 𝜑∗.

Remark 2.1. As that pointed out in [2, Remark 2.4] and [21,
Theorem 3.1], the principal eigenfunction𝜑∗ is strictly positive on
Ω and vanishes inℝ ⧵ Ω. Therefore, a discontinuity occurs on 𝜕Ω
and the boundary value is not taken in the usual “classical” sense.

According to the above discussion, the following two eigenvalue
problems

𝐷𝑀

[
∫
Ω

𝐽(𝑥, 𝑦)𝜑(𝑦)𝑑𝑦 − 𝜑(𝑥)

]
− 𝑓′

𝑀(0)𝜑(𝑥) = 𝜆𝜑(𝑥), 𝑥 ∈ Ω,

and

𝐷𝐼

[
∫
Ω

𝐽(𝑥, 𝑦)𝜑(𝑦)𝑑𝑦 − 𝜑(𝑥)

]
− 𝑓′

𝐼(0)𝜑(𝑥) = 𝜆𝜑(𝑥), 𝑥 ∈ Ω

admit the principal eigenvalues 𝜆𝑀(Ω) ∶= 𝐷𝑀𝜆0(Ω) − 𝐷𝑀 −
𝑓′
𝑀(0) and 𝜆𝐼(Ω) ∶= 𝐷𝐼𝜆0(Ω) − 𝐷𝐼 − 𝑓′

𝐼(0), respectively. Denote

𝑅0 ∶= e𝜆𝑀(Ω) + 𝑔′(0)e𝜆𝑀(Ω)(1−𝜏)+𝜆𝐼 (Ω)𝜏.

Then, one can check that𝑁𝑚(𝑥) = (𝑅0)
𝑚
𝜑∗(𝑥), 𝑥 ∈ Ω, ∀𝑚 ≥ 0, is

a solution of system (2.5). Furthermore, 𝑅0 is a threshold value on
the global dynamics for system (1.6), which are read as follows.

Theorem 2.2. Assume that (J1), (H1)–(H5) are satisfied, and 𝑔
is monotone. Then the following statements hold:

(i) If 𝑅0 < 1, then the adult population becomes extinct eventu-
ally, that is, lim𝑚→+∞𝑁𝑚(𝑥) = 0 uniformly for 𝑥 ∈ Ω.

(ii) If 𝑅0 > 1, then system (1.6) admits a unique positive steady
state𝑁∗ ∈ 𝐶(Ω,ℝ+) with𝑁∗ ≫ 0. Moreover, the adult popu-
lation is persistent, that is, for any𝑁0 ∈ 𝐶(Ω,ℝ+) ⧵ {0}, there
holds lim𝑚→+∞ 𝑁𝑚(𝑥) = 𝑁∗(𝑥) uniformly for 𝑥 ∈ Ω.

Proof.

(i) Suppose that 𝑅0 < 1 and let

𝑢(𝑥, 𝑡) =

{
𝛿e𝜆𝑀(Ω)𝑡𝜑∗(𝑥), 𝑡 ∈ [0, 𝜏],

e𝜆𝑀(Ω)(𝑡−𝜏)[𝛿e𝜆𝑀(Ω)𝜏𝜑∗(𝑥) + 𝑣(𝑥, 𝜏)], 𝑡 ∈ (𝜏, 1],

where 𝛿 is a positive constant and 𝑣(𝑥, 𝑡) = 𝛿𝑔′(0)e𝜆𝐼 (Ω)𝑡
𝜑∗(𝑥) for 𝑡 ∈ [0, 1]. By (H1), (H3), and (H4), we see that
𝑣(𝑥, 0) = 𝛿𝑔′(0)𝜑∗ ≥ 𝑔(𝛿𝜑∗) = 𝑔(𝑢(𝑥, 0)),

𝑣𝑡 − 𝐷𝐼

[
∫
Ω

𝐽(𝑥, 𝑦)𝑣(𝑦, 𝑡)𝑑𝑦 − 𝑣(𝑥, 𝑡)

]
+ 𝑓𝐼(𝑣)

≥ 𝛿𝜆𝐼(Ω)𝑔
′(0)e𝜆𝐼 (Ω)𝑡𝜑∗

− 𝛿𝑔′(0)e𝜆𝐼 (Ω)𝑡𝐷𝐼

[
∫
Ω

𝐽(𝑥, 𝑦)𝜑∗(𝑦)𝑑𝑦 − 𝜑∗
]

+ 𝛿𝑓′𝐼(0)𝑔
′(0)e𝜆𝐼 (Ω)𝑡𝜑∗

= 0, 𝑡 ∈ (0, 𝜏],

𝑢𝑡 − 𝐷𝑀

[
∫
Ω

𝐽(𝑥, 𝑦)𝑢(𝑦, 𝑡)𝑑𝑦 − 𝑢(𝑥, 𝑡)

]
+ 𝑓𝑀(𝑢)

≥ 𝛿𝜆𝑀(Ω)𝑒
𝜆𝑀(Ω)𝑡𝜑∗ − 𝛿𝑒𝜆𝑀(Ω)𝑡𝐷𝑀

[
∫
Ω

𝐽(𝑥, 𝑦)𝜑∗(𝑦)𝑑𝑦 − 𝜑∗
]

+ 𝛿𝑓′𝑀(0)𝑒
𝜆𝑀(Ω)𝑡𝜑∗

= 0, 𝑡 ∈ (0, 𝜏],

and

𝑢𝑡 − 𝐷𝑀

[
∫
Ω

𝐽(𝑥, 𝑦)𝑢(𝑦, 𝑡)𝑑𝑦 − 𝑢(𝑥, 𝑡)

]
+ 𝑓𝑀(𝑢)

≥ 𝛿𝜆𝑀(Ω)e𝜆𝑀(Ω)(𝑡−𝜏)1𝜑
∗

− 𝛿e𝜆𝑀(Ω)(𝑡−𝜏)1𝐷𝑀

[
∫
Ω

𝐽(𝑥, 𝑦)𝜑∗(𝑦)𝑑𝑦 − 𝜑∗

]
+ 𝛿𝑓′

𝑀(0)e
𝜆𝑀(Ω)(𝑡−𝜏)1𝜑

∗

= 0, 𝑡 ∈ (𝜏, 1],

where 1 = e𝜆𝑀(Ω)𝜏 + 𝑔′(0)e𝜆𝐼 (Ω)𝜏. Then, 𝑢(𝑥, 𝑡) is an upper
solution of

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑢𝑡 = 𝐷𝑀

[
∫
Ω

𝐽(𝑥, 𝑦)𝑢(𝑦, 𝑡)𝑑𝑦 − 𝑢𝑚

]
− 𝑓𝑀(𝑢), 𝑥 ∈ Ω,

0 < 𝑡 ≤ 1, 𝑡 ≠ 𝜏,

𝑢(𝑥, 𝑡+) = 𝑢(𝑥, 𝑡) + 𝑣(𝑥, 𝜏), 𝑡 = 𝜏,

𝑢(𝑥, 0) = 𝛿𝜑∗(𝑥), 𝑥 ∈ Ω,

(2.7)

where 𝑣(𝑥, 𝜏) is value of the solution, evaluated at 𝑡 = 𝜏, of
the following problem:

⎧⎪⎪⎨⎪⎪⎩
𝑣𝑡 = 𝐷𝐼

[
∫
Ω

𝐽(𝑥, 𝑦)𝑣(𝑦, 𝑡)𝑑𝑦 − 𝑣

]
− 𝑓𝐼(𝑣), 𝑥 ∈ Ω,

0 < 𝑡 ≤ 1,

𝑣(𝑥, 0) = 𝑔(𝑢(𝑥, 0)), 𝑥 ∈ Ω.

Denote 𝑁𝑚(𝑥) = 𝛿(𝑅0)
𝑚𝜑∗(𝑥) for all 𝑚 ≥ 0. For any given

initial data 𝑢0(𝑥, 0) = 𝑁0(𝑥) in system (1.6), we can take a
sufficiently large 𝛿 such that 𝑁0(𝑥) ≤ 𝑁0(𝑥). Since 𝑢(𝑥, 𝑡)
is an upper solution of (2.7), by the comparison argument
and mathematical induction, one can obtain that 𝑁𝑚(𝑥) ≤
𝑁𝑚(𝑥) for all𝑚 ≥ 0 and 𝑥 ∈ Ω. When 𝑅0 < 1, there must be
lim𝑚→+∞𝑁𝑚(𝑥) = 0 uniformly for 𝑥 ∈ Ω, which implies the
desired result.

(ii) Before establishing the existence and uniqueness of the
positive steady state, we define the space

 = {𝜑 ∶ Ω → ℝ|𝜑 is bounded and Lebesgue
measurable in Ω}
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with the norm ‖𝜑‖ = sup𝑥∈Ω |𝜑(𝑥)|. Then, ( , ‖ ⋅ ‖ ) is a
Banach space. Let + = {𝜑 ∈ |𝜑(𝑥) ≥ 0 ∀𝑥 ∈ Ω}. In this
way, + becomes a positive cone of  and induce a partial
ordering on  . Moreover, we can check that the interior of
+, denoted by int(+), is nonempty, and

int(+) =
{
𝜑 ∈ +| inf

𝑥∈Ω

𝜑(𝑥) > 0

}
=
{
𝜑 ∈ +|𝜑(𝑥) ≥ 𝜖 for some 𝜖 > 0, ∀𝑥 ∈ Ω

}
.

Recall the operator  defined in (2.6). An argument similar
to [20, Lemma 3.5] can be carried out to obtain that 
is compact and strongly positive from + to +. Since
𝐶(Ω,ℝ+) ⊂ +, (𝜆0(Ω), 𝜑∗) is an eigen-pair of in the space
+. Then the classical Krein–Rutman theorem [26] implies
that (𝜆0(Ω), 𝜑∗) is the principal eigenpair of  in the space
+. Under the assumptions (J1), (H1)–(H5), we see that for
any initial data 𝑢(0; 𝜑) = 𝜑 (respectively, 𝑁0 = 𝜑) with 𝜑 ∈

+, system (1.3) (respectively, system (1.6)) admits a unique
nonnegative solution 𝑢(𝑡; 𝜑) (respectively, 𝑁𝑚(𝜑)). By the
maximum principle of nonlocal dispersal equations (cf. [44,
Propositions 2.1 and 2.2] and [18, Propositions 4.1.4 and
4.1.5]), we derive that for any 𝜑1, 𝜑2 ∈ + with 𝜑1 ≤,≢ 𝜑2,
we derive that 𝑆𝑡[𝜑1] < 𝑆𝑡[𝜑2] and 𝑇𝑡[𝜑1] < 𝑆𝑡[𝜑2] for all
𝑡 > 0, where 𝑆𝑡 and 𝑇𝑡 are the time-𝑡 solution maps of
the first equations in (1.3) and (1.4), respectively. Note that
𝑄(𝜑) = 𝑢(1; 𝜑) and 𝑄𝑚(𝜑) = 𝑁𝑚(𝜑), where 𝑄 is defined in
(1.5). Then, we have 𝑄[𝜑1] < 𝑄[𝜑2] for any 𝜑1, 𝜑2 ∈ + with
𝜑1 ≤,≢ 𝜑2.

Claim 2.1. The operator 𝑄 is strongly subhomogeneous in the
sense that 𝑄(𝜃𝜑) ≫ 𝜃𝑄(𝜑) for any 𝜑 ∈ int(+) and 𝜃 ∈ (0, 1).

For Claim 2.1, we first prove 𝑆𝑡 is strongly subhomogeneous
for 𝑡 ∈ (0, 1]. Fix 𝜃 ∈ (0, 1). For any 𝜑 ∈ int(+), let 𝑤(𝑥, 𝑡) =
𝑆𝑡[𝜃𝜑](𝑥) − 𝜃𝑆𝑡[𝜑](𝑥) ∀𝑡 ≥ 0. Then,𝑤(𝑥, 0) = 0 for𝑥 ∈ Ω, and for
𝑥 ∈ Ω, 𝑡 ∈ (0, 1], 𝑤(𝑥, 𝑡) satisfies

𝑤𝑡(𝑥, 𝑡) = 𝐷𝑀

[
∫
Ω

𝐽(𝑥, 𝑦)𝑤(𝑦, 𝑡)𝑑𝑦 − 𝑤(𝑥, 𝑡)

]
− 𝑓𝑀(𝑆𝑡[𝜃𝜑](𝑥)) + 𝑓𝑀(𝜃𝑆𝑡[𝜑](𝑥))

− 𝑓𝑀(𝜃𝑆𝑡[𝜑](𝑥)) + 𝜃𝑓𝑀(𝑆𝑡[𝜑](𝑥))

= 𝐷𝑀

[
∫
Ω

𝐽(𝑥, 𝑦)𝑤(𝑦, 𝑡)𝑑𝑦 − 𝑤(𝑥, 𝑡)

]
−𝐻(𝑥, 𝑡)𝑤(𝑥, 𝑡) − ℎ(𝑥, 𝑡),

where

𝐻(𝑥, 𝑡) = ∫
1

0

𝑑𝑓𝑀(𝜉)

𝑑𝜉

||||𝜉=𝑠𝑆𝑡 [𝜃𝜑]+(1−𝑠)𝜃𝑆𝑡 [𝜑]𝑑𝑠,
ℎ(𝑥, 𝑡) = 𝑓𝑀(𝜃𝑆𝑡[𝜑](𝑥)) − 𝜃𝑓𝑀(𝑆𝑡[𝜑](𝑥)).

Let 𝑈(𝑡, 𝑠), 𝑡 ≥ 𝑠 ≥ 0, be the evolution operator of the linear
nonlocal dispersal equation

𝑢𝑡(𝑥, 𝑡) = 𝐷𝑀

[
∫
Ω

𝐽(𝑥, 𝑦)𝑤(𝑦, 𝑡)𝑑𝑦 − 𝑤(𝑥, 𝑡)

]
−𝐻(𝑥, 𝑡)𝑤(𝑥, 𝑡),

𝑥 ∈ Ω, 𝑡 > 0.

Then the maximum principle of nonlocal dispersal equations (cf.
[44, Propositions 2.1 and 2.2] and [18, Propositions 4.1.4 and
4.1.5]) implies that 𝑈(𝑡, 𝑠)[𝜑] ≫ 0 for any 𝜑 > 0. By the formula
of variation of constants, there holds that

𝑤(𝑥, 𝑡) = ∫
𝑡

0

𝑈(𝑡, 𝑠)[−ℎ(⋅, 𝑠)](𝑠)𝑑𝑠, 𝑥 ∈ Ω, 𝑡 ∈ (0, 1].

Since 𝑓𝑀(𝑢)∕𝑢 is strictly increasing in 𝑢 ∈ ℝ+, when 𝜑 ≫ 0, we
have ℎ(⋅, 𝑡) < 0 and hence 𝑤(⋅, 𝑡) > 0 for 𝑡 ∈ (0, 1]. Thus, 𝑆𝑡 is
strongly subhomogeneous for 𝑡 ∈ (0, 1]. Similarly, we can prove
that 𝑇𝑡 is strongly subhomogeneous for 𝑡 ∈ (0, 1]. Since 𝑔(𝑁)∕𝑁
is nonincreasing,we obtain that 𝑔(𝑁) is subhomogeneous.Hence,
it follows from (1.5) that 𝑄 is strongly subhomogeneous.

By Claim 2.1, similar to the proof of [53, Theorem 2.2], we can
easily prove that 𝑄 has at most one strongly positive fixed point
in  .
Suppose that 𝑅0 > 1, then we can take 𝜆̂𝑀 < 𝜆𝑀(Ω), 𝜆̂𝐼 < 𝜆𝐼(Ω)

and 𝛾 ∈ (0, 𝑔′(0)) such that e𝜆̂𝑀 + 𝛾e𝜆̂𝑀(1−𝜏)+𝜆̂𝐼 𝜏 > 1. Let

𝑢(𝑥, 𝑡) =

{
𝜀e𝜆̂𝑀𝑡𝜑∗(𝑥), 𝑡 ∈ [0, 𝜏],

e𝜆̂𝑀(𝑡−𝜏)[𝜀e𝜆̂𝑀𝜏𝜑∗(𝑥) + 𝑣(𝑥, 𝜏)], 𝑡 ∈ (𝜏, 1],

where 𝑣(𝑥, 𝑡) = 𝜀𝛾e𝜆̂𝐼 𝑡𝜑∗(𝑥) for 𝑡 ∈ [0, 1]. By (H2) and (H5), there
holds that for 𝜀 > 0 small enough,

𝑣(𝑥, 0) = 𝜀𝛾𝜑∗ ≤ 𝜀𝛾𝜑∗ + 𝜀𝜑∗
(
𝑔′(0) − 𝛾 − 𝜌𝑔(𝜀𝜑

∗)𝜈𝑔−1
)

= 𝑔′(0)𝜀𝜑∗ − 𝜌𝑔(𝜀𝜑
∗)𝜈𝑔 ≤ 𝑔(𝜀𝜑∗) = 𝑔(𝑢(𝑥, 0)),

𝑣
𝑡
− 𝐷𝐼

[
∫
Ω

𝐽(𝑥, 𝑦)𝑣(𝑦, 𝑡)𝑑𝑦 − 𝑣(𝑥, 𝑡)

]
+ 𝑓𝐼(𝑣)

≤ 𝜀𝛾𝜆̂𝐼e𝜆̂𝐼 𝑡𝜑∗ − 𝜀𝛾e𝜆̂𝐼 𝑡𝐷𝐼

[
∫
Ω

𝐽(𝑥, 𝑦)𝜑∗(𝑦)𝑑𝑦 − 𝜑∗

]
+ 𝜀𝛾𝑓′

𝐼(0)e
𝜆̂𝐼 𝑡𝜑∗ + 𝜌𝐼(𝜀𝛾e𝜆̂𝐼 𝑡𝜑∗)𝜈𝐼

= 𝜀𝛾e𝜆̂𝐼 𝑡
[
𝜆̂𝐼𝜑

∗ − 𝐷𝐼 ∫
Ω

𝐽(𝑥, 𝑦)𝜑∗(𝑦)𝑑𝑦 + 𝐷𝐼𝜑
∗ + 𝑓′

𝐼(0)𝜑
∗

]
+ 𝜌𝐼(𝜀𝛾e𝜆̂𝐼 𝑡𝜑∗)𝜈𝐼

= 𝑣[𝜆̂𝐼 − 𝜆𝐼(Ω) + 𝜌𝐼𝜀
𝜈𝐼−1(𝛾e𝜆̂𝐼 𝑡𝜑∗)𝜈𝐼−1] ≤ 0, 𝑡 ∈ (0, 𝜏],

𝑢
𝑡
− 𝐷𝑀

[
∫
Ω

𝐽(𝑥, 𝑦)𝑢(𝑦, 𝑡)𝑑𝑦 − 𝑢(𝑥, 𝑡)

]
+ 𝑓𝑀(𝑢)

≤ 𝜀𝜆̂𝑀e𝜆̂𝑀𝑡𝜑∗ − 𝜀e𝜆̂𝑀𝑡𝐷𝐼

[
∫
Ω

𝐽(𝑥, 𝑦)𝜑∗(𝑦)𝑑𝑦 − 𝜑∗

]
+ 𝜀𝑓′

𝑀(0)e
𝜆̂𝑀𝑡𝜑∗ + 𝜌𝑀(𝜀e𝜆̂𝑀𝑡𝜑∗)𝜈𝑀

= 𝜀e𝜆̂𝑀𝑡

[
𝜆̂𝑀𝜑

∗ − 𝐷𝑀 ∫
Ω

𝐽(𝑥, 𝑦)𝜑∗(𝑦)𝑑𝑦 + 𝐷𝑀𝜑
∗ + 𝑓′

𝑀(0)𝜑
∗

]
6 of 22 Studies in Applied Mathematics, 2025
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+ 𝜌𝑀(𝜀e𝜆̂𝑀𝑡𝜑∗)𝜈𝑀

= 𝑢[𝜆̂𝑀 − 𝜆𝑀(Ω) + 𝜌𝑀𝜀
𝜈𝑀−1(e𝜆̂𝐼 𝑡𝜑∗)𝜈𝑀−1] ≤ 0, 𝑡 ∈ (0, 𝜏],

and

𝑢
𝑡
− 𝐷𝑀

[
∫
Ω

𝐽(𝑥, 𝑦)𝑢(𝑦, 𝑡)𝑑𝑦 − 𝑢(𝑥, 𝑡)

]
+ 𝑓𝑀(𝑢)

≤ 𝜀𝜆̂𝑀e𝜆̂𝑀(𝑡−𝜏)2𝜑
∗ − 𝜀e𝜆̂𝑀(𝑡−𝜏)2𝐷𝑀

[
∫
Ω

𝐽(𝑥, 𝑦)𝜑∗(𝑦)𝑑𝑦 − 𝜑∗
]

+ 𝜀𝑓′𝑀(0)e
𝜆̂𝑀(𝑡−𝜏)2𝜑

∗ + 𝜌𝑀(𝜀e𝜆̂𝑀(𝑡−𝜏)2𝜑
∗)𝜈𝑀

= 𝜀e𝜆̂𝑀(𝑡−𝜏)2

[
𝜆̂𝑀𝜑

∗ − 𝐷𝑀 ∫
Ω

𝐽(𝑥, 𝑦)𝜑∗(𝑦)𝑑𝑦 + 𝐷𝑀𝜑
∗ + 𝑓′𝑀(0)𝜑

∗

]
+ 𝜌𝑀(𝜀e𝜆̂𝑀(𝑡−𝜏)2𝜑

∗)𝜈𝑀

= 𝑢[𝜆̂𝑀 − 𝜆𝑀(Ω) + 𝜌𝑀𝜀
𝜈𝑀−1(e𝜆̂𝐼 (𝑡−𝜏)2𝜑

∗)𝜈𝑀−1] ≤ 0, 𝑡 ∈ (𝜏, 1],

where2 = e𝜆̂𝑀𝜏 + 𝛾e𝜆̂𝐼 𝜏. Then, 𝑢(𝑥, 𝑡) is a lower solution of (2.7)
with 𝛿 replaced by 𝜀. Meanwhile, we can choose a constant 𝜀0 > 0

small enough such that for any given 𝜀 ∈ (0, 𝜀0],𝑀 > 𝜀𝜑∗(𝑥) ∀𝑥 ∈

Ω, and

𝑄[𝜀𝜑∗] = 𝑆1−𝜏[𝑆𝜏(𝜀𝜑
∗) + 𝑇𝜏𝑔(𝜀𝜑

∗)] ≥ 𝑆1−𝜏

[
e𝜆̂𝑀𝜏𝜀𝜑∗ + e𝜆̂𝐼 𝜏𝛾𝜀𝜑∗

]
≥ (e𝜆̂𝑀 + 𝛾e𝜆̂𝑀(1−𝜏)+𝜆̂𝐼 𝜏

)
𝜀𝜑∗ ≥ 𝜀𝜑∗,

which induces that

𝑀 ≥ 𝑄𝑚+1(𝜀𝜑∗)(𝑥) ≥ 𝑄𝑚(𝜀𝜑∗)(𝑥), 𝑥 ∈ Ω, ∀𝑚 ≥ 0.

Thus, there exists 𝑁∗ ∈ int(+) such that

lim
𝑚→+∞

𝑄𝑚[𝜀𝜑∗](𝑥) = 𝑁∗(𝑥), ∀𝑥 ∈ Ω, (2.8)

and 𝑁∗ is lower semicontinuous in the sense that
lim inf 𝑥→𝑥0

𝑁∗(𝑥) ≥ 𝑁∗(𝑥0) for any 𝑥0 ∈ Ω. On the other hand,
noting that 𝑔 is monotone, we have that 𝑔(𝑀) ≥ 𝑔(𝑁∗)(𝑥) ≥
𝑔(𝑄𝑚(𝜀𝜑∗))(𝑥). Define

𝑢𝑚(𝑥, 𝑡) = 𝑢(𝑥, 𝑡; 𝑄𝑚(𝜀𝜑∗)), 𝑣𝑚(𝑥, 𝑡) = 𝑣(𝑥, 𝑡; 𝑔(𝑄𝑚(𝜀𝜑∗))),

∀(𝑥, 𝑡) ∈ Ω × [0, 1],

where 𝑢(𝑥, 𝑡; 𝑄𝑚(𝜀𝜑∗)) (respectively, 𝑣(𝑥, 𝑡; 𝑔(𝑄𝑚(𝜀𝜑∗)))) is the
solution of (2.7) (respectively, (1.4)) with the initial condition
𝑢(𝑥, 0; 𝑄𝑚(𝜀𝜑∗)) = 𝑄𝑚(𝜀𝜑∗) (respectively, 𝑣(𝑥, 0; 𝑔(𝑄𝑚(𝜀𝜑∗))) =
𝑔(𝑄𝑚(𝜀𝜑∗))) for𝑚 ≥ 0. It follows that

𝑢𝑚(𝑥, 𝑡) ≤ 𝑢𝑚+1(𝑥, 𝑡) ≤ 𝑢(𝑥, 𝑡;𝑀) ≤ max
(𝑥,𝑡)∈Ω×[0,1]

𝑢(𝑥, 𝑡;𝑀),

𝑣𝑚(𝑥, 𝑡) ≤ 𝑣𝑚+1(𝑥, 𝑡) ≤ 𝑣(𝑥, 𝑡; 𝑔(𝑀)) ≤ max
(𝑥,𝑡)∈Ω×[0,1]

𝑣(𝑥, 𝑡; 𝑔(𝑀)).

Hence, the limits 𝑢(𝑥, 𝑡) ∶= lim
𝑚→+∞

𝑢𝑚(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) ∶=

lim
𝑚→+∞

𝑣𝑚(𝑥, 𝑡) exist for (𝑥, 𝑡) ∈ Ω × [0, 1]. Especially,

lim
𝑚→+∞

𝑢𝑚(𝑥, 0) = lim
𝑚→+∞

𝑄𝑚(𝜀𝜑∗)(𝑥) = 𝑢(𝑥, 0),

lim
𝑚→+∞

𝑣𝑚(𝑥, 0) = lim
𝑚→+∞

𝑔(𝑄𝑚(𝜀𝜑∗))(𝑥) = 𝑣(𝑥, 0), for 𝑥 ∈ Ω.

Hence, by (2.8),𝑁∗(𝑥) = 𝑢(𝑥, 0) for 𝑥 ∈ Ω. Moreover, by (1.3), we
have

𝑢𝑚(𝑥, 𝑡) − 𝑢𝑚(𝑥, 0) = ∫
𝑡

0

𝐷𝑀

[
∫
Ω

𝐽(𝑥, 𝑦)𝑢𝑚(𝑦, 𝑠)𝑑𝑦 − 𝑢𝑚(𝑥, 𝑠)

]
𝑑𝑠

−∫
𝑡

0

𝑓𝑀(𝑢𝑚(𝑥, 𝑠))𝑑𝑠, 𝑡 ∈ [0, 𝜏],

and

𝑢𝑚(𝑥, 𝑡) − 𝑢𝑚(𝑥, 𝜏) − 𝑣𝑚(𝑥, 𝜏)

= ∫
𝑡

0

𝐷𝑀

[
∫
Ω

𝐽(𝑥, 𝑦)𝑢𝑚(𝑦, 𝑠)𝑑𝑦 − 𝑢𝑚(𝑥, 𝑠)

]
𝑑𝑠

−∫
𝑡

0

𝑓𝑀(𝑢𝑚(𝑥, 𝑠))𝑑𝑠, 𝑡 ∈ (𝜏, 1],

where

𝑣𝑚(𝑥, 𝑡) − 𝑣𝑚(𝑥, 0) = ∫
𝑡

0

𝐷𝐼

[
∫
Ω

𝐽(𝑥, 𝑦)𝑣𝑚(𝑦, 𝑠)𝑑𝑦 − 𝑣𝑚(𝑥, 𝑠)

]
𝑑𝑠

−∫
𝑡

0

𝑓𝐼(𝑣𝑚(𝑥, 𝑠))𝑑𝑠, 𝑡 ∈ [0, 𝜏].

It then follows from Lebesgue’s dominated convergence theorem
that

𝑢(𝑥, 𝑡) − 𝑢(𝑥, 0) = ∫
𝑡

0

𝐷𝑀

[
∫
Ω

𝐽(𝑥, 𝑦)𝑢(𝑦, 𝑠)𝑑𝑦 − 𝑢(𝑥, 𝑠)

]
𝑑𝑠

−∫
𝑡

0

𝑓𝑀(𝑢(𝑥, 𝑠))𝑑𝑠, 𝑡 ∈ [0, 𝜏],

and

𝑢(𝑥, 𝑡) − 𝑢(𝑥, 𝜏) − 𝑣(𝑥, 𝜏)

= ∫
𝑡

0

𝐷𝑀

[
∫
Ω

𝐽(𝑥, 𝑦)𝑢(𝑦, 𝑠)𝑑𝑦 − 𝑢(𝑥, 𝑠)

]
𝑑𝑠

−∫
𝑡

0

𝑓𝑀(𝑢(𝑥, 𝑠))𝑑𝑠, 𝑡 ∈ (𝜏, 1],

where

𝑣(𝑥, 𝑡) − 𝑣(𝑥, 0) = ∫
𝑡

0

𝐷𝐼

[
∫
Ω

𝐽(𝑥, 𝑦)𝑣(𝑦, 𝑠)𝑑𝑦 − 𝑣(𝑥, 𝑠)

]
𝑑𝑠

−∫
𝑡

0

𝑓𝐼(𝑣(𝑥, 𝑠))𝑑𝑠, 𝑡 ∈ [0, 𝜏].

This shows that

𝑢𝑡 = 𝐷𝑀

[
∫
Ω

𝐽(𝑥, 𝑦)𝑢(𝑦, 𝑡)𝑑𝑦 − 𝑢(𝑥, 𝑡)

]
− 𝑓𝑀(𝑢(𝑥, 𝑡)),

𝑡 ∈ (0, 1], 𝑡 ≠ 𝜏,
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𝑣𝑡 = 𝐷𝐼

[
∫
Ω

𝐽(𝑥, 𝑦)𝑣(𝑦, 𝑡)𝑑𝑦 − 𝑣(𝑥, 𝑡)

]
− 𝑓𝐼(𝑣(𝑥, 𝑡)), 𝑡 ∈ (0, 𝜏],

and thus the limiting function 𝑢(𝑥, 𝑡) is a solution of (1.3), while
𝑣(𝑥, 𝑡) is a solution of (1.4). By the fact that 𝑢(𝑥, 0) = 𝑁∗(𝑥)

and 𝑣(𝑥, 0) = 𝑔(𝑁∗)(𝑥) ∀𝑥 ∈ Ω, we have 𝑢(⋅, 1) = 𝑢(⋅, 1; 𝑁∗).
Notice that 𝑢(𝑥, 1) = lim

𝑚→+∞
𝑢𝑚(𝑥, 1) ∀𝑥 ∈ Ω, equivalently,

𝑢(𝑥, 1) = lim
𝑚→+∞

𝑄𝑚+1(𝜀𝜑∗)(𝑥) ∀𝑥 ∈ Ω, which together with (2.8)
implies that

𝑁∗(𝑥) = 𝑢(𝑥, 1) = 𝑢(𝑥, 1;𝑁∗) = 𝑄[𝑁∗](𝑥).

Hence 𝑁∗ is a fixed point of the operator 𝑄.

Recall that 𝑀 is an upper solution of system (1.6), then for any
given constant 𝜂 > 1, there holds 𝑄(𝜂𝑀) ≤ 𝜂𝑄(𝑀) ≤ 𝜂𝑀, which
leads to that𝑄𝑚+1(𝜂𝑀) ≤ 𝑄𝑚(𝜂𝑀) ≤ (𝜂𝑀) for all𝑚 ≥ 0. Noticing
that for 𝜀 > 0 small enough, 𝜀𝜑∗(𝑥) < 𝑀 < 𝜂𝑀 ∀𝑥 ∈ Ω, we have
0 < 𝑄𝑚(𝜀𝜑∗)(𝑥) < 𝑄𝑚(𝜂𝑀)(𝑥), ∀𝑥 ∈ Ω. Therefore, we can also
find 𝑁∗ ∈ + such that lim

𝑚→+∞
𝑄𝑚(𝜂𝑀)(𝑥) = 𝑁∗(𝑥), ∀𝑥 ∈ Ω, and

𝑁∗ is upper semicontinuous in the sense that lim sup𝑥→𝑥0
𝑁∗(𝑥) ≥

𝑁∗(𝑥0) for any 𝑥0 ∈ Ω. Moreover, 𝑄(𝑁∗) = 𝑁∗.

Based on the above argument, there should be 0 ≪ 𝑁∗ ≤ 𝑁∗ in
 . Since the strongly positive fixed point of 𝑄 is unique in  , we
have 𝑁∗ = 𝑁∗. By the upper semicontinuity of 𝑁∗ and the lower
semicontinuity of𝑁∗, it follows that𝑁∗ is continuous. Moreover,
we can obtain from Dini’s theorem that lim

𝑚→+∞
𝑄𝑚(𝜀𝜑∗)(𝑥) =

lim
𝑚→+∞

𝑄𝑚(𝜂𝑀)(𝑥) = 𝑁∗(𝑥) uniformly for 𝑥 ∈ Ω.

Finally, for any given initial value 𝑁0 = 𝜑 ∈ 𝐶(Ω,ℝ+) with 𝜑 >

0, there holds 𝑢(⋅, 1; 𝜑) ≫ 0 (see, e.g., [25]), and thus 𝑁1 =
𝑢(⋅, 1; 𝜑) ≫ 0. Without loss of generality, one can take 𝑁1 as
the new initial datum and choose a sufficiently small 𝜀 ∈

(0, 𝜀0] and a sufficiently large 𝜂 > 1 so that 𝜀𝜑∗ ≤ 𝑁1 ≤ 𝜂𝑀.
This causes that 𝑄𝑚(𝜀𝜑∗) ≤ 𝑄𝑚(𝑁1) ≤ 𝑄𝑚(𝜂𝑀), ∀𝑚 ≥ 0. Con-
sequently, lim

𝑚→+∞
𝑁𝑚(𝑥) = lim

𝑚→+∞
𝑄𝑚(𝜑)(𝑥) = 𝑁∗(𝑥) uniformly for

𝑥 ∈ Ω. The proof is completed. □

Next, we let Ω = (𝓁1, 𝓁2) with −∞ < 𝓁1 < 0 < 𝓁2 < +∞, and
consider the casewhen the dispersal only depends on the distance
between the starting location 𝑥 and the destination 𝑦, namely,
𝐽(𝑥, 𝑦) = 𝐽(𝑥 − 𝑦). Look at the following linear eigenvalue:

((𝓁1,𝓁2)
+ 𝑎)[𝜓](𝑥) ∶= 𝑑

[
∫

𝓁2

𝓁1

𝐽(𝑥 − 𝑦)𝜓(𝑦)𝑑𝑦 − 𝜓(𝑥)

]
+ 𝑎𝜓(𝑥), ∀𝜓 ∈ 𝐶([𝓁1, 𝓁2]), (2.9)

where 𝑑 and 𝑎 are positive constants. It is well-known (see, e.g.,
[6, 11]) that under the following assumption:

(J2) 𝐽(𝑥) is a nonnegative, symmetric, and continuous function
onℝwith 𝐽(0) > 0, ∫

ℝ
𝐽(𝑥)𝑑𝑥 = 1, and sup𝑥∈ℝ 𝐽(𝑥) < +∞,

problem (2.9) admits a unique principal eigenvalue, denoted by
𝜆𝑝((𝓁1,𝓁2)

+ 𝑎), corresponding to a positive eigenfunction 𝜓∗ ∈

𝐶([𝓁1, 𝓁2]). Moreover, we have some properties on the principal
eigenvalue 𝜆𝑝((𝓁1,𝓁2)

+ 𝑎).

Proposition 2.3 [9, Proposition 3.4]. Assume that the kernel
function 𝐽 satisfies (J2), then

(i) 𝜆𝑝((𝓁1,𝓁2)
+ 𝑎) is strictly increasing and continuous with

respect to 𝓁 ∶= 𝓁2 − 𝓁1;

(ii) lim𝓁2−𝓁1→0+ 𝜆𝑝((𝓁1,𝓁2)
+ 𝑎) = 𝑎 − 𝑑;

(iii) lim𝓁2−𝓁1→+∞ 𝜆𝑝((𝓁1,𝓁2)
+ 𝑎) = 𝑎.

By Proposition 2.3 and the definition of 𝑅0, we derive that

lim
𝓁2−𝓁1→0+

𝑅0 = e−𝑓′𝑀(0)−𝐷𝑀 + 𝑔′(0)e−(𝑓′𝑀(0)+𝐷𝑀)(1−𝜏)−(𝑓′
𝐼
(0)+𝐷𝐼)𝜏 =∶ 𝑄′

𝐷,

lim
𝓁2−𝓁1→+∞

𝑅0 = e−𝑓′𝑀(0) + 𝑔′(0)e−𝑓′𝑀(0)(1−𝜏)−𝑓′
𝐼
(0)𝜏 = 𝑄̂′(0),

and 𝑅0 is strictly increasing and continuous with respect to 𝓁 ∶=
𝓁2 − 𝓁1. Therefore, Theorem 2.2 implies the following corollary.

Corollary 2.4. Assume that (J2), (H1)–(H5) hold, and 𝑔 is
monotone. Then, the following statements are valid:

(i) If 𝑄̂′(0) < 1, then the adult population becomes extinct
eventually.

(ii) If 𝑄′
𝐷 < 1 < 𝑄̂′(0), then there exists a critical value 𝓁∗ ∈

(0,+∞) such that the adult population is persistent if and
only if 𝓁2 − 𝓁1 > 𝓁∗.

(iii) If 𝑄′
𝐷 > 1, then the adult population is always persistent.

2.2 Case 2: 𝒈 is Nonmonotone

In this subsection, we will show the threshold dynamics of
systems (1.6) when the birth function 𝑔 in nonmonotone. We
make the following assumption:

(H6) There exists 𝜎 > 0 such that 𝑔(𝑁) is nondecreasing for 0 ≤
𝑁 ≤ 𝜎.

Inspired by the method used in [19, 23, 28, 46], we first define a
nondecreasing function

𝑔+(𝑁) ∶= max
0≤𝑉≤𝑁 𝑔(𝑉), ∀𝑁 ≥ 0.

Clearly, 𝑔+ is nondecreasing and locally Lipschitz continuous,
and 𝑔+

′
(0) = 𝑔′(0). Then by Proposition 2.1, system (2.3) with 𝑔

replaced by 𝑔+ has a positive fixed point𝜛+ if and only if 𝑄̂′(0) >

1. Similarly, we introduce another function

𝑔−(𝑁) ∶= min
𝑁≤𝑉≤𝜛+

𝑔(𝑉), ∀0 ≤ 𝑁 ≤ 𝜛+.

Then, 𝑔− is nondecreasing and locally Lipschitz continuous, and
system (2.3) with 𝑔 replaced by 𝑔− has a positive fixed point
𝜛− when 𝑄̂′(0) > 1. By the definitions of 𝑔±, we easily see that
0 < 𝜛− ≤ 𝜛 ≤ 𝜛+, 𝑔−(𝑁) ≤ 𝑔(𝑁) ≤ 𝑔+(𝑁), (𝑔±)′(0) = 𝑔′(0), and
𝑔±(𝑁) ≤ 𝑔′(0)𝑁. Furthermore, there exists 𝜎0 ∈ (0, 𝜎∗)with 𝜎∗ =
min{𝜎, 𝜎𝑔} so that 𝑔±(𝑁) = 𝑔(𝑁) for 0 < 𝑁 ≤ 𝜎0.
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Next, we introduce the following two auxiliary equations:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝑡𝑢𝑚 = 𝐷𝑀

[
∫
Ω

𝐽(𝑥, 𝑦)𝑢𝑚(𝑦, 𝑡)𝑑𝑦 − 𝑢𝑚

]
− 𝑓𝑀(𝑢𝑚), 𝑥 ∈ ℝ,

0 < 𝑡 ≤ 1, 𝑡 ≠ 𝜏,

𝑢𝑚(𝑥, 𝑡
+) = 𝑢𝑚(𝑥, 𝑡) + 𝑣+𝑚(𝑥, 𝜏), 𝑡 = 𝜏,

𝑢𝑚(𝑥, 0) = 𝑁+
𝑚(𝑥), 𝑚 ∈ ℕ,

𝑁+
𝑚+1(𝑥) = 𝑢𝑚(𝑥, 1),

(2.10)

and

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝑡𝑢𝑚 = 𝐷𝑀

[
∫
Ω

𝐽(𝑥, 𝑦)𝑢𝑚(𝑦, 𝑡)𝑑𝑦 − 𝑢𝑚

]
− 𝑓𝑀(𝑢𝑚), 𝑥 ∈ ℝ,

0 < 𝑡 ≤ 1, 𝑡 ≠ 𝜏,

𝑢𝑚(𝑥, 𝑡
+) = 𝑢𝑚(𝑥, 𝑡) + 𝑣−𝑚(𝑥, 𝜏), 𝑡 = 𝜏,

𝑢𝑚(𝑥, 0) = 𝑁−
𝑚(𝑥), 𝑚 ∈ ℕ,

𝑁−
𝑚+1(𝑥) = 𝑢𝑚(𝑥, 1),

(2.11)

where 𝑣+𝑚(⋅, 𝜏) (respectively, 𝑣−𝑚(⋅, 𝜏)) is the value of the solu-
tion, evaluated at 𝑡 = 𝜏, of problem (1.4) with the initial
value 𝑣𝑚(𝑥, 0) = 𝑔+(𝑁+

𝑚(𝑥)) (respectively, 𝑣𝑚(𝑥, 0) = 𝑔−(𝑁−
𝑚(𝑥)))

for 𝑚 ≥ 0. In the same way as (1.6), we can induce from (2.10)
and (2.11) the following discrete-time systems:

𝑁+
𝑚+1(𝑥) = 𝑄+[𝑁+

𝑚](𝑥) = 𝑆1−𝜏[𝑆𝜏(𝑁
+
𝑚) + 𝑇𝜏𝑔

+(𝑁+
𝑚)](𝑥),

𝑥 ∈ Ω,𝑚 ≥ 0, (2.12)

and

𝑁−
𝑚+1(𝑥) = 𝑄−[𝑁−

𝑚](𝑥) = 𝑆1−𝜏[𝑆𝜏(𝑁
−
𝑚) + 𝑇𝜏𝑔

−(𝑁−
𝑚)](𝑥),

𝑥 ∈ Ω,𝑚 ≥ 0. (2.13)

Let 𝑁+
𝑚+1(𝑥) (respectively, 𝑁

−
𝑚+1(𝑥)) be the solution to system

(2.12) (respectively, (2.13)). It follows froma comparison argument
that for 0 < 𝑁−

0 (𝑥) ≤ 𝑁0(𝑥) ≤ 𝑁+
0 (𝑥) ≤ 𝜛+ with 𝑁−

0 , 𝑁0,𝑁
+
0 ∈

+, there holds that

0 ≤ 𝑁−
𝑚(𝑥) ≤ 𝑁𝑚(𝑥) ≤ 𝑁+

𝑚(𝑥) ≤ 𝜛+, 𝑥 ∈ Ω, ∀𝑚 ≥ 0.

By theorem 2.2, we see that models (2.10) and (2.11) have the same
threshold value 𝑅0. Then, we have the following results on the
dynamics of (1.6).

Theorem 2.5. Assume that (J1) and (H1)–(H6) hold. Then, we
have the following statements:

(i) If 𝑅0 < 1, then lim𝑚→+∞𝑁𝑚(𝑥) = 0 uniformly for 𝑥 ∈ Ω.

(ii) If 𝑅0 > 1, then for any initial datum𝑁0 ∈ 𝐶(Ω,ℝ+) ⧵ {0}, the
solution𝑁𝑚(𝑥) of system (1.6) satisfies

lim sup
𝑚→+∞

max
𝑥∈Ω

[𝑁𝑚(𝑥) −𝑁+
∗ (𝑥)] ≤ 0

≤ lim inf
𝑚→+∞

min
𝑥∈Ω

[𝑁𝑚(𝑥) −𝑁−
∗ (𝑥)],

where𝑁−
∗ (𝑥) (respectively,𝑁+

∗ (𝑥)) is the unique positive steady
state of system (2.13) (respectively, (2.12)).

Proof.

(i) Suppose that 𝑅0 < 1. It follows from the definition of 𝑔+
that 𝑔+(𝑁) ≥ 𝑔(𝑁) for all 𝑁 ≥ 0. Then by a comparison
argument, we infer that 0 ≤ 𝑁𝑚(𝑥) ≤ 𝑁+

𝑚(𝑥) for 𝑥 ∈ Ω,𝑚 ≥
0. Since (𝑔+)′(0) = 𝑔′(0), by Theorem 2.2(i), we have that
𝑁+

𝑚(𝑥) converges to zero uniformly for 𝑥 ∈ Ω as 𝑚 → ∞.
Hence,𝑁𝑚(𝑥) converges to zero uniformly for𝑥 ∈ Ω as𝑚 →

∞.

(ii) Suppose that 𝑅0 > 1. A comparison argument can be carried
out to obtain that 0 ≤ 𝑁𝑚(𝑥) ≤ 𝑁+

𝑚(𝑥) for 𝑥 ∈ Ω,𝑚 ≥ 0.
Since (𝑔+)′(0) = 𝑔′(0), by Theorem 2.2(ii), we have that
lim𝑚→+∞𝑁+

𝑚(𝑥) = 𝑁+
∗ (𝑥) uniformly for 𝑥 ∈ Ω. Then,

lim sup
𝑚→+∞

max
𝑥∈Ω

[𝑁𝑚(𝑥) −𝑁+
∗ (𝑥)] ≤ 0. (2.14)

Notice that𝜛+ satisfies

⎧⎪⎨⎪⎩
𝑢′(𝑡) = −𝑓𝑀(𝑢), 0 < 𝑡 ≤ 1, 𝑡 ≠ 𝜏,

𝑢(𝑡+) = 𝑢(𝑡) + 𝑣(𝜏), 𝑡 = 𝜏,

𝑢(0) = 𝜛+ = 𝑢(1),

where 𝑣(𝜏) is the value of the solution, evaluated at 𝑡 = 𝜏, of
the following initial value problem:{

𝑣′(𝑡) = −𝑓𝐼(𝑣), 0 < 𝑡 ≤ 1

𝑣(0) = 𝑔+(𝜛+), 𝑚 ∈ ℕ.

By a comparison argument, there holds that𝑁+
∗ (𝑥) ≤ 𝜛+ on

Ω. Then for any 𝜀 > 0, there exists a large integer𝑀 such that

𝑁𝑚(𝑥) ≤ 𝜛+ + 𝜀, 𝑥 ∈ Ω,𝑚 ≥ 𝑀. (2.15)

In the following, we show the Lower limit of 𝑁𝑚. For this
purpose, we choose 𝜀 > 0 small enough and let

𝑔−𝜀 (𝑁) ∶= min
𝑁≤𝑉≤𝜛++𝜀

𝑔(𝑉), ∀0 ≤ 𝑁 ≤ 𝜛+ + 𝜀.

Consider the following perturbed system of (2.11):

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜕𝑡𝑢𝑚 = 𝐷𝑀

[
∫
Ω

𝐽(𝑥, 𝑦)𝑢𝑚(𝑦, 𝑡)𝑑𝑦 − 𝑢𝑚

]
−𝑓𝑀(𝑢𝑚), 𝑥 ∈ ℝ,

0 < 𝑡 ≤ 1, 𝑡 ≠ 𝜏,

𝑢𝑚(𝑥, 𝑡
+) = 𝑢𝑚(𝑥, 𝑡) + 𝑣𝑚(𝑥, 𝜏), 𝑡 = 𝜏,

𝑢𝑚(𝑥, 0) = 𝑁−
𝑚,𝜀(𝑥), 𝑚 ∈ ℕ,

𝑁−
𝑚+1,𝜀(𝑥) = 𝑢𝑚(𝑥, 1),

where 𝑣𝑚(⋅, 𝜏) is the value of the solution, evaluated at 𝑡 = 𝜏,
of problem (1.4) with the initial value 𝑣𝑚(𝑥, 0) = 𝑔−𝜀 (𝑁

−
𝑚,𝜀(𝑥))

for𝑚 ≥ 0. It follows from (2.15) and a comparison argument
that for 𝑁0(𝑥) ≥ 𝑁−

0,𝜀(𝑥) > 0 with 𝑁−
0,𝜀, 𝑁0 ∈ +, there holds

that

0 ≤ 𝑁−
𝑚,𝜀(𝑥) ≤ 𝑁𝑚(𝑥) ≤ 𝜛+ + 𝜀, 𝑥 ∈ Ω, ∀𝑚 ≥ 𝑀.
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Since (𝑔−𝜀 )
′(0) = 𝑔′(0), by Theorem 2.2(ii), we have that

lim𝑚→+∞ 𝑁−
𝑚,𝜀(𝑥) = 𝑁−

∗,𝜀(𝑥) uniformly for 𝑥 ∈ Ω, where 𝑁−
∗,𝜀

is the unique positive steady state of the discrete system
{𝑁−

𝑚,𝜀}
∞
𝑚=0. This gives that

lim inf
𝑚→+∞

min
𝑥∈Ω

[𝑁𝑚(𝑥) −𝑁−
∗,𝜀(𝑥)] ≥ 0.

Finally, letting 𝜀 → 0, we obtain

lim inf
𝑚→+∞

min
𝑥∈Ω

[𝑁𝑚(𝑥) −𝑁−
∗ (𝑥)] ≥ 0.

The proof is completed. □

Remark 2.2. The persistence criterion obtained in Corollary 2.4
still applies to Theorem 2.5 since (𝑔±)′(0) = 𝑔′(0).

3 Spreading Speeds and Traveling Waves in an
Unbounded Domain

In this section, we will show the existence of spreading speed and
its coincidence with minimal wave speed for system (1.6) with
two kinds of birth functions, that is, the function 𝑔 is monotone
(Section 3.1) and nonmonotone (Section 3.2), respectively. In this
situation, Ω = ℝ.

For simplicity, we consider the case when the dispersal only
depends on the distance between the starting location 𝑥 and
the destination 𝑦, namely, 𝐽(𝑥, 𝑦) = 𝐽(𝑥 − 𝑦). In this section, we
always assume that

(J3) 𝐽 is a nonnegative, symmetric, and continuous function
on ℝ with 𝐽(0) > 0, ∫

ℝ
𝐽(𝑥)𝑑𝑥 = 1 and ∫

ℝ
e𝜇𝑥𝐽(𝑥)𝑑𝑥 <

+∞, ∀𝜇 ∈ [0, 𝜇∗) for some constant 𝜇∗
> 0.

Under the above assumption, we can rewrite system (1.3) as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜕𝑡𝑢𝑚 = 𝐷𝑀

[
∫
ℝ

𝐽(𝑥 − 𝑦)𝑢𝑚(𝑦, 𝑡)𝑑𝑦 − 𝑢𝑚

]
−𝑓𝑀(𝑢𝑚), 𝑥 ∈ ℝ,

0 < 𝑡 ≤ 1, 𝑡 ≠ 𝜏,

𝑢𝑚(𝑥, 𝑡
+) = 𝑢𝑚(𝑥, 𝑡) + 𝑣𝑚(𝑥, 𝜏), 𝑡 = 𝜏,

𝑢𝑚(𝑥, 0) = 𝑁𝑚(𝑥), 𝑚 ∈ ℕ,

𝑁𝑚+1(𝑥) = 𝑢𝑚(𝑥, 1),

(3.1)

where the impulsive perturbation term 𝑣𝑚(𝑥, 𝜏), which represents
the synchronizedmaturation, is the value of the solution 𝑣𝑚(𝑥, 𝑡),
evaluated at 𝑡 = 𝜏, of the following initial value problem:

⎧⎪⎪⎨⎪⎪⎩
𝜕𝑡𝑣𝑚 = 𝐷𝐼

[
∫
ℝ

𝐽(𝑥 − 𝑦)𝑣𝑚(𝑦, 𝑡)𝑑𝑦 − 𝑣𝑚

]
−𝑓𝐼(𝑣𝑚), 𝑥 ∈ ℝ, 𝑡 ∈ (0, 1],

𝑣𝑚(𝑥, 0) = 𝑔(𝑁𝑚(𝑥)), 𝑥 ∈ ℝ.

(3.2)

Clearly, problem (3.1) can still induce the discrete-time system
(1.6).

Let 𝑋 ∶= 𝐵𝐶(ℝ,ℝ) be the set of all continuous and bounded
functions from ℝ to ℝ with the supreme norm. Let 𝑋+ ∶= {𝜙 ∈

𝑋|𝜙(𝑥) ≥ 0 ∀𝑥 ∈ ℝ}. For any 𝜙, 𝜓 ∈ 𝑋, we write 𝜙 ≥ 𝜓 if 𝜙 − 𝜓 ∈

𝑋+; 𝜙 > 𝜓 if 𝜙 − 𝜓 ∈ 𝑋+ ⧵ {0}; and 𝜙 ≫ 𝜓 if 𝜙 > 𝜓 for all 𝑥 ∈ ℝ.
Here, 𝑋+ is a closed cone of 𝑋 and it induces a partial ordering
relation which makes 𝑋 as an ordered Banach space. In addition,
we equip 𝑋 with the compact open topology, that is, a sequence
of 𝜙𝑛(𝑥) converges to 𝜙(𝑥) uniformly for 𝑥 in any compact subset
of ℝ. Moreover, we denote

𝑋𝑟 =
{
𝑢 ∈ 𝑋|0 ≤ 𝑢(𝑥) ≤ 𝑟, ∀ 𝑥 ∈ ℝ

}
,

where 𝑟 > 0 is given real number, and define the translation
operator 𝑎 ∶ 𝑋 → 𝑋 by

𝑎[𝑢](𝑥) = 𝑢(𝑥 − 𝑎), ∀ 𝑢 ∈ 𝑋, 𝑎 ∈ ℝ.

3.1 Case 1: 𝒈 is Monotone

To study the propagation dynamics of (1.6), based on Proposi-
tion 2.1, we need to assume that 𝑄̂′(0) > 1, which can guarantee
the existence of a positive fixed point of discrete-time system (2.3),
which is globally asymptotically stable. Since the solution map 𝑆𝑡
of (3.1) is not compact, 𝑄 in system (1.6) is not compact. In the
rest of this subsection, we will apply the abstract theory in [12]
for monotone semiflows with weak compactness. Accordingly,
we need to state the known definition of the Kuratowski measure
of noncompactness.

Definition 3.1 [59]. Let  be a Banach space. The Kuratowski
measure of noncompactness in  is defined by

𝜅(𝐵) = inf {𝑟 ∶ 𝐵 has a finite open cover of diameter ≤ 𝑟}

for any bounded set 𝐵 of  . Clearly, 𝜅(𝐵) = 0 if and only if 𝐵 is
compact. Moreover, 𝜅(𝐵1 + 𝐵2) ≤ 𝜅(𝐵1) + 𝜅(𝐵2) for any bounded
sets 𝐵1 and 𝐵2.

We are now able to establish the propagation dynamics of (1.6) by
utilizing the theory developed in [12, 34].

Theorem 3.2. Assume that (J3), (H1)–(H5) hold, and 𝑔 is
monotone. If 𝑄̂′(0) > 1, then there exists a spreading speed 𝑐∗ for
system (1.6) such that the following statements are valid:

(i) If 𝜙 ∈ 𝑋𝜛 , where 𝜛 is the positive fixed point of sys-
tem (2.3), and 𝜙(𝑥) = 0 outside a bounded interval, then
lim𝑚→∞,|𝑥|≥𝑐𝑚 |𝑄𝑚[𝜙](𝑥)| = 0, ∀𝑐 > 𝑐∗.

(ii) If 𝜙 ∈ 𝑋𝜛 ⧵ {0}, then lim𝑚→∞,|𝑥|≤𝑐𝑚 |𝑄𝑚[𝜙](𝑥) −𝜛| =
0, ∀𝑐 ∈ (0, 𝑐∗).

Proof. At first, by (H1)–(H5), an argument similar to that in
[52, Theorem 2.2 and Lemma 3.1] can be carried out to show that
for any 𝜙 ∈ 𝑋𝜛 ⧵ {0}, 𝑄(𝜙) ≫ 0, and 𝑄(𝜃𝜙) ≫ 𝜃𝑄(𝜙) ∀𝜃 ∈ (0, 1).
Next, we show that 𝑄 satisfies the following properties:

10 of 22 Studies in Applied Mathematics, 2025
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(R1) 𝑦 ◦𝑄 = 𝑄◦ 𝑦 for all 𝑦 ∈ ℝ.

(R2) 𝑄 ∶ 𝑋𝜛 → 𝑋𝜛 is continuous with respect to the compact
open topology.

(R3) There exists 𝜃 ∈ [0, 1) such that 𝜅(𝑄[](0)) ≤ 𝜃𝜅((0)) for
any  ⊆ 𝑋𝜛 .

(R4) 𝑄 is order preserving in the sense that if 𝜙 ≥ 𝜓 for 𝜙, 𝜓 ∈

𝑋𝜛 , then 𝑄[𝜙] ≥ 𝑄[𝜓].

(R5) 𝑄 ∶ [0,𝜛] → [0,𝜛] admits two fixed points 0 and 𝜛,
and for any 𝜙 ∈ 𝑋𝜛 with 0 ≪ 𝜙 ≤ 𝜛, it holds that
lim𝑚→∞ 𝑄𝑛[𝜙](𝑥) = 𝜛.

Let ⌊𝑡⌋ be the nearest integer less than or equal to 𝑡. If 𝑢(𝑥, 𝑡)
is a solution of (3.1) with 𝑛 = ⌊𝑡⌋ and 𝑡 = 𝑡 − ⌊𝑡⌋ ∈ [0, 1), then
𝑢(𝑥 + 𝑦, 𝑡), ∀𝑦 ∈ ℝ is also a solution. This verifies (R1). One can
prove property (R2) by the arguments similar to those in Weng
and Zhao [52, Lemma 3.1]. To show property (R3), we take 𝑥 = 0.
Since any bounded set inℝ is precompact, we have 𝜅(𝑄[](0)) =
0. On the other hand, by the boundedness of (0), there holds
that 𝜅((0)) = 0. Hence, 𝜅(𝑄[](0)) = 𝜅((0)) = 0. In view of
the monotonicity of 𝑔, we obtain that 𝑄 is order preserving and
(R4) holds. By part (ii) in Proposition 2.1, we see that 𝑄 satisfies
property (R5). Therefore, 𝑄 satisfies all conditions in [12, Remark
3.7], and discrete-time system (1.6) admits a spreading speed 𝑐∗

such that the statements (i) and (ii) hold. □

In the following, we consider the linearized system at zero to
compute 𝑐∗, which has the form

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜕𝑡𝑢𝑚 = 𝐷𝑀

[
∫
ℝ

𝐽(𝑥 − 𝑦)𝑢𝑚(𝑦, 𝑡)𝑑𝑦 − 𝑢𝑚

]
−𝑓′

𝑀(0)𝑢𝑚, 𝑥 ∈ ℝ,

0 < 𝑡 ≤ 1, 𝑡 ≠ 𝜏,

𝑢𝑚(𝑥, 𝑡
+) = 𝑢𝑚(𝑥, 𝑡) +(𝑥;𝑁𝑚), 𝑡 = 𝜏,

𝑢𝑚(𝑥, 0) = 𝑁𝑚(𝑥), 𝑚 ∈ ℕ,

𝑁𝑚+1(𝑥) = 𝑢𝑚(𝑥, 1),

(3.3)

where (𝑥;𝑁𝑚) = e−𝑓′𝐼 (0)𝜏𝑔′(0) ∫
ℝ
(𝐷𝐼𝜏, 𝑥 − 𝑦)𝑁𝑚(𝑦)𝑑𝑦 with

(𝛼, 𝑥) = 1

2𝜋
∫
ℝ
e𝛼(𝐽(𝑤)−1)e−𝑖𝑤𝑥𝑑𝑤 and 𝐽(𝑤) = ∫

ℝ
e𝑖𝑤𝑦𝐽(𝑦)𝑑𝑦, in

which 𝑖 is the imaginary unit. More details on derivation of
(𝛼, 𝑥) can be found in A. For any 𝜇 ∈ ℝ+, set 𝑢(𝑥, 𝑡) = e−𝜇𝑥𝜂(𝑡).
Then, we have

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑑𝜂(𝑡)

𝑑𝑡
=
[
𝐷𝑀 ∫

ℝ

𝐽(𝑦)e𝜇𝑦𝑑𝑦 − 𝐷𝑀 − 𝑓′
𝑀(0)

]
𝜂(𝑡), 0 < 𝑡 ≤ 1,

𝑡 ≠ 𝜏,

𝜂(𝑡+) = 𝜂(𝑡) + e−𝑓′𝐼 (0)𝜏𝑔′(0)∫
ℝ

(𝐷𝐼𝜏, 𝑦)e𝜇𝑦𝑑𝑦𝜂(0), 𝑡 = 𝜏,

where ∫
ℝ
(𝐷𝐼𝜏, 𝑦)e𝜇𝑦𝑑𝑦 is finite by Lemma A.4. Solving the

above equation, we obtain a time-1 solution map

𝜂(1) =
[
e𝐶𝜇 + 𝑔′(0)e𝐶𝜇(1−𝜏)e−𝑓′𝐼 (0)𝜏 ∫

ℝ

(𝐷𝐼𝜏, 𝑦)e𝜇𝑦𝑑𝑦
]
𝜂(0),

where

𝐶𝜇 = 𝐷𝑀 ∫
ℝ

𝐽(𝑦)e𝜇𝑦𝑑𝑦 − 𝐷𝑀 − 𝑓′
𝑀(0), 𝜇 ∈ ℝ+.

Hence, we can rewrite system (3.3) as

𝑁𝑚+1(𝑥)

= e−𝜇𝑥
[
e𝐶𝜇 + 𝑔′(0)e𝐶𝜇(1−𝜏)e−𝑓′𝐼 (0)𝜏 ∫

ℝ

(𝐷𝐼𝜏, 𝑦)e𝜇𝑦𝑑𝑦
]
𝑁𝑚(𝑥).

(3.4)

Since the dispersal kernel function 𝐽 is symmetric, a comparison
argument similar to that in [34, Proposition 3.9] and [52, Theorem
3.2] can be conducted to show the formula of the spreading speed
𝑐∗ as follows:

𝑐∗ = inf
𝜇>0

1

𝜇
ln

[
e𝐶𝜇 + 𝑔′(0)e𝐶𝜇(1−𝜏)e−𝑓′𝐼 (0)𝜏 ∫

ℝ

(𝐷𝐼𝜏, 𝑦)e𝜇𝑦𝑑𝑦
]
.

(3.5)

Theorem 3.3. Assume that (J3), (H1)–(H5) hold, and 𝑔(𝑁) is
monotone with respect to 𝑁. Let 𝑐∗ be defined as in (3.5). Then for
each 𝑐 ≥ 𝑐∗, there exists a traveling wave solution 𝑊(𝑥 + 𝑐𝑚) for
system (1.6), where 𝑊(𝜉) is nondecreasing in 𝜉 and connects 0 to
𝜛, while for any 𝑐 ∈ (0, 𝑐∗), there is no traveling wave solution for
system (1.6), which connects 0 to𝜛.

Proof. Denote  the set of all nonincreasing and bounded
functions from ℝ to 𝑋. Then, one can verify that 𝑄 still satisfies
the properties (R1)–(R5) in the proof of Theorem 3.2 with 𝑋𝜛

replaced by 𝜛 , where 𝜛 = {𝜙 ∈ |0 ≤ 𝜙 ≤ 𝜛}. Therefore,
we can obtain the existence and nonexistence of monotone
traveling wave by using Theorem 3.8 in [12]. □

3.2 Case 2: 𝒈 is Nonmonotone

This subsection is devoted to propagation dynamics of system
(1.6) with a nonmonotone birth function 𝑔. Similar to the
discussion in Section 2.2, we always assume that (H6) are
satisfied.

Next, we introduce the following two auxiliary equations:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜕𝑡𝑢𝑚 = 𝐷𝑀

[
∫
ℝ

𝐽(𝑥 − 𝑦)𝑢𝑚(𝑦, 𝑡)𝑑𝑦 − 𝑢𝑚

]
− (𝑢𝑚), 𝑥 ∈ ℝ,

0 < 𝑡 ≤ 1, 𝑡 ≠ 𝜏,

𝑢𝑚(𝑥, 𝑡
+) = 𝑢𝑚(𝑥, 𝑡) + 𝑣+𝑚(𝑥, 𝜏), 𝑡 = 𝜏,

𝑢𝑚(𝑥, 0) = 𝑁+
𝑚(𝑥), 𝑚 ∈ ℕ,

𝑁+
𝑚+1(𝑥) = 𝑢𝑚(𝑥, 1),

(3.6)
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and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜕𝑡𝑢𝑚 = 𝐷𝑀

[
∫
ℝ

𝐽(𝑥 − 𝑦)𝑢𝑚(𝑦, 𝑡)𝑑𝑦 − 𝑢𝑚

]
−𝑓(𝑢𝑚), 𝑥 ∈ ℝ,

0 < 𝑡 ≤ 1, 𝑡 ≠ 𝜏,

𝑢𝑚(𝑥, 𝑡
+) = 𝑢𝑚(𝑥, 𝑡) + 𝑣−𝑚(𝑥, 𝜏), 𝑡 = 𝜏,

𝑢𝑚(𝑥, 0) = 𝑁−
𝑚(𝑥), 𝑚 ∈ ℕ,

𝑁−
𝑚+1(𝑥) = 𝑢𝑚(𝑥, 1),

(3.7)

where 𝑣+𝑚(𝑥, 𝜏) (respectively, 𝑣−𝑚(𝑥, 𝜏)) is the value of the solu-
tion, evaluated at 𝑡 = 𝜏, of problem (3.2) with the initial
value 𝑣𝑚(𝑥, 0) = 𝑔+(𝑁+

𝑚(𝑥)) (respectively, 𝑣𝑚(𝑥, 0) = 𝑔−(𝑁−
𝑚(𝑥)))

for𝑚 ≥ 0.

By the same argument for the recursion operator 𝑄 in (1.6), we
can process (3.6) and (3.7) to two discrete-time recursion systems
for 𝑁+

𝑚 and 𝑁−
𝑚 as

𝑁+
𝑚+1(𝑥) = 𝑄+[𝑁+

𝑚](𝑥) = 𝑆1−𝜏[𝑆𝜏(𝑁
+
𝑚) + 𝑇𝜏𝑔

+(𝑁+
𝑚)](𝑥),

𝑥 ∈ ℝ,𝑚 ≥ 0, (3.8)

and

𝑁−
𝑚+1(𝑥) = 𝑄−[𝑁−

𝑚](𝑥) = 𝑆1−𝜏[𝑆𝜏(𝑁
−
𝑚) + 𝑇𝜏𝑔

−(𝑁−
𝑚)](𝑥),

𝑥 ∈ ℝ,𝑚 ≥ 0, (3.9)

respectively. Let 𝑁+
𝑚 and 𝑁−

𝑚 be the solutions of (3.8) and (3.9),
respectively. It follows fromcomparison arguments thatwhen 0 <

𝑁−
0 (𝑥) ≤ 𝑁0(𝑥) ≤ 𝑁+

0 (𝑥) ≤ 𝜛+,

0 ≤ 𝑁−
𝑚(𝑥) ≤ 𝑁𝑚(𝑥) ≤ 𝑁+

𝑚(𝑥), 𝑥 ∈ ℝ, 𝑚 ≥ 0. (3.10)

We have obtained in Section 3.1 that 𝑐∗ given in (3.5) is the
spreading speed of (1.6) when the birth function 𝑔 is monotone.
Notice that the value of the spreading speed 𝑐∗ is determined only
by the linearized system (3.4). Meanwhile, models (3.6) and (3.7)
have the same linearized system at 𝑢 = 0, that is, Equation (3.3).
Then, Theorem 3.2 can be employed to show that 𝑐∗ is also the
spreading speed of models (3.8) and (3.9). At this point, we can
use a comparison argument together with (3.10) to prove that 𝑐∗
is also a spreading speed for system (1.6) when 𝑔 is nonmonotone,
which is read as follows.

Theorem 3.4. Assume that (J3), (H1)–(H6) are satisfied. If
𝑄̂′(0) > 1, then the following statements hold:

(i) If 𝜙 ∈ 𝑋𝜛+ and 𝜙(𝑥) = 0 outside a bounded interval, then
lim𝑚→∞,|𝑥|≥𝑐𝑚 |𝑄𝑚[𝜙](𝑥)| = 0, ∀𝑐 > 𝑐∗.

(ii) If 𝜙 ∈ 𝑋𝜛 ⧵ {0}, then

𝜛− ≤ lim inf
𝑚→∞,|𝑥|≤𝑐𝑚 𝑄𝑚[𝜙](𝑥) ≤ lim sup

𝑚→∞,|𝑥|≤𝑐𝑚 𝑄𝑚[𝜙](𝑥) ≤ 𝜛+,

∀𝑐 ∈ (0, 𝑐∗).

Before proving the existence of traveling waves of system (1.6), we
state the following definition and lemmas.

Definition 3.5 [59]. Let  be a Banach space. A continuous
mapping 𝐹 ∶  →  is called 𝜅-condensing if it is bounded and
𝜅(𝐹(𝐵)) < 𝜅(𝐵) for any nonempty bounded closed set 𝐵 ⊂  with
𝜅(𝐵) > 0; and it is compact dissipative if there is a bounded set
𝐵0 ⊂  such that 𝐵0 attracts each compact set in  . Clearly, a
compact map is 𝜅-condensing.

Lemma 3.6 Asymptotic fixed point theorem [39]. Let 
be a Banach space. If 𝐹 ∶  →  is 𝜅-condensing and compact
dissipative, then 𝐹 admits a fixed point.

To show that an operator is 𝜅-condensing (see the proof of Theo-
rem 3.9), we introduce the following property of the Kuratowski
measure of noncompactness (cf. [4, Lemma 5].)

Lemma 3.7. Let  be a Banach space, 𝑎 < 𝑏 be two real numbers
andΓ ⊂ 𝐶([𝑎, 𝑏], ) be a bounded set. DefineΓ(𝑠) ∶= {𝑓(𝑠)|𝑓 ∈ Γ},
∀𝑠 ∈ [𝑎, 𝑏]. If Γ is equicontinuous on [𝑎, 𝑏], then 𝜅

(∫ 𝑏

𝑎
Γ(𝑠)𝑑𝑠

) ≤
∫ 𝑏

𝑎
𝜅(Γ(𝑠))𝑑𝑠, where ∫ 𝑏

𝑎
Γ(𝑠)𝑑𝑠 = {∫ 𝑏

𝑎
𝑓(𝑠)𝑑𝑠|𝑓 ∈ Γ}.

Choose 𝜌 = 𝜌(𝑐) ∈ (0,
𝐷̂

𝑐
) for any given 𝑐 > 𝑐∗, where 𝐷̂ =

min{𝐷𝐼, 𝐷𝑀}. Set

𝕏𝜌 ∶= {𝜙 ∈ 𝐶(ℝ,ℝ)| sup
𝑥∈ℝ

|𝜙(𝑥)|e−𝜌|𝑥| < +∞},

and ‖𝜙‖𝜌 ∶= sup𝑥∈ℝ |𝜙(𝑥)|e−𝜌|𝑥|. Then, (𝕏𝜌, ‖ ⋅ ‖𝜌) is a Banach
space. Define a set 𝑌𝕃+ ∶= {𝜙 ∈ 𝕏𝜌|0 ≤ 𝜙 ≤ 𝕃+}. We see that 𝑌𝕃+

is a nonempty, convex, and closed subset of 𝕏𝜌 since 0, 𝕃+ ∈

𝑌𝕃+ . Next, we recall some known results for the following linear
integro–differential equation{

𝑢𝑡 = 𝑑
[∫

ℝ
𝐽(𝑥 − 𝑦)𝑢(𝑦, 𝑡)𝑑𝑦 − 𝑢

]
, 𝑥 ∈ ℝ, 𝑡 > 0,

𝑢(𝑥, 0) = 𝜙(𝑥),
(3.11)

where 𝑑 is a given positive constant. By [52, Lemma 3.1], the above
equation generates a strongly continuous semigroup 𝑃𝑑(𝑡) on 𝑋.
Moreover, the unique mild solution of (3.11) has the form of

[𝑃𝑑(𝑡)𝜙](𝑥) = e−𝑑𝑡
∞∑
𝑘=0

(𝑑𝑡)𝑘

𝑘!
𝑎𝑘(𝜙)(𝑥), (3.12)

where 𝑎0(𝜙)(𝑥) = 𝜙(𝑥) and 𝑎𝑘(𝜙)(𝑥) = ∫
ℝ
𝐽(𝑥 − 𝑦)𝑎𝑘−1(𝜙)(𝑦)𝑑𝑦

for any integer 𝑘 ≥ 1.

Lemma 3.8.

(i) For any given nonempty and bounded interval 𝐼 ∶= [𝑎, 𝑏] ⊂

ℝ and 𝑡 ≥ 0, it holds that 𝜅((𝑃𝑑(𝑡) )𝐼) ≤ e−𝑑𝑡𝜅(( )𝐼) for
each set ⊂ 𝑌𝕃+ .

(ii) Themap 𝑐𝑃(1) is a 𝜅-contraction on𝑌𝕃+ with the contraction
coefficient e𝜌𝑐−𝑑 .

Proof. Part (i) comes from [13, Lemma 2]. Part (ii) can be seen in
[53, Lemma 3.4]. □

We now are ready to establish the existence of traveling wave
solutions.

12 of 22 Studies in Applied Mathematics, 2025
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Theorem 3.9. Assume that (J3), (H1)–(H6) are satisfied.
Suppose that 𝑄̂′(0) > 1, then the following statements are true:

(i) For any 𝑐 ∈ (0, 𝑐∗), system (1.6) admits no traveling wave
𝑊(𝑥 + 𝑐𝑚) satisfying𝑊(−∞) = 0.

(ii) If, further, 𝐷𝑀 > 𝐷∗, where 𝐷∗ satisfies

e𝐿𝑀−𝐷∗ + e(𝐿𝑀−𝐷∗)(1−𝜏)+(𝐿𝐼−𝐷𝐼)𝜏𝐿𝑔 = 1, (3.13)

with 𝐿𝑀 , 𝐿𝐼 , and 𝐿𝑔 being the Lipschitz coefficients of 𝑓𝑀 ,
𝑓𝐼 , and 𝑔 on [0,𝜛+], respectively, then for any 𝑐 > 𝑐∗,
system (1.6) admits a continuous traveling wave 𝑊(𝑥 + 𝑐𝑚)

satisfying that 𝑊(−∞) = 0 and 𝜛− ≤ lim inf 𝜉→+∞ 𝑊(𝜉) ≤
lim sup𝜉→+∞𝑊(𝜉) ≤ 𝜛+.

Proof.

(i) On the contrary, we suppose that there exists 𝑐0 ∈ (0, 𝑐∗)

such that system (1.6) admits a traveling wave solution
𝑁𝑚(𝑥) = 𝑊(𝑥 + 𝑐0𝑚) with 𝑊(−∞) = 0. It follows from
Theorem 3.4(ii) that

lim inf
𝑚→+∞,|𝑥|≤𝑐𝑚 𝑁𝑚(𝑥) ≥ 𝜛−

> 0, ∀𝑐 ∈ (0, 𝑐∗).

Ifwe take 𝑐 ∈ (𝑐0, 𝑐
∗) and set𝑥 = −𝑐𝑚, then lim inf𝑚→+∞ 𝑁𝑚

(−𝑐𝑚) = lim inf𝑚→+∞ 𝑊((𝑐0 − 𝑐)𝑚) > 0, which contradicts
with the fact that lim𝑚→+∞ 𝑊((𝑐0 − 𝑐)𝑚) = 𝑊(−∞) = 0.

(ii) Given any 𝑐 > 𝑐∗, we take 𝜌 = 𝜌(𝑐) as in the definition of𝕏𝜌.
Define the operators

𝑄𝑐[𝜙](𝑥) ∶= 𝑐𝑄[𝜙](𝑥) = 𝑐{𝑆1−𝜏[𝑆𝜏(𝜙) + 𝑇𝜏𝑔(𝜙)]
}
(𝑥),

∀𝜙 ∈ 𝕏𝜌,

and

𝑄±
𝑐 [𝜙](𝑥) ∶= 𝑐𝑄±[𝜙](𝑥) = 𝑐{𝑆1−𝜏[𝑆𝜏(𝜙) + 𝑇𝜏𝑔

±(𝜙)]
}
(𝑥),

∀𝜙 ∈ 𝕏𝜌.

Recall that the operators 𝑄± are order preserving. We see
from Theorem 3.3 that systems (3.8) and (3.9) admit non-
trivial traveling wave solutions 𝑊+(𝑥 + 𝑐𝑚) and 𝑊−(𝑥 +
𝑐𝑚), respectively, where𝑊±(+∞) = 𝜛± and𝑊±(−∞) = 0.
Then, we define a positively invariant set of 𝑄𝑐 which was
introduced in [3]. For any 𝑐 ≥ 𝑐∗, we denote

𝑐 ∶= {𝜙 ∈ 𝕏𝜌|𝛿𝑊+(𝑥) ≤ 𝜙(𝑥) ≤ 𝑊+(𝑥), 𝑥 ∈ ℝ
}

with 𝛿 ∈ (0, 1) and 𝛿𝑊+(𝑥) ≤ 𝜎0. Clearly, the set 𝑐 is
a nonempty, bounded, closed, and convex subset of 𝕏𝜌.
Furthermore, the following four claims hold.

Claim 3.1. 𝑄𝑐[𝑐] ⊂ 𝑐.
Since 𝑔+ ≥ 𝑔 ≥ 𝑔− and 𝑔+ and 𝑔− are nondecreasing, we obtain
that when 𝜙 ≤ 𝑊+,

𝑄𝑐[𝜙] ≤ 𝑄+
𝑐 [𝜙] ≤ 𝑄+

𝑐 [𝑊
+] = 𝑊+,

while when 𝜙 ≥ 𝛿𝑊+,

𝑄𝑐[𝜙] ≥ 𝑄−
𝑐 [𝜙] ≥ 𝑄−

𝑐 [𝛿𝑊
+]

= 𝑐{𝑆1−𝜏[𝑆𝜏(𝛿𝑊+) + 𝑇𝜏𝑔
−(𝛿𝑊+)]

}
≥ 𝛿𝑐{𝑆1−𝜏[𝑆𝜏(𝑊+) + 𝑇𝜏𝑔

+(𝑊+)]
}

= 𝛿𝑄+
𝑐 [𝑊

+] = 𝛿𝑊+,

where we have used the fact that 𝑔−(𝛿𝑊+) = 𝑔+(𝛿𝑊+) ≥
𝛿𝑔+(𝑊+). Hence, Claim 3.1 is proved.

Claim 3.2. The operator𝑄𝑐 ∶ 𝑐 → 𝑐 is continuous in the norm‖ ⋅ ‖𝜌.
For any 𝜙𝑖 ∈ 𝑐(𝑖 = 1, 2) and 𝑡 ∈ [0, 1], we let Φ𝑡[𝜙𝑖](𝑥) =
𝑢(𝑥, 𝑡; 𝜙𝑖), 𝑥 ∈ ℝ(𝑖 = 1, 2) be the solution of (3.1) with initial value
𝜙𝑖 . By constant-variation formula, we can obtain

𝑢(𝑥, 𝑡; 𝜙𝑖) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑃𝐷𝑀
(𝑡)[𝜙𝑖](𝑥)

−∫
𝑡

0

𝑃𝐷𝑀
(𝑡 − 𝑠)𝑓𝑀(𝑢(⋅, 𝑠; 𝜙𝑖))(𝑥)𝑑𝑠, 𝑡 ∈ [0, 𝜏],

𝑃𝐷𝑀
(𝑡 − 𝜏)[𝑢(⋅, 𝜏; 𝜙𝑖) + 𝑣(⋅, 𝜏; 𝑔(𝜙𝑖))](𝑥)

−∫
𝑡

𝜏

𝑃𝐷𝑀
(𝑡 − 𝑠)𝑓𝑀(𝑢(⋅, 𝑠; 𝜙𝑖))(𝑥)𝑑𝑠, 𝑡 ∈ (𝜏, 1],

(3.14)

where 𝑣(𝑥, 𝑡; 𝑔(𝜙𝑖)) = 𝑃𝐷𝐼 (𝑡)[𝑔(𝜙𝑖)](𝑥)− ∫ 𝑡

0
𝑃𝐷𝐼 (𝑡− 𝑠)𝑓𝐼(𝑣(⋅, 𝑠; 𝜙𝑖))

(𝑥)𝑑𝑠, ∀𝑡 ∈ [0, 𝜏]. Then by (3.14), we have that for 𝑡 ∈ [0, 𝜏],

|||𝑢(𝑥, 𝑡; 𝜙1) − 𝑢(𝑥, 𝑡; 𝜙2)
|||e−𝜌|𝑥|

≤ |||𝑃𝐷𝑀 (𝑡)[𝜙1](𝑥) − 𝑃𝐷𝑀 (𝑡)[𝜙2](𝑥)
|||e−𝜌|𝑥|

+ ∫
𝑡

0

|||𝑃𝐷𝑀 (𝑡 − 𝑠)𝑓𝑀(𝑢(⋅, 𝑠; 𝜙1))(𝑥)

− 𝑃𝐷𝑀 (𝑡 − 𝑠)𝑓𝑀(𝑢(⋅, 𝑠; 𝜙2))(𝑥)
|||𝑒−𝜌|𝑥|𝑑𝑠

≤ ‖𝜙1 − 𝜙2‖𝜌 + ∫
𝑡

0

𝐿𝑀‖𝑢(⋅, 𝑠; 𝜙1) − 𝑢(⋅, 𝑠; 𝜙2)‖𝜌𝑑𝑠,
where  = max𝑠∈[0,1] ‖𝑃𝐷𝑀 (𝑡)‖. The above inequality together
with Gronwall’s inequality implies that

‖𝑢(⋅, 𝑡; 𝜙1) − 𝑢(⋅, 𝑡; 𝜙2)‖𝜌 ≤ ‖𝜙1 − 𝜙2‖𝜌e𝐿𝑀𝑡, ∀𝑡 ∈ [0, 𝜏],

and thus

‖𝑆𝜏(𝜙1) − 𝑆𝜏(𝜙2)‖𝜌 ≤ ‖𝜙1 − 𝜙2‖𝜌e𝐿𝑀𝜏.

This means that the operator 𝑆𝜏 is continuous on 𝑐. Similarly, we
can verify that 𝑐, 𝑇𝜏𝑔, and 𝑆1−𝜏 are all continuous on 𝑐. Hence,
the continuity of the operator𝑄𝑐 with respect to ‖ ⋅ ‖𝜌 is obtained.
Claim 3.3. For any given closed set 𝐵 ⊂ 𝑐, 𝑃𝐷𝑀 (𝑡 − 𝑠)

𝑓𝑀(𝑢(⋅, 𝑠; 𝐵)) is equicontinuous in 𝑠 ∈ [0, 𝑡] for any 𝑡 ∈ [0, 𝜏], and
is equicontinuous in 𝑠 ∈ (𝜏, 𝑡] for any 𝑡 ∈ (𝜏, 1].
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Let 𝐵 be a closed subset of 𝑐. We obtain from Claim 3.1 that for
any 𝜓 ∈ 𝐵, 𝑢(⋅, 𝑡; 𝜓) is uniformly bounded and hence 𝑢𝑡(⋅, 𝑡; 𝜓) is
uniformly bounded in 𝑡 ∈ [0, 𝜏] by (1.3) and (1.4). According to
the definition of 𝜙𝑘(𝜙) in (3.12), by an argument of induction, we
deduce that for any integer 𝑘 ≥ 0,

|𝑎𝑘(𝑓𝑀(𝑢(⋅, 𝑠; 𝜓)))(𝑥)| ≤ ∫
ℝ

𝐽(𝑥 − 𝑦)|𝑎𝑘−1(𝑓𝑀(𝑢(⋅, 𝑠; 𝜓)))(𝑦)|𝑑𝑦
≤ ⋯ ≤ |𝑓𝑀(𝑢(⋅, 𝑠; 𝜓))| ≤ 𝐶1 ∶= 𝐶1(𝐵),

for any𝜓 ∈ 𝐵, 𝑥 ∈ ℝ, and 𝑠 ∈ [0, 𝜏]. Notice that for any𝜓 ∈ 𝐵, 𝜄 ∈
[0, 𝜏], and 𝑠 ∈ [0, 𝜏], 𝑃𝐷𝑀 (𝜄)𝑓𝑀(𝑢(⋅, 𝑠; 𝜓)) is the unique solution to
(3.11) with 𝜙 = 𝑓𝑀(𝑢(⋅, 𝑠; 𝜓)) and 𝑡 = 𝜄. Then by (3.12),

|𝑃𝐷𝑀
(𝜄)𝑓𝑀(𝑢(⋅, 𝑠; 𝜓))(𝑥)| ≤ e−𝐷𝑀𝜄

∞∑
𝑘=0

(𝐷𝑀𝜄)
𝑘

𝑘!
|𝑎𝑘(𝑓𝑀(𝑢(⋅, 𝑠; 𝜓)))(𝑥)|

≤ 𝐶1e−𝐷𝑀𝜄

∞∑
𝑘=0

(𝐷𝑀𝜄)
𝑘

𝑘!
= 𝐶1

for any 𝜓 ∈ 𝐵, 𝑥 ∈ ℝ, 𝑡 ∈ [0, 𝜏], 𝜄 ∈ [0, 𝑡], and 𝑠 ∈ [0, 𝑡], which
together with (3.11) leads to that

|||||𝜕𝑃𝐷𝑀 (𝜄)𝑓𝑀(𝑢(⋅, 𝑠; 𝜓))(𝑥)𝜕𝜄

|||||
≤ 𝐷𝑀 ∫

ℝ

𝐽(𝑥 − 𝑦)|𝑃𝐷𝑀 (𝜄)𝑓𝑀(𝑢(⋅, 𝑠; 𝜓))(𝑦)|𝑑𝑦
+ 𝐷𝑀|𝑃𝐷𝑀 (𝜄)𝑓𝑀(𝑢(⋅, 𝑠; 𝜓))(𝑥)|

≤ 2𝐷𝑀𝐶1, ∀𝑥 ∈ ℝ

for any𝜓 ∈ 𝐵, 𝑡 ∈ [0, 𝜏], 𝜄 ∈ [0, 𝑡], and 𝑠 ∈ [0, 𝑡]. Then, for any𝜓 ∈

𝐵, 𝑡 ∈ [0, 𝜏], and 𝑠1, 𝑠2 ∈ [0, 𝑡], we have

|𝑃𝐷𝑀
(𝑡 − 𝑠1)𝑓𝑀(𝑢(⋅, 𝑠1; 𝜓))(𝑥) − 𝑃𝐷𝑀

(𝑡 − 𝑠2)𝑓𝑀(𝑢(⋅, 𝑠2; 𝜓))(𝑥)|e−𝜌|𝑥|
≤ |𝑃𝐷𝑀

(𝑡 − 𝑠1)𝑓𝑀(𝑢(⋅, 𝑠1; 𝜓))(𝑥) − 𝑃𝐷𝑀
(𝑡 − 𝑠2)𝑓𝑀(𝑢(⋅, 𝑠1; 𝜓))(𝑥)|

+ |𝑃𝐷𝑀
(𝑡 − 𝑠2)𝑓𝑀(𝑢(⋅, 𝑠1; 𝜓))(𝑥) − 𝑃𝐷𝑀

(𝑡 − 𝑠2)𝑓𝑀(𝑢(⋅, 𝑠2; 𝜓))(𝑥)|
≤ |𝑠1 − 𝑠2| ⋅ max

𝑡−𝑠≤𝜄≤𝑡−𝑠
|||||𝜕𝑃𝐷𝑀

(𝜄)𝑓𝑀(𝑢(⋅, 𝑠1; 𝜓))(𝑥)

𝜕𝜄

|||||
+ |𝑠1 − 𝑠2| ⋅ max

𝑠≤𝜄≤𝑠
|||𝑃𝐷𝑀

(𝑡 − 𝑠2)
[
𝑓′𝑀(𝑢(⋅, 𝜄; 𝜓))𝑢𝜄(⋅, 𝜄; 𝜓)

]
(𝑥)
|||

≤ 𝐶2|𝑠1 − 𝑠2|, ∀𝑥 ∈ ℝ,

where 𝑠 = min{𝑠1, 𝑠2}, 𝑠 = max{𝑠1, 𝑠2}, and 𝐶2 = 𝐶2(𝐵) is a con-
stant independent of 𝑥, 𝑡, 𝑠1, and 𝑠2. Hence, for any 𝑡 ∈ [0, 𝜏],
𝑃𝐷𝑀 (𝑡 − 𝑠)𝑓𝑀(𝑢(⋅, 𝑠; 𝐵)) is equicontinuous with respect to 𝑠 ∈

[0, 𝑡] in the norm ‖ ⋅ ‖𝜌. By a similar argument, we have that
for any 𝑡 ∈ (𝜏, 1], 𝑃𝐷𝑀 (𝑡 − 𝑠)𝑓𝑀(𝑢(⋅, 𝑠; 𝐵)) is equicontinuous with
respect to 𝑠 ∈ (𝜏, 𝑡] in the norm ‖ ⋅ ‖𝜌. This proves Claim 3.3.

Claim 3.4. The operator 𝑄𝑐 ∶ 𝑐 → 𝑐 is a 𝜅-contraction in the
norm ‖ ⋅ ‖𝜌.
By (3.14), Claim 3.3, Lemmas 3.7 and 3.8(i), we obtain that for any
given closed set 𝐵 ⊂ 𝑐 and 𝑡 ∈ [0, 𝜏],

𝜅(𝑢(⋅, 𝑡; 𝐵)) ≤ 𝜅
(
𝑃𝐷𝑀 (𝑡)[𝐵]

)
+ ∫

𝑡

0

𝜅
(
𝑃𝐷𝑀 (𝑡 − 𝑠)𝑓𝑀(𝑢(⋅, 𝑠; 𝐵))

)
𝑑𝑠

≤ e−𝐷𝑀𝑡𝜅(𝐵) + ∫
𝑡

0

e−𝐷𝑀(𝑡−𝑠)𝐿𝑀𝜅(𝑢(⋅, 𝑠; 𝐵))𝑑𝑠,

equivalently,

e𝐷𝑀𝑡𝜅(𝑢(⋅, 𝑡; 𝐵)) ≤ 𝜅(𝐵) + ∫
𝑡

0

𝐿𝑀e𝐷𝑀𝑠𝜅(𝑢(⋅, 𝑠; 𝐵))𝑑𝑠.

It follows from Gronwall’s inequality that e𝐷𝑀𝑡𝜅(𝑢(⋅, 𝑡; 𝐵)) ≤
𝜅(𝐵)e𝐿𝑀𝑡 , that is, 𝜅(𝑢(⋅, 𝑡; 𝐵)) ≤ 𝜅(𝐵)e(𝐿𝑀−𝐷𝑀)𝑡 . Hence,
𝜅(𝑢(⋅, 𝜏; 𝐵)) ≤ 𝜅(𝐵)e(𝐿𝑀−𝐷𝑀)𝜏. Similarly, there holds 𝜅(𝑣(⋅, 𝜏; 𝐵)) ≤
𝐿𝑔𝜅(𝐵)e(𝐿𝐼−𝐷𝐼)𝜏. By (3.14), Claim 3.3, Lemmas 3.7 and 3.8(i), we
derive that for 𝑡 ∈ (𝜏, 1],

𝜅(𝑢(⋅, 𝑡; 𝐵)) ≤ 𝜅
(
𝑃𝐷𝑀 (𝑡 − 𝜏)[𝑢(⋅, 𝜏; 𝐵) + 𝑣(⋅, 𝜏; 𝐵)]

)
+ ∫

𝑡

𝜏

𝜅
(
𝑃𝐷𝑀 (𝑡 − 𝑠)𝑓𝑀(𝑢(⋅, 𝑠; 𝐵))

)
𝑑𝑠

≤ e−𝐷𝑀(𝑡−𝜏)[𝜅(𝑢(⋅, 𝜏; 𝐵)) + 𝜅(𝑣(⋅, 𝜏; 𝐵))]

+ ∫
𝑡

𝜏

e−𝐷𝑀(𝑡−𝑠)𝐿𝑀𝜅(𝑢(⋅, 𝑠; 𝐵))𝑑𝑠

≤ e−𝐷𝑀(𝑡−𝜏)[e(𝐿𝑀−𝐷𝑀)𝜏𝜅(𝐵) + e(𝐿𝐼−𝐷𝐼)𝜏𝐿𝑔𝜅(𝐵)
]

+ ∫
𝑡

𝜏

e−𝐷𝑀(𝑡−𝑠)𝐿𝑀𝜅(𝑢(⋅, 𝑠; 𝐵))𝑑𝑠,

equivalently,

e𝐷𝑀𝑡𝜅(𝑢(⋅, 𝑡; 𝐵)) ≤ [e𝐿𝑀𝜏 + e(𝐷𝑀+𝐿𝐼−𝐷𝐼)𝜏𝐿𝑔
]
𝜅(𝐵)

+∫
𝑡

𝜏

𝐿𝑀e𝐷𝑀𝑠𝜅(𝑢(⋅, 𝑠; 𝐵))𝑑𝑠.

Using Gronwall’s inequality again, we can deduce that

e𝐷𝑀𝑡𝜅(𝑢(⋅, 𝑡; 𝐵)) ≤ [e𝐿𝑀𝜏 + e(𝐷𝑀+𝐿𝐼−𝐷𝐼)𝜏𝐿𝑔
]
𝜅(𝐵)e𝐿𝑀(𝑡−𝜏), ∀𝑡 ∈ (𝜏, 1],

that is, 𝜅(𝑢(⋅, 𝑡; 𝐵)) ≤ [1 + e(𝐷𝑀+𝐿𝐼−𝐷𝐼−𝐿𝑀)𝜏𝐿𝑔
]
𝜅(𝐵)e(𝐿𝑀−𝐷𝑀)𝑡, ∀𝑡 ∈

(𝜏, 1]. Notice that

𝑄[𝐵] = 𝑃𝐷𝑀 (1 − 𝜏)

[
𝑃𝐷𝑀 [𝐵] − ∫

𝜏

0

𝑃𝐷𝑀 (𝜏 − 𝑠)𝑓𝑀(𝑢(⋅, 𝑠; 𝐵))𝑑𝑠

+ 𝑣(⋅, 𝜏; 𝐵)

]

− ∫
1

𝜏

𝑃𝐷𝑀 (1 − 𝑠)𝑓𝑀(𝑢(⋅, 𝑠; 𝐵))𝑑𝑠,

where 𝑣(𝑥, 𝜏; 𝐵) = 𝑃𝐷𝐼 [𝑔(𝐵)] − ∫ 𝜏

0
𝑃𝐷𝐼 (𝜏 − 𝑠)𝑓𝐼(𝑣(⋅, 𝑠; 𝐵))𝑑𝑠.

Therefore, by Lemma 3.8(ii),

𝜅(𝑄𝑐[𝐵]) ≤ e𝜌𝑐−𝐷𝑀𝜅(𝐵) + e(𝜌𝑐−𝐷𝑀)(1−𝜏)

× ∫
𝜏

0

e(𝜌𝑐−𝐷𝑀)(𝜏−𝑠)𝐿𝑀e(𝐿𝑀−𝐷𝑀)𝑠𝜅(𝐵)𝑑𝑠
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+ e(𝜌𝑐−𝐷𝑀)(1−𝜏)e(𝐿𝐼−𝐷𝐼)𝜏𝐿𝑔𝜅(𝐵)

+ ∫
1

𝜏

e(𝜌𝑐−𝐷𝑀)(1−𝑠)𝐿𝑀
[
1 + e(𝐷𝑀+𝐿𝐼−𝐷𝐼−𝐿𝑀)𝜏𝐿𝑔

]
× 𝜅(𝐵)e(𝐿𝑀−𝐷𝑀)𝑠𝑑𝑠

= e𝜌𝑐−𝐷𝑀
[
1 +

𝐿𝑀(e𝐿𝑀−𝜌𝑐 − 1)

𝐿𝑀 − 𝜌𝑐
+ e(𝐷𝑀+𝐿𝐼−𝐷𝐼−𝜌𝑐)𝜏𝐿𝑔

×
(
1 +

𝐿𝑀(e(𝐿𝑀−𝜌𝑐)(1−𝜏) − 1)

𝐿𝑀 − 𝜌𝑐

)]
𝜅(𝐵)

=∶ 𝐶(𝜌)𝜅(𝐵).

Now by (3.13), it holds that for 𝐷𝑀 > 𝐷∗,

lim
𝜌→0+

𝐶(𝜌) = e𝐿𝑀−𝐷𝑀 + e(𝐿𝑀−𝐷𝑀)(1−𝜏)+(𝐿𝐼−𝐷𝐼)𝜏𝐿𝑔 < 1,

which implies that there exists sufficiently small 𝜌 ∈ (0,
𝐷̂

𝑐
) such

that 𝐶(𝜌) < 1. Consequently, the operator 𝑄𝑐 is a 𝜅-contraction
with the coefficient 𝐶(𝜌).

We see that the operator 𝑄𝑐 ∶ 𝑐 → 𝑐 is 𝜅-condensing, since
𝑄𝑐 is a 𝜅-contraction by Claim 3.4. Clearly, 𝑄𝑐 is also compact
dissipative by the boundedness of 𝑐 in 𝕏𝜌 and the fact that
(𝑄𝑐)

𝑚(𝑐) ⊂ 𝑐 for any 𝑚 ≥ 1. Then, it follows from the asymp-
totic fixed point theorem (Lemma 3.6) that the operator𝑄𝑐 admits
a fixed point 𝑊 ⊂ 𝑐, that is, 𝑄𝑐(𝑊) = 𝑐𝑄(𝑊) = 𝑊. Hence,
𝑄(𝑊)(𝑥) = 𝑊(𝑥 + 𝑐), and 𝑄𝑚(𝑊)(𝑥) = 𝑊(𝑥 + 𝑐𝑚) is a traveling
wave solution of system (1.6). Furthermore, 𝑊(−∞) = 0 since
𝑊−(𝜉) ≤ 𝑊(𝜉) ≤ 𝑊+(𝜉), ∀𝜉 = 𝑥 + 𝑐 ∈ ℝ.

For a fixed 𝑐 > 𝑐∗, we let 𝑢𝑚(𝑥) ∶= 𝑊(𝑥 + 𝑐𝑚), ∀𝑚 ≥ 0. Fix a
constant 𝑐0 ∈ (0, 𝑐∗). We see from Theorem 3.4(ii) that

𝜛− ≤ lim inf
𝑚→+∞,|𝑥|≤𝑐0𝑚 𝑢𝑚(𝑥) ≤ lim sup

𝑚→+∞,|𝑥|≤𝑐0𝑚 𝑢𝑚(𝑥) ≤ 𝜛+,

and thus,

𝜛− ≤ lim inf
𝑚→+∞

𝑢𝑚(𝑘𝑚) ≤ lim sup
𝑚→+∞

𝑢𝑚(𝑘𝑚) ≤ 𝜛+

uniformly for 𝑘 ∈ [0, 𝑐0].

This means that 𝜛− ≤ lim inf𝑚→+∞ 𝑢𝑚(𝑠𝑚) ≤ lim sup𝑚→+∞
𝑢𝑚(𝑠𝑚) ≤ 𝜛+ uniformly for 𝑠 ∈ [𝑐 − 𝑐0, 𝑐]. Let 𝑎𝑚 = 𝑚(𝑐 − 𝑐0)

and 𝑏𝑚 = 𝑐𝑚, ∀𝑚 ≥ 1. Thus, there is 𝑗0 > 0 such that
𝑎𝑚+1 − 𝑏𝑚 < 0, ∀𝑚 ≥ 𝑗0, and hence, ∪𝑚≥𝑗[𝑎𝑚, 𝑏𝑚] = [𝑎𝑗,+∞),
∀𝑗 ≥ 𝑗0. Therefore, we obtain that 𝜛− ≤ lim inf 𝜉→+∞ 𝑊(𝜉) ≤
lim sup𝜉→+∞ 𝑊(𝜉) ≤ 𝜛+. The proof is completed. □

4 Numerical Simulations

In this section, we present some numerical simulations to
illustrate the analytic results obtained in the previous sections and
explore the impacts of the mature emergence delay on the spatial
dynamics. Referring to Bai, Lou, and Zhao [3], Lewis and Li
[28], and Wu and Zhao [53], we take the mortality functions
𝑓𝐼(𝑣) = 𝑎1𝑣 + 𝑏1𝑣

2 and 𝑓𝑀(𝑢) = 𝑎2𝑢 + 𝑏2𝑢
2 with 𝑎1 = 0.5 and

𝑎2 = 1 being the natural death rates of the immature individuals
and adult population, respectively, and 𝑏1 = 0.01 and 𝑏2 = 0.01

being the strength of the intraspecific competition for immature
individuals and adult population, respectively. We use two types
of birth functions, the Beverton–Holt function 𝑔(𝑁) = 𝑝𝑁

𝑞+𝑁
and

Ricker function 𝑔(𝑁) = 𝑁e𝑟(1−𝑁), to simulate two different cases
for 𝑔: monotone and nonmonotone, respectively. Unless other-
wise specified, we set the parameter values as 𝑝 = 2, 𝑞 = 0.2, and
𝑟 = 2.5 by default. For the nonlocal dispersal operator, we choose
the kernel function as Laplace kernel 𝐽(𝑥) = 1

2𝐷
e−

|𝑥|
𝐷 , ∀𝑥 ∈ ℝ,

where 𝐷 = 0.56 is the mean dispersal distance.

4.1 Critical Domain Size and Persistence

As shown in [53, Section 3.2], the eigenvalue problem

∫
𝓁2

𝓁1

𝐽(𝑥 − 𝑦)𝜓(𝑦)𝑑𝑦 = ∫
𝓁2

𝓁1

1

2𝐷
e−

|𝑥−𝑦|
𝐷 𝜓(𝑦)𝑑𝑦 = 𝜆𝜓(𝑥),

𝑥 ∈ [𝓁1, 𝓁2],

admits a principal eigenvalue 𝜆0 satisfying that

tan
𝓁
√
1∕𝜆0 − 1

2𝐷
= 1√

1∕𝜆0 − 1
with 𝓁 = 𝓁2 − 𝓁1. (4.1)

According to Theorem 2.2, the threshold equation is

𝑅0(𝓁) ∶= e𝐷𝑀𝜆0−𝐷𝑀−𝑎2 + 𝑔′(0)e[𝐷𝑀(1−𝜏)+𝐷𝐼𝜏]𝜆0−[(𝐷𝑀+𝑎2)(1−𝜏)+(𝐷𝐼+𝑎1)𝜏]

= 1. (4.2)

Then by Corollary 2.4, when e−𝑎2−𝐷𝑀 + 𝑔′(0)e−(𝑎2+𝐷𝑀)(1−𝜏)−(𝑎1+𝐷𝐼)𝜏

< 1 < e−𝑎2 + 𝑔′(0)e−𝑎2(1−𝜏)−𝑎1𝜏, there is a unique critical domain
size 𝓁∗ satisfying (4.1) and (4.2). Notice that the principal
eigenvalue of the local diffusion operator𝜓𝑥𝑥 over (𝑙1, 𝑙2)with zero
Dirichlet boundary condition is− 𝜋2

𝓁2
.When the nonlocal diffusion

operator [𝐽 ∗ 𝜓 − 𝜓](𝑥) is replaced by the local diffusion oper-
ator 𝜓𝑥𝑥 with zero Dirichlet boundary condition, the threshold
equation corresponding to Corollary 2.4(ii) becomes

𝑅̃0(𝓁) ∶= e−
𝐷𝑀𝜋2

𝓁2
−𝑎2 + 𝑔′(0)e−

𝐷𝑀𝜋2(1−𝜏)
𝓁2

−𝑎2(1−𝜏)−
𝐷𝐼𝜋

2𝜏

𝓁2
−𝑎1𝜏 = 1, (4.3)

whose derivation is quite similar to [3, Theorem 4.1] and the
details are omitted here.

In the scenario where 𝑔 is taken as the Beverton–Holt function
(monotone birth function), we can see the dependence of 𝓁∗ on
dispersal rate 𝐷𝑀 with 𝜏 = 0.4 and 𝐷𝐼 =

𝐷𝑀

5
in Figure 1a. When

𝐷𝑀 = 4, the critical domain size corresponding to impulsive
nonlocal diffusion population model (respectively, impulsive
local diffusion population model) is 𝓁∗ ≈ 0.704 (respectively,
𝓁∗ ≈ 4.173), and 𝑄̂′(0) = 4.8612 > 1. Then, Figure 1b shows that
the adult population with nonlocal dispersal and initial datum
𝑁0(𝑥) = cos(𝜋𝑥), ∀𝑥 ∈ [−0.5, 0.5] is persistent and converges to a
positive steady state of (1.6) when the domain size 𝓁 = 𝓁2 − 𝓁1 =
1 > 𝓁∗, which verifies Corollary 2.4(ii).
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FIGURE 1 Numerical simulations for system (1.6) in bounded domain when 𝑔 is the Beverton–Holt function.

FIGURE 2 Numerical simulations for system (1.6) in bounded domain when 𝑔 is the Ricker function.

In the scenario where 𝑔 is taken as the Ricker function (non-
monotone birth function), it is shown in Figure 2a that 𝓁∗ is
decreasing with respect to the intrinsic birth rate 𝑟 when 𝐷𝑀 =
4, 𝐷𝐼 = 0.8, and 𝜏 = 0.4. When 𝑟 = 2.5, the critical domain size
corresponding to impulsive nonlocal diffusion population model
(respectively, impulsive local diffusion population model) is 𝓁∗ ≈
0.579 (respectively, 𝓁∗ ≈ 3.983), and 𝑄̂′(0) = 5.8418 > 1. Then,
Figure 2b depicts the temporal dynamics of𝑁𝑚(𝑥) for system (1.6)
with the domain size 𝓁 = 𝓁2 − 𝓁1 = 1 > 𝓁∗ and the initial datum
𝑁0(𝑥) = cos(𝜋𝑥), ∀𝑥 ∈ [−0.5, 0.5].

Figures 1a and 2a clearly indicate that the critical domain size
for the nonlocal dispersal model is significantly less than that
for the local dispersal model. This observation seems to suggest
that nonlocal dispersal is more beneficial than and superior to the
local dispersal strategy for a biological species.

4.2 The Effect of Maturation Delay on the Spatial
Spread

To observe the propagation phenomenon, we choose the initial
function as

𝑢0(𝑥, 0) = 𝑁0(𝑥) =

{
cos

( 𝜋

20
𝑥
)
, 𝑥 ∈ [−10, 10],

0, 𝑥 ∈ [−50, 10) ∪ (10, 50],

which has a compact support [−10, 10] in the domain [−50, 50].
By fixing𝐷𝑀 = 1 and𝐷𝐼 = 0.2, we show the dynamics behavior of

species in Figures 3–6 when 𝑔 is taken as the Beverton–Holt and
Ricker birth functions, respectively, and observe that the adult
population spreads in two directions and oscillates in time (see
Figures 3 and 5). Figures 3 and 5 also exhibit the effects of the
maturation delay 𝜏 on the adult population density 𝑢𝑚(𝑥, 𝑡) for
(1.3) with 𝑔 taking the Beverton–Holt and Ricker birth functions,
respectively. We can see in Figures 3d and 5d that the peaking
value of the population density 𝑢𝑚(𝑥, 𝑡) for 𝑥 ∈ [−50, 50] and
𝑡 ∈ [0, 1] will converge to a positive constant eventually, which
is negatively related to the maturation delay 𝜏. This can be
interpreted as that the longer the maturity time is, the lower
the survival rate of juvenile to adult. Meanwhile, the peaking
time, at which the adult population density 𝑢𝑚(𝑥, 𝑡) arrives its
maximum in𝑚th year, coincides with the moment of maturation
emergence. Figures 4 and 6 illustrate the effects of thematuration
delay 𝜏 on the adult population density 𝑁𝑚(𝑥) at the end of year
𝑚 for (1.6) with 𝑔 taking the Beverton–Holt and Ricker birth
functions, respectively. We can see in Figures 4d and 6d that
the maximum value of the adult population density 𝑁𝑚(𝑥) for
𝑥 ∈ [−50, 50] at the end of each year will converge to a positive
constant eventually, which is positively related to the maturation
delay 𝜏. This is because the shorter the interval between the pulse
time and the end of the year, the less the reduction of adult
population density due to dispersal and mortality.

In Section 3.2, we also calculate the formula of the spreading
speed 𝑐∗ of system (1.6), which is given by (3.5). We note that
there are Fourier and inverse Fourier transforms occurring in
(3.5), which cannot be computed numerically through Matlab

16 of 22 Studies in Applied Mathematics, 2025
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FIGURE 3 The effects of the maturation delay on the distribution of adult population for (1.3) with 𝑔 taking the Beverton–Holt function. The delay
𝜏 chosen in subgraphs (a), (b), and (c) are 0.2, 0.5, and 0.8, respectively, and 𝑢(𝑥, 𝑡) = 𝑢𝑚(𝑥, 𝑡) with 𝑡 = 𝑚 + 𝑡 and 𝑚 = ⌊𝑡⌋. Subgraph (d) depicts the
peaking time and peaking value of the adult population distribution 𝑢𝑚(𝑥, 𝑡) in𝑚th year.

FIGURE 4 The effects of thematuration delay on the distribution of adult population for (1.6) with 𝑔 taking the Beverton–Holt function. The delay
𝜏 chosen in subgraphs (a), (b), and (c) are 0.2, 0.5, and 0.8, respectively. Subgraph (d) depicts the maximum value of the adult population distribution
𝑁𝑚(𝑥) at the end of𝑚th year.

software. However, when the immature individuals cannot move
in the space, that is,𝐷𝐼 = 0, the formula of the spreading speed 𝑐∗
of system (1.6) can be given as

𝑐∗ = inf
𝜇>0

1

𝜇
ln
[
e𝐶𝜇 + 𝑔′(0)e𝐶𝜇(1−𝜏)−𝑓′𝐼 (0)𝜏

]
.

We only examine the impact of the maturation delay 𝜏 on the
spreading speed 𝑐∗ when 𝐷𝑀 > 0 and 𝐷𝐼 = 0. Since we cannot
determine the sign of ∫

ℝ
𝐽(𝑦)e𝜇𝑦𝑑𝑦 − 1, the sign of 𝐶𝜇(1 − 𝜏) −

𝑓′
𝐼(0)𝜏 is also unknown. This means that the monotonicity of

𝑐∗ with respect to 𝜏 is unclear. In Figure 7, we see that the
monotonicity of 𝑐∗ with respect to 𝜏 is very complicated, which
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FIGURE 5 The effects of thematuration delay on the distribution of adult population for (1.3) with 𝑔 taking the Ricker function. The delay 𝜏 chosen
in subgraphs (a), (b), and (c) are 0.2, 0.5, and 0.8, respectively, and 𝑢(𝑥, 𝑡) = 𝑢𝑚(𝑥, 𝑡)with 𝑡 = 𝑚 + 𝑡 and𝑚 = ⌊𝑡⌋. Subgraph (d) depicts the peaking time
and peaking value of the adult population distribution 𝑢𝑚(𝑥, 𝑡) in𝑚th year.

FIGURE 6 The effects of thematuration delay on the distribution of adult population for (1.6) with 𝑔 taking the Ricker function. The delay 𝜏 chosen
in subgraphs (a), (b), and (c) are 0.2, 0.5, and 0.8, respectively. Subgraph (d) depicts the maximum value of the adult population distribution 𝑁𝑚(𝑥) at
the end of𝑚th year.

can be increasing, decreasing, or neither of them. Obviously, the
form of the kernel function 𝐽(𝑦) has an impact.

5 Conclusions

In this paper,we proposed an impulsive integro–differential equa-
tion to describe the evolution of a population growth model with
annually synchronized emergence of mature individuals. Differ-

ent from the model considered in [3], the model studied here
cannot be decoupled and contains nonlocal dispersal describing
the movement of the species in space. Based on the pulse time
𝜏, by using the solution maps in time intervals [0, 𝜏] and [𝜏, 1],
we deduced a discrete-time semiflow on an infinite dimension
space to account for the evolution of the adult population density
at the end of each year. When the spatial habitat is a bounded
domain, we show a threshold dynamics of the adult population,

18 of 22 Studies in Applied Mathematics, 2025
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FIGURE 7 The effects of the maturation delay 𝜏 on the spreading speed 𝑐∗ regarding different intrinsic birth rate.

and provide exact persistence criterion of the species. When the
spatial habitat is spatially homogeneous unbounded domain, we
investigated the existence and computation formula of spreading
speed, which coincide with the minimal wave speed for the
traveling waves. The above results are obtained in bothmonotone
and nonmonotone cases of maturation impulse function.

Due to the lack of compactness of the solution maps, the method
applied in this paper is different from that in [3]. In Section 2,
whereΩ is assumed to be bounded interval, we constructed a pair
of upper and lower semicontinuous limiting functions to prove
the existence and uniqueness of a positive steady state to system
(1.6) when the birth function 𝑔 is monotone (see Theorem 2.2). In
Section 3, where the habitat is assume to be the 1-D full space ℝ,
we used the asymptotic fixed point theorem rather than Schauder
fixed point theorem to obtain the existence of traveling wave
solutions when the birth function 𝑔 is nonmonotone.

From Proposition 2.1 and Corollary 2.4, we found that in the
bounded domain case Ω = (𝑙1, 𝑙2), when 𝑄̂′(0) < 1, the solutions
of discrete-time systems (1.6) and (2.3) tend to zero as 𝑚 → ∞,
that is, the adult population becomes extinct eventually; when
𝑄′
𝐷 < 1 < 𝑄̂′(0), the discrete-time systems (1.6) has a similar

persistence-extinction critical value 𝑙∗ as that in [3, Theorem
4.1], and numerical simulations in Figures 1 and 2 show that
the critical domain size corresponding to nonlocal diffusion
model can be significantly smaller than that for corresponding
local diffusion model. This observation seems to suggest that a
nonlocal dispersal strategy ismore superior to a randomdiffusion
strategy as far as species survival is concerned. When 𝑄′

𝐷 > 1,
system (1.6) is always persistent—this cannot occur for the local
diffusion model (1.1) with mature pulse (cf. [3, Theorem 4.1]).
In the unbounded domain case Ω = ℝ, an additional condition
𝐷𝑀 > 𝐷∗ in Theorem 3.9 is required to ensure the existence of
traveling wave solution. However, such condition is not needed
for local diffusion model (1.1) (cf. [3, Theorem 3.4]). Notice that
our main results are concerned with the evolution of the adult
population density at the end of each year. By a similar argument,
one can still derive the same threshold dynamics and spreading
property of the juvenile population density at the mature time of
each year.

For a nonlocal dispersal autonomous population model with
monotone nonlinearity and with continuous births (instead of

impulsive births), the corresponding solution either converges to
zero steady state, or converges to a positive steady state as time
goes to infinity (cf. [5, 55]). As in the discussion of [3, Section 2],
we can infer that for any time 𝑡 ≥ 0, the time-𝑡 solution map of
system (1.3) has the expression

Φ𝑡[𝜙](𝑥) =
⎧⎪⎨⎪⎩
𝑆𝑡−⌊𝑡⌋ ◦𝑄⌊𝑡⌋[𝜙](𝑥), 0 ≤ 𝑡 − ⌊𝑡⌋ ≤ 𝜏,

𝑆𝑡−⌊𝑡⌋−𝜏 ◦ [𝑆𝜏(𝑄⌊𝑡⌋[𝜙])
+𝑇𝜏𝑔(𝑄

⌊𝑡⌋[𝜙])](𝑥), 𝜏 < 𝑡 − ⌊𝑡⌋ < 1

for any given initial data 𝜙 = 𝑁0, where ⌊𝑡⌋ is the nearest integer
less than or equal to 𝑡. Moreover, one can verify that Φ𝑡 ◦Φ1 =
Φ𝑡+1 for any 𝑡 ≥ 1, Φ𝑡[𝜙] is continuous in 𝑡 ∈ ℝ+ ⧵ {𝑚 + 𝜏 ∶ 𝑚 ∈

ℕ} for any given 𝜙, and Φ𝑡[𝜙] is continuous in 𝜙 uniformly for 𝑡
in any bounded interval. This combined with our results show
that (1.3) is actually a time-periodic nonlocal dispersal model
with monotone nonlinearity, and its solution either converges to
zero steady state, or converges to a positive 1-periodic solution
(corresponding to positive fixed point of (1.6)) as time goes
to infinity.

Recently, there are many works on local/nonlocal dispersal
population model with age structure (cf. [32, 33, 45, 51, 54, 56]),
exploring the spreading speed of the population and the existence,
asymptotic behaviors and uniqueness of traveling waves of these
models. However, these works have little discussion about the
effect of maturation delay on the dynamics of the population.
In Section 4, we performed some numerical simulations on the
effect of maturation delay on the spatial spread of system (1.3).
Figures 3 and 5 show that the peaking value of the population
density 𝑢𝑚(𝑥, 𝑡) will converge to a positive constant eventually,
which is negatively related to the maturation delay 𝜏. This can
be interpreted as that the longer the maturity time is, the lower
the survival rate of juvenile to adult. Figures 4 and 6 show that
the maximum value of the adult population density 𝑁𝑚(𝑥) at the
end of each year will converge to a positive constant eventually,
which is positively related to the maturation delay 𝜏. This can be
interpreted as that the shorter the interval between the pulse time
and the end of the year, the less the reduction of adult population
density due to dispersal and mortality.

We remark that the nonlinear terms 𝑔, 𝑓𝑀, 𝑓𝐼 used in (3.2) are
of monostable type. Another frequently encountered type of
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nonlinearities is the so-called bistable nonlinearity which may
account for the Allee Effect—a phenomenon in which there
is a positive correlation between the population unit growth
rate and the population density when the population density is
very low. However, at a very low density, the species will be
endangered and may go to extinction [1, 27]. Recently, Wang
and Wang [49] and Wang, Salmaniw, and Wang [50] studied the
persistence and propagation dynamics of a discrete-timemap and
PDE hybrid model with the mortality function satisfying strong
Allee effect and the birth function satisfying strong Allee effect,
respectively. The nonlinearly bistable assumptions employed in
[49, 50] are different from our nonmonotone assumption (H6).
Thismotivates us to incorporate theAllee Effect into ourmodel in
this paper. The resulting model system should demonstrate some
essential difference(s), and we leave the analysis of such a model
system as a future research project.

To conclude this section and the paper, we would like to point out
that in our model and the model in [3], the model parameters are
all assumed to be spatially homogeneous. However, spatial het-
erogeneity exists ubiquitously in the real world. Mathematically
incorporating spatial heterogeneity brings in some big challenges,
making analysis much more difficult. With respect to this aspect,
our attention was just brought to a most recent paper [29] by the
authors where they incorporated spatially periodic heterogeneity
into the model in [3] and analyzed the resulting model system.
Other types of heterogeneity, particularly those caused by climate
change or industrialization or human activities are of more
significant reality and importance, and thus, are surely worth
investigating for their impacts on the population dynamics.
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Appendix A: Derivation of (𝜶, 𝒙)

The derivation of (𝛼, 𝑥) comes from [2, Section 1.1.1], [54, Section 2], and
[32, Section 3]. In this section, we consider the following linear equation:

⎧⎪⎨⎪⎩
𝑣𝑡 = 𝐷𝐼

[
∫
ℝ

𝐽(𝑥 − 𝑦)𝑣(𝑦, 𝑡)𝑑𝑦 − 𝑣

]
− 𝑑𝐼𝑣, 𝑥 ∈ ℝ, 𝑡 ∈ (0, 1],

𝑣(𝑥, 0) = 𝑣0(𝑥), 𝑥 ∈ ℝ,

(A.1)

where 𝐷𝐼, 𝑑𝐼 are positive constants, 𝐽 satisfies assumption (J3), and 𝑣0 is
a nonnegative, continuous, and bounded function on ℝ.

Given any function 𝑔 defined on ℝ, we define the Fourier transform
[𝑔] = 𝑔̂ and inverse Fourier transform −1[𝑔̂] = 𝑔 as

𝑔̂(𝑤) = ∫
ℝ

e𝑖𝑤𝑥𝑔(𝑥)𝑑𝑥, 𝑔(𝑥) = 1

2𝜋 ∫
ℝ

e−𝑖𝑤𝑥𝑔̂(𝑤)𝑑𝑤.

The following three lemmas show some properties of the Fourier
transform [𝑔] = 𝑔̂.

Lemma A.1 [58, p. 111]. Assume that 𝑔(𝑥) and 𝑔′(𝑥) are both absolutely
integrable onℝ, then

[𝑔′](𝑤) = (𝑖𝑤)[𝑔](𝑤).
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Moreover, it holds that

[𝑔(𝑛)](𝑤) = (𝑖𝑤)𝑛[𝑔](𝑤), 𝑛 ≥ 1 is an integer.

Lemma A.2 [17, p. 20]. Suppose that 𝑓, 𝑔 ∈ 𝐿1(ℝ) and let

(𝑓 ∗ 𝑔)(𝑥) ∶= ∫
ℝ

𝑓(𝑥 − 𝑦)𝑔(𝑦)𝑑𝑦.

Then, [𝑓 ∗ 𝑔] = [𝑓] × [𝑔].
LemmaA.3 [17, p. 27]. Suppose that 𝜑(𝑧) is analytic for |𝑧| < 𝜀 with 𝜀 > 0,
and 𝜑(0) = 0. If ℎ ∈ 𝐿1(ℝ) such that ‖ℎ‖𝐿1 < 𝜀, then 𝜑(ℎ̂) is a Fourier
transform. This is to say, there is 𝐻 ∈ 𝐿1(ℝ) such that 𝜑(ℎ̂(𝑤)) = 𝐻̂(𝑤)

(𝑤 ∈ ℝ).

Let 𝑣(𝑤, 𝑡) and 𝐽(𝑤) be the Fourier transforms of 𝑣(𝑥, 𝑡) and 𝐽(𝑥),
respectively. Then, by Lemma A.2, we obtain that

𝜕𝑣(𝑚, 𝑡)

𝜕𝑡
= ∫

ℝ

e𝑖𝑤𝑥
{
𝐷𝐼 ∫

ℝ

𝐽(𝑥 − 𝑦)𝑣(𝑦, 𝑡)𝑑𝑦 − 𝐷𝐼𝑣(𝑥, 𝑡) − 𝑑𝐼𝑣(𝑥, 𝑡)

}
𝑑𝑥

=
[
𝐷𝐼𝐽(𝑤) − 𝐷𝐼 − 𝑑𝐼

]
𝑣(𝑤, 𝑡).

The above equation can be solved as

𝑣(𝑤, 𝑡) = e[𝐷𝐼𝐽(𝑤)−𝐷𝐼−𝑑𝐼 ]𝑡 ∫
ℝ

e𝑖𝑤𝑦𝑣0(𝑦)𝑑𝑦.

Then, we can infer from the inverse Fourier transform that

𝑣(𝑥, 𝑡) = e−𝑑𝐼 𝑡
2𝜋 ∫

ℝ

e−𝑖𝑤𝑥
[
e𝐷𝐼[𝐽(𝑤)−1]𝑡 ∫

ℝ

e𝑖𝑤𝑦𝑣0(𝑦)𝑑𝑦
]
𝑑𝑤

= e−𝑑𝐼 𝑡
2𝜋 ∫

ℝ

[
∫
ℝ

e𝐷𝐼[𝐽(𝑤)−1]𝑡e𝑖𝑤(𝑦−𝑥)𝑑𝑤
]
𝑣0(𝑦)𝑑𝑦

= e−𝑑𝐼 𝑡 ∫
ℝ

(𝐷𝐼𝑡, 𝑥 − 𝑦)𝑣0(𝑦)𝑑𝑦,

where

(𝛼, 𝑥) = 1

2𝜋 ∫
ℝ

e𝛼(𝐽(𝑤)−1)e−𝑖𝑤𝑥𝑑𝑤.

Clearly, (𝛼, 𝑥) is the inverse Fourier transform of 𝑔(𝑤) ∶= e𝛼(𝐽(𝑤)−1).
Here, the existence of (𝛼, 𝑥) can be obtained from Lemma A.3 (see [32,
Section 3] for details).

Under the assumption (J3), some basic properties for (𝛼, 𝑥) can be
derived as follows:

LemmaA.4 [32, Lemma 3.1].Assume that 𝐽 satisfies (J3). Then, we have

1. ∫
ℝ
(𝛼, 𝑥)𝑑𝑥 = 1 for 𝛼 ≥ 0;

2. (𝛼, 𝑥) = 𝛿(𝑥) ≥ 0 on ℝ for 𝛼 = 0, where 𝛿(𝑥) is the Dirac-delta
function; (𝛼, 𝑥) > 0 onℝ for 𝛼 > 0;

3. 𝐽(𝑤) is an even function in𝑤, and hence (𝛼,−𝑥) = (𝛼, 𝑥) for 𝑥 ∈ ℝ;

4. ∫
ℝ
(𝛼, 𝑥 − 𝑦)(𝛽, 𝑦 − 𝑧)𝑑𝑦 = (𝛼 + 𝛽, 𝑥 − 𝑧) for 𝑥, 𝑦, 𝑧 ∈ ℝ and

𝛼, 𝛽 ≥ 0;

5. (𝛼, 𝑥) = e−𝛼

2𝜋

∞∑
𝑘=0

∫
ℝ

𝛼𝑘[𝐽(𝑤)]𝑘

𝑘!
e−𝑖𝑤𝑥𝑑𝑤 = e−𝛼

∞∑
𝑘=0

𝛼𝑘

𝑘!
−1[𝐽𝑘](𝑥) = e−𝛼

∞∑
𝑘=0

𝛼𝑘

𝑘!
𝐽𝑘(𝑥), where 𝐽0(𝑥) = 𝛿(𝑥), 𝐽1(𝑥) = 𝐽(𝑥), and 𝐽𝑘(𝑥) = [𝐽 ∗

𝐽𝑘−1](𝑥) for 𝑘 ≥ 2;

6. for each 𝜇 ≥ 0, if ∫
ℝ
𝐽(𝑥)e𝜇𝑥𝑑𝑥 < ∞, then ∫

ℝ
(𝛼, 𝑥)e𝜇𝑥𝑑𝑥 < ∞.
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