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Abstract. It is shown that every solution of a linear differential system with constant coefficients
and time delays tends to zero if a certain matrix derived from the coefficient matrix is a nonsingular
M -matrix and the diagonal delays satisfy the so-called 3/2 condition.
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1. Introduction. Consider a system of delayed linear differential equations with
constant coefficients of the form

ẋi(t) = −
n∑

j=1

aijxj(t− τij), i = 1, 2, . . . , n,(1.1)

with

τij ≥ 0 for all 1 ≤ i, j ≤ n.(1.2)

System (1.1) arises as linearization about an equilibrium point of many nonlinear
systems with time delays. The interested reader can refer to Stépán [14] and the
references therein for multiple-delay examples, such as machine tool vibration and
human-machine systems.

When τij = 0 for all i, j = 1, 2, . . . , n, it is well known that (1.1) is asymptotically
stable if and only if the matrix A = (aij) is a positively stable matrix, meaning
that all eigenvalues of A have positive real parts. When some of the delays τij are
nonzero, (1.1) is asymptotically stable if and only if all the roots of its characteristic
equation have negative real parts (cf. Hale and Verduyn Lunel [6]). In general, it
is extremely difficult to analyze the characteristic equation of (1.1) when there are
multiple (nonzero) delays. In Hofbauer and So [8], the authors considered the case
when τii = 0 for i = 1, 2, . . . , n, and they established the following result.

Theorem 1.1. Assume that τii = 0 for all i = 1, 2, . . . , n. Then (1.1) is asymp-
totically stable for all choices of delays of the form (1.2) if and only if aii > 0 for
i = 1, 2, . . . , n, detA �= 0, and A is weakly diagonally dominant (i.e., all the principal
minors of Â = (âij) are nonnegative, where âii = aii and âij = −|aij | for j �= i).

In such a case (i.e., when there is no diagonal delay), Györi [5] also obtained a
similar result for a quasi-monotone matrix A (i.e., aij ≤ 0 for i �= j). Motivated by the
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study of neural networks of Hopfield type, there is a recent extension of Theorem 1.1
by Sue Ann Campbell [2] of the University of Waterloo to include both types of
diagonal terms, both with and without delays. A result similar to Theorem 1.1 was
obtained (with the conditions on a suitably derived matrix) using the same proof as
in [8].

When τii �= 0, i = 1, . . . , n, instantaneous feedback is absent, and (1.1) becomes
a system of “pure-delay type.” For such a “pure-delay-type” system, the stability
problem becomes much harder, as pointed out by Gopalsamy and He [4], He [7], and
Kuang [10]. However, it is reasonable to expect that a similar stability criterion holds
as long as the diagonal delays are sufficiently small. This paper will provide an answer
to this question. More precisely, by employing a new technique (without analyzing
the characteristic equation or constructing a Liapunov functional), we will extend
the sufficiency part of Theorem 1.1 to the case when τii (i = 1, 2, . . . , n) are not
necessarily all zero. For convenience, we recall the concept of a nonsingular M -matrix
(cf. Fiedler [3]).

Definition 1.2. The n × n matrix B = (bij) is a nonsingular M-matrix if (i)
bij ≤ 0 for j �= i and (ii) all principal minors of B are positive.

There are many equivalent formulations of this concept (cf. Fiedler [3, Theorem
5.1, p. 114]. In particular, if B is a nonsingular M -matrix, then B−1 is a positive
matrix.

We associate with the n× n matrix A = (aij) a new matrix Ã = (ãij) defined by

ãii = aii for i = 1, 2, . . . , n(1.3)

and

ãij = −1 + 1
9aiiτii(3 + 2aiiτii)

1− 1
9aiiτii(3 + 2aiiτii)

|aij | for i �= j, j = 1, 2, . . . , n.(1.4)

Now we can state our main result.
Theorem 1.3. Assume that

aiiτii <
3

2
for all i = 1, 2, . . . , n.(1.5)

If Ã is a nonsingular M-matrix, then every solution (x1(t), x2(t), . . . , xn(t)) of (1.1)
tends to 0 as t → ∞.

Remark 1.1. Condition (1.5) will be referred to as the 3/2 condition. When
τii = 0 for all i = 1, . . . , n, the 3/2 condition is automatically satisfied and Ã = Â.
According to Bapat and Raghavan [1, Theorem 7.8.6], if Â is a nonsingularM -matrix,
then A itself is nonsingular. Hence, in the case of no diagonal delays, a matrix A
satisfying the hypotheses of Theorem 1.3 will also satisfy the criterion in Theorem
1.1. The stability criterion in Theorem 1.3 is concrete and easily verifiable for any
given (numerical) system.

Remark 1.2. There are many 3/2 stability results for scalar (linear or nonlinear,
autonomous or nonautonomous, one or several delays) equations in the literature.
See, for example, [11, 16, 15, 9, 12, 13]. It would be interesting to see if these results
can be extended to systems.

Remark 1.3. In [8], besides the linear equation (1.1), the authors also consid-
ered global stability of Lotka–Volterra equations (with τii = 0). We are currently
investigating the possibility of a 3/2 result for Lotka–Volterra systems when τii > 0.
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2. Proof of Theorem 1.3. The proof of Theorem 1.3 consists of the following
two lemmas. The first lemma establishes the boundedness of solutions of (1.1).

Lemma 2.1. Under the conditions of Theorem 1.3, every (forward) solution of
(1.1) is bounded.

Proof. Let (x1(t), x2(t), . . . , xn(t)) be a solution of (1.1) on [t0,∞). Without loss
of generality, t0 can be taken to be 0. For the sake of contradiction, assume that
max{|xi(t)| : i = 1, 2, . . . , n} is unbounded on [t0,∞). By rearranging the indices i,
we may assume that

lim sup
t→∞

|xi(t)| = ∞ for i = 1, 2, . . . , k(≤ n)(2.1)

and

|xi(t)| ≤ M for t ≥ t0 −max
h,k

{τhk}, i = k + 1, . . . , n.(2.2)

Let N be the smallest integer such that N > t0 + τii for all i. There is an integer
N1 > N such that for each i = 1, . . . , k, the maximum of the function |xi(t)| on the
interval [t0, N1] is attained at a point in [N,N1]. Fix i = 1, . . . , k. For each integer
m ≥ 1, let tim ∈ [N,N1 +m] be such that |xi(tim)| = max{|xi(t)| : t ∈ [t0, N1 +m]}.
We may assume that {tim}∞m=1 is a nondecreasing sequence. By going to subsequences
if necessary, we have k sequences {tim}∞m=1, i = 1, 2, . . . , k, such that{

tim ↑ ∞, |xi(tim)| ↑ ∞ as m → ∞,

|xi(t)| ≤ |xi(tim)| for t0 ≤ t ≤ tm,
for i = 1, 2, . . . , k,(2.3)

where tm = max{tim : i = 1, 2, . . . , k}. Again by going to subsequences if necessary,
we may assume that for each i = 1, . . . , k, all the terms in the sequence {xi(tim)}∞m=1

are of the same sign. Without loss of generality (i.e., by using −xi(t) instead of xi(t)
and−aij instead of aij for j �= i, if necessary), we may assume that |xi(tim)| = xi(tim).
Then

|xi(t)| ≤ xi(tim) for t0 ≤ t < tm and ẋi(tim) ≥ 0, i = 1, 2, . . . , k.

It follows from (1.1) that

0 ≤ −
n∑

j=1

aijxj(tim − τij) ≤ −aiixi(tim − τii) +

k∑
j �=i

|aij |xj(tjm) +M

n∑
j=k+1

|aij |

or

xi(tim − τii) ≤ 1

aii


 k∑

j �=i

|aij |xj(tjm) +M

n∑
j=k+1

|aij |

 , i = 1, 2, . . . , k.(2.4)

Set

αi =
1

aii


 k∑

j �=i

|aij |xj(tjm) +M

n∑
j=k+1

|aij |

 , i = 1, 2, . . . , k.(2.5)

We will now show

aiixi(tim) +

k∑
j �=i

ãijxj(tjm) ≤ M

n∑
j=k+1

|ãij | for i = 1, 2, . . . , k.(2.6)
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If xi(tim) ≤ αi, then (2.6) follows from a simple calculation. If xi(tim) > αi, by (2.4)
there exists ξim ∈ [tim − τii, tim] such that xi(ξim) = αi. From (1.1) we have

ẋi(t) ≤ aii[−xi(t− τii) + αi] ≤ aii (|xi(tim)|+ αi) for N ≤ t ≤ tm.(2.7)

For t ∈ [ξim, tim), integrating (2.7) from t− τii to ξim, we have

αi − xi(t− τii) ≤ aii (|xi(tim)|+ αi) (ξim + τii − t) for ξim ≤ t ≤ tim.

Substituting this into the first inequality in (2.7), we obtain

ẋi(t) ≤ a2
ii (|xi(tim)|+ αi) (ξim + τii − t) for ξim ≤ t ≤ tim.

Combining this and (2.7), we have

ẋi(t) ≤ aii (|xi(tim)|+ αi)min{1, aii(ξim + τii − t)} for ξim ≤ t ≤ tim.(2.8)

We consider the following two cases.
Case 1. tim − ξim ≤ 2τii/3. In this case, by (2.8) we have

xi(tim)− xi(ξim) ≤ a2
ii (|xi(tim)|+ αi)

∫ tim

ξim

(ξim + τii − t)dt

= a2
ii (|xi(tim)|+ αi)

[
τii(tim − ξim)− 1

2
(tim − ξim)

2

]

≤ (|xi(tim)|+ αi)

[
2

3
(aiiτii)

2 − 2

9
(aiiτii)

2

]

=
4

9
(aiiτii)

2 (|xi(tim)|+ αi)

≤ 1

9
aiiτii(3 + 2aiiτii) (|xi(tim)|+ αi) ,

since the function y 
→ τiiy − 1
2y

2 is increasing on the interval [0, 2τii
3 ].

Case 2. tim − ξim > 2τii/3. In this case, let tim − ηim = 2τii/3 so that ηim ∈
(ξim, tim]. Then by (2.8) we have

xi(tim)− xi(ξim)

≤ (|xi(tim)|+ αi)

[
aii(ηim − ξim) + a2

ii

∫ tim

ηim

(ξim + τii − t)dt

]

= (|xi(tim)|+ αi)

[
aii(ηim − ξim)(1− aii(tim − ηim)) + a2

ii

∫ tim

ηim

(ηim + τii − t)dt

]

= (|xi(tim)|+ αi)

[
aii(ηim − ξim)

(
1− 2

3
aiiτii

)

+ a2
iiτii(tim − ηim)− 1

2
a2
ii(tim − ηim)

2

]

≤ (|xi(tim)|+ αi)

[
1

3
aiiτii +

2

9
(aiiτii)

2

]

=
1

9
aiiτii(3 + 2aiiτii) (|xi(tim)|+ αi) ,

since ηim − ξim ≤ τii
3 in this case.
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Combining Cases 1 and 2, we have

aiixi(tim)

≤ 1 + 1
9aiiτii(3 + 2aiiτii)

1− 1
9aiiτii(3 + 2aiiτii)


 k∑

j �=i

|aij |xj(tjm) +M

n∑
j=k+1

|aij |

 , i = 1, 2, . . . , k,

which implies (2.6) is true.
Let Ãk = (ãij)k×k denote the kth leading principal submatrix of Ã. Then Ãk is

a nonsingular M -matrix of order k, and so Ã−1
k > 0. Hence, it follows from (2.6) that

(x1(t1m), x2(t2m), . . . , xk(tkm))
T ≤ MÃ−1

k


 n∑

j=k+1

|ã1j |,
n∑

j=k+1

|ã2j |, . . . ,
n∑

j=k+1

|ãkj |



T

,

m = 1, 2, . . . .

We conclude that

lim sup
m→∞

|xi(tim)| < ∞, i = 1, 2, . . . , k.

This contradicts the fact that |xi(tim)| → ∞ as m → ∞ for i = 1, 2, . . . , k, and the
proof is complete.

Next, using the boundedness of solutions, we can prove the convergence of all
solutions of (1.1).

Lemma 2.2. Under the conditions of Theorem 1.3, every solution of (1.1) tends
0 as t → ∞.

Proof. Let (x1(t), x2(t), . . . , xn(t)) be a solution of (1.1) on [t0,∞). We will prove
that

lim
t→∞xi(t) = 0, i = 1, 2, . . . , n.(2.9)

We distinguish the two cases.
Case A. All of the functions

∑n
j=1 aijxj(t − τij), i = 1, 2, . . . , n, are nonoscilla-

tory. Then the functions ẋi(t) (i = 1, 2, . . . , n) are eventually sign-definite, and so by
Lemma 2.1, the limit ci = limt→∞ xi(t) exists. By (1.1), ẋi(t) converges as t → ∞.
Since ẋi(t) is bounded, xi(t) is uniformly continuous and convergent. Therefore,
limt→∞ ẋi(t) = 0 for i = 1, 2, . . . , n, and we have

n∑
j=1

aijcj = 0 for i = 1, 2, . . . , n.

It follows that

aii|ci| −
∑
j �=i

|aij ||cj | ≤ 0 for i = 1, 2, . . . , n.(2.10)

Set Â = (âij), where âii = aii and âij = −|aij | for j �= i. Then Â ≥ Ã and Â

has nonpositive off-diagonal entries. In view of [3, Theorem 2.5.4], the matrix Â is
also a nonsingular M -matrix. Since (2.10) can be expressed as the matrix inequality
Â(|c1|, . . . , |cn|)T ≤ (0, . . . , 0)T , by applying the positive matrix Â−1 to both sides,
we conclude that c1 = c2 = · · · = cn = 0.
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Case B. At least one of the functions
∑n

j=1 aijxj(t − τij) (i = 1, 2, . . . , n) is
oscillatory. Set

Ui = lim sup
t→∞

|xi(t)|, i = 1, 2, . . . , n.

By Lemma 2.1, we have Ui < ∞, i = 1, 2, . . . , n. It suffices to prove that U1 =
· · · = Un = 0. By rearranging the indices, we may assume that

∑n
j=1 aijxj(t − τij),

i = 1, . . . , k, are oscillatory and
∑n

j=1 aijxj(t−τij), i = k+1, . . . , n, are nonoscillatory.
It follows from (1.1) that ẋi(t) (i = 1, 2, . . . , k) are oscillatory and

lim
t→∞ ẋi(t) = 0 for i = k + 1, . . . , n.(2.11)

Hence, for any ε > 0, there exist k sequences {tim} i = 1, 2, . . . , k, such that{
tim ↑ ∞, |xi(tim)| → Ui as m → ∞,

|ẋi(tim)| = 0, Ui − ε < |xi(t)| < Ui + ε for t ≥ t1,
i = 1, 2, . . . , k,(2.12)

where t1 = min{ti1 : i = 1, 2, . . . , k}. By going to subsequences if necessary, we may
assume |xi(tim)| = xi(tim) (use −xi(t) instead of xi(t) and −aij instead of aij for
j �= i, if necessary). By (1.1), as long as m is sufficiently large, we have

0 = −
n∑

j=1

aijxj(tim − τij) ≤ −aiixi(tim − τii) +

n∑
j �=i

|aij |(Uj + ε)

or

xi(tim − τii) ≤ 1

aii

n∑
j �=i

|aij |(Uj + ε), i = 1, 2, . . . , k.(2.13)

Set

βi =
1

aii

n∑
j �=i

|aij |(Uj + ε), i = 1, 2, . . . , k.(2.14)

We will now show

aiixi(tim) +
∑
j �=i

ãij(Uj + ε) ≤ 2εaiiτii(3 + 2aiiτii)

9− aiiτii(3 + 2aiiτii)
, i = 1, 2, . . . , k.(2.15)

If xi(tim) ≤ βi, then (2.15) obviously holds. If xi(tim) > βi, by (2.13) there exists
ξim ∈ [tim − τii, tim] such that xi(ξim) = βi. Using (1.1), for m sufficiently large we
have

ẋi(t) ≤ aii[−xi(t− τii) + βi] ≤ aii [(Ui + ε) + βi] for ξim − τii ≤ t ≤ tim.(2.16)

For t ∈ [ξim, tim), integrating (2.16) from t− τii to ξim, we have

βi − xi(t− τii) ≤ aii [(Ui + ε) + βi] (ξim + τii − t) for ξim ≤ t ≤ tim.

Substituting this into the first inequality in (2.16), we obtain

ẋi(t) ≤ a2
ii [(Ui + ε) + βi] (ξim + τii − t) for ξim ≤ t ≤ tim.
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Combining this and (2.16), we have

ẋi(t) ≤ aii [(Ui + ε) + βi]min{1, aii(ξim + τii − t)}, ξim ≤ t ≤ tim.(2.17)

We consider the following two cases.
Case 1. tim − ξim ≤ 2τii/3. In this case, by (2.17) we have

xi(tim)− xi(ξim) ≤ a2
ii [(Ui + ε) + βi]

∫ tim

ξim

(ξim + τii − t)dt

= a2
ii [(Ui + ε) + βi]

[
τii(tim − ξim)− 1

2
(tim − ξim)

2

]

≤ [(Ui + ε) + βi]

[
2

3
(aiiτii)

2 − 2

9
(aiiτii)

2

]

=
4

9
(aiiτii)

2 [(Ui + ε) + βi]

≤ 1

9
aiiτii(3 + 2aiiτii) [(Ui + ε) + βi]

=
1

9
aiiτii(3 + 2aiiτii) [(Ui − ε) + βi + 2ε]

by the 3/2 condition (1.5).
Case 2. tim − ξim > 2τii/3. In this case, let tim − ηim = 2τii/3. Then ηim ∈

(ξim, tim]. By (2.17), we have

xi(tim)− xi(ξim)

≤ [(Ui + ε) + βi]

[
aii(ηim − ξim) + a2

ii

∫ tim

ηim

(ξim + τii − t)dt

]

= [(Ui + ε) + βi]

[
aii(ηim − ξim)(1− aii(tim − ηim)) + a2

ii

∫ tim

ηim

(ηim + τii − t)dt

]

= [(Ui + ε) + βi]

[
aii(ηim − ξim)

(
1− 2

3
aiiτii

)
+ a2

iiτii(tim − ηim)− 1

2
a2
ii(tim − ηim)

2

]

≤ [(Ui + ε) + βi]

[
1

3
aiiτii +

2

9
(aiiτii)

2

]

=
1

9
aiiτii(3 + 2aiiτii) [(Ui + ε) + βi]

=
1

9
aiiτii(3 + 2aiiτii) [(Ui − ε) + βi + 2ε] ,

since ηim − ξim ≤ τii
3 .

Combining Cases 1 and 2 with (2.12), we have

aiixi(tim)

≤ 1 + 1
9aiiτii(3 + 2aiiτii)

1− 1
9aiiτii(3 + 2aiiτii)

∑
j �=i

|aij |(Ui + ε) +
2εaiiτii(3 + 2aiiτii)

9− aiiτii(3 + 2aiiτii)
, i = 1, 2, . . . , k.

This shows (2.15) is true. Letting m → ∞ and ε → 0 in (2.15), we obtain

aiiUi +
∑
j �=i

ãijUj ≤ 0 for i = 1, 2, . . . , k.(2.18)
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On the other hand, for each i = k + 1, . . . , n, let {sim}∞m=1 ↑ ∞ be such that
limm→∞ xi(sim) = Ui. By (2.11), we have limm→∞ ẋi(sim + τii) = 0. Using (1.1), we
have

0 = ẋi(sim + τii) + aiixi(sim) +
∑
j �=i

aijxj(sim + τii − τij)

≥ ẋi(sim + τii) + aiixi(sim) +
∑
j �=i

ãij |xj(sim + τii − τij)|,

since ãij ≤ −|aij | ≤ 0. Letting m → ∞, we obtain

aiiUi +
∑
j �=i

ãijUj ≤ 0 for i = k + 1, . . . , n.(2.19)

By (2.17) and (2.18) and using the fact that Ã is a nonsingular M -matrix (so that
Ã−1 is a positive matrix), we have U1 = U2 = · · · = Un = 0. The proof is now
complete.
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