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Abstract. We study the global Hopf bifurcation of periodic solutions for one-parameter systems
of state-dependent delay differential equations, and specifically we obtain a priori estimates of the
periods in terms of certain values of the state-dependent delay along continua of periodic solutions
in the Fuller space C(R; ]RN+1) x R2. We present an example of three-dimensional state-dependent
delay differential equations to illustrate the general results.
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1. Introduction. Hopf bifurcation is a phenomenon in nonlinear dynamical sys-
tems in which an equilibrium loses its stability as a system parameter passes a critical
value, giving rise to small amplitude periodic solutions branching from this equilib-
rium. Classic Hopf bifurcation theorems can guarantee the existence of such bifur-
cated periodic solutions only when the bifurcation parameter is close to the critical
value and are thus often referred to as local Hopf bifurcation theorems. Global Hopf
bifurcation theorems seek conditions under which the bifurcated periodic solutions
persist for larger or even full range of the bifurcation parameter values. There have
been extensive and intensive studies on global Hopf bifurcations for various systems.
The well-known Alexander—Yorke theorem [1] gives the global Hopf bifurcation for
ordinary differential equations, using techniques from algebraic topology. Their re-
sult was refined and extended by, among many others, Chow and Mallet-Paret [7],
Chow, Mallet-Paret, and Yorke [8], Mallet-Paret and Yorke [25], Alligood and Yorke
[2], Fiedler [11], and Kielhofer [20]. Many important global Hopf bifurcation theories
for infinite dimensional dynamical systems have also been developed by, e.g., Ize [1§]
for abstract nonlinear evolution equations, Fiedler [10, 12, 13] for parabolic partial
differential equations and Volterra integral equations, Nussbaum [28], Wu [31, 32],
Krawcewicz, Wu, and Xia [21], Baptistini and Téboas [5], and Guo and Huang [14]
for functional differential equations with constant delays and Mallet-Paret and Nuss-
baum [24] for some state-dependent delay differential equations.
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There is an increasing interest in state-dependent delay differential equations
(SDDDEs). This is because more and more models in the form of SDDDEs arising
from various practical fields have been proposed or derived; on the other hand, the
fundamental theory for this type of equation has not been completely established.
The recent survey [15] collects some SDDDE models, offers a large number (almost a
complete up-to-date list) of references, and summarizes the recent progress of research
on this type of equation.

There are many challenging mathematical problems for SDDDEs, among them the
Hopf bifurcation problem, especially the global Hopf bifurcation problem. Eichmann
[9] proved a local Hopf bifurcation result for SDDDEs. Hu and Wu [16] made an
attempt by considering a very general class of SDDDEs and established an abstract
theory on global Hopf bifurcations. Making use of this theory, Hu and Wu [17]
obtained conditions for a class of SDDDEs that guarantee a global continuation of
the bifurcated periodic solution with small periods in the sense explained later (hence
referred to as rapidly oscillating periodic solutions). This paper is a continuation of
[17], aiming to develop a framework and tools for the study of global continuation
of slowly oscillating periodic solutions arising from Hopf bifurcation, for the same
type of SDDDEs as studied in [17]. To this end, some a priori estimates for the
periods of the bifurcated periodic solutions are inevitable, and a general approach is
developed to obtain these a priori estimates in section 3, after introducing the same
setup as in [17] and the required notation, terminology, and preliminaries in section 2.
In section 4, we apply the obtained results to a neural network model consisting of
two neurons. By verifying the conditions in the previous sections as well as in [16],
we show that this model system exhibits Hopf bifurcations and global continua of
both slowly and rapidly oscillating periodic solutions for an unbounded range of the
bifurcation parameter.

2. Preliminaries. Consider the following parametrized differential equations
with a state-dependent delay:

i(t) = F(a(t), o(t — 7(1)), o),
@1) {% o(x(t), (1), o),

where z(t) € RV, 7(t) € RT = [0, +o0), and 0 € R. This type of systems with a
delay governed by an ordinary differential equation was formulated as an appropriate
model for fish dynamics, and the existence of periodic solutions was considered by
Arino, Hbid, and Bravo de la Parra [4], Arino, Hadeler, and Hbid [3], and Magal and
Arino [23].

2.1. Notation and terminology. In what follows, we denote by C(R; RY)
the normed space of bounded continuous functions from R to RY equipped with the
usual supremum norm ||z = sup,eg [2(¢)| for z € C(R; RY), where | - | denotes the
Euclidean norm on RY. Denote by Cy,(R; RY) the subspace of C(R; RY) consisting
of 2m-periodic functions. Denote by N the set of all positive integers. For convenience,
we now summarize the local and global Hopf bifurcation theory developed in [16].
Assume the following:

(S1) The maps f: RN xRN xR 3> (61, 02,0) — f(01,02,0) € RY and g: RY xR x
R > (71, 72, ) = g(71, 72, 0) € R are C? (twice continuously differentiable).
(S2) There exist L > 0 and M, > 0 such that —M, < g(y1, 72, 0) < 725 for all

L+1
’716RN,"/26R,06R.
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The period normalization (x, 7)(t) = (y, z)(27t/p) by the period p > 0 of a
periodic solution (z, 7) transforms (2.1) into

(2.2) {y(t) = zif(y(t), y(t — 272(1)), o),

In what follows, we often talk about a solution (z, 7, ¢) of (2.1) in the sense that (z,7)
is a solution of (2.1) with the parameter o, and similarly a solution (y, z,0) of (2.2).
Then a solution (x, 7, o) of (2.1) is p-periodic if and only if (y, z, o) is a 27-periodic
solution of (2.2). In what follows, we will say that (z, 7, o, p) is a p-periodic solution
of (2.1) and (y, z, o, p) is a 2m-periodic solution of (2.2). The spaces C(R; RV 1) x R?
and Oy, (R; RVN*1) x R?) where the p-periodic solutions of (2.1) and the 2r-periodic
solutions of (2.2) live, respectively, are called Fuller spaces.

In what follows, we will not distinguish a constant map defined in a certain interval
from the constant value of the map. A stationary solution of (2.1) is a solution that is a
constant map defined for all t. Therefore, the stationary solutions of (2.1) are obtained
by solving the system f(z,z,0) = 0 and g(x,7,0) = 0. We assume throughout this
paper that the stationary solution of (2.1) at given ¢ is £(0) = (z,,7s), where the
mapping £ : R 3 0 — (2,,7,) € RV is continuous. For a stationary solution
(Zogs Top) Of (2.1) at g, we say that (24,, Toy, 00) is a Hopf bifurcation point if
there exists a sequence {zg, Tk, O, Tk}',::{ C O(R; RVN*1) x R? and Ty > 0 such
that (zx,7k) = (Zoy,To,) (With respect to the respective supremum-norms), and
(ok,T%) — (00,T0) as k — oo, and (zk, Tk, o) is a nonconstant Tj-periodic solution
of (2.1).

Freezing the state-dependent delay of the term y(t — 27 /pz(¢)) in (2.2) at 277, /p
and then linearizing the resulting nonlinear system at the stationary point (x4, 75),
we obtain the following inhomogeneous linear system:

(40) %[00 i 102677
(
(

P [axo) 0 y(t — Z7,) — x4
(2:3) +27r[ 0 0]<z —%Tg)—ﬂ, ’
where
(o) = 2 (61, b5, o)
az g)= 891 1 2, o 91:Ig,92:zga
0

bi(o) = 8%9('}/17 Y2, 0) V=T, V2=Ts>

fori=1, 2.
Let

(2.4) detcA(mema)(/\) =0

be the characteristic equation of the linear system corresponding to the formal lin-
earization (2.3). See [16] for details. A solution (z*, 7%, 0*) = (xe+, To=, 0*) is said to
be a center of (2.1) if (2.4) with o = ¢* has a pair of purely imaginary roots +i5* with
B* > 0. In this case p* = 27 /3* is called the virtual period associated with the center
(x*, 7%, 0*). We say that (z*, 7%, 0*) is an isolated center if it is the only center in
some neighborhood of (z*, 7%, 0*) in RV x R, that is, detc Az, 7+, 0 ([i*) =0
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and for 0 > 0 sufficiently small,

(2.5) det A, 7, 0)(iB) #0

for every (o, 8) € ((0* =0, 0*)U(c*, 0% +0)) x (0, +o0) and det A, . . o (iB) #0
for every g € (8* — 9, 8%) U (8%, B* +0).

We can then choose constants b = b(c*, f*) > 0 and ¢ = c(o*, 5*) > 0 such
that the closure of Q := (0, b) x (8* — ¢, B* + ¢) C R? = C contains no other zero of
detcA(s,., r,.,0+)(A) = 0. Then we can define the numbers

o*

Vi (Tor, Tox, 07, B) = deg(detc D,y roers, on+5) ()5 ),

where deg(A, ..y 7pess,0v+5) (1), Q) is the usual Brouwer degree of the mapping
detc Az, u s, roers, or+6)(A) defined on Q. The crossing number of (z*, 7, 0*) is
defined as

(26) 7('1;*5 T*a U*a ﬁ*) = ’Y—(xd*v To*s U*) - 7+($0'*) To*s U*)'

To state the local Hopf bifurcation theorem, we assume the following:
(S3) There exists o¢ so that (24,, 75y, 00) is a center of system (2.1),

0 0
<8_01 + 8_92> f(01, 02, 0)|o=00, 0:=00=2.,

is nonsingular (determinant is nonzero), and

0
8—729(’717 Y2, U)|U:00,’71:wao772:‘ra0 7& 0.

THEOREM 2.1 (see [16]). Assume (S1)—(S3) hold. Let (x4,, Ty, 00) be an isolated
center of system (2.1). If the crossing number ¥(Zo,, Toys 00, fo) # 0, then there
exists a bifurcation of nonconstant periodic solutions of (2.1) near (4o, Toq, 00). More
precisely, there exists a sequence {(xy, Tn, On, Bn)} such that o, = oq, Brn — Bo and
[(@n, ) = (Tog, Too )|| = 0 as n — oo, where

(Tny Tn, On) € C(R;RN'H) x R

is a nonconstant 27/ By, -periodic solution of system (2.1).

Let Sp be the closure of the set of all nonconstant periodic solutions of sys-
tem (2.1) in the Fuller space C(R;RN*1) x R2. ~(z*, 7%, 0*, B*) # 0 implies that
(z*, 7*, 0*) is a Hopf bifurcation point, namely, there exists a connected component
C(z*, 7, o*, p*) of Sg which contains (z*, 7*, o*, p*).

Remark 2.2. Let (z, 7, 0, p) € C(a*, 7%, 0*, p*) C C(R; RV*+1)xR? be a noncon-
stant periodic solution. Note that p may not be the minimal period of the solution
(z, 7, 0, p). We say (z, 7, o, p) is not pg-periodic, pg > 0, if pg is not a period of
(z, 7, 0). Tt is clear that if (z, 7, o, p) is not pp-periodic, then kp # po for every
ke N.

To state the global Hopf bifurcation theory developed in [16], we further assume
the following:

(S4) There exist constants Ly > 0, Ly > 0 such that

|f(01, 02, 0) — f(O1, 02, 0)| < Ly(|01 — 01| + |02 — O2]),
l9(715 Y25 @) = 9(F1s T2y ) < Lg(lv1 =71l + 2 — 72l)

for every 917 927 gla 527 Y1, V1 € RN? Y2, V2 € R7 oceR.
We can now state the global Hopf bifurcation theorem.
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THEOREM 2.3 (see [16]). Suppose that system (2.1) satisfies (S1)—(S4). Let M be
the set of constant solutions of the system (2.2) and let S denote the closure of the set
of all nonconstant solutions of (2.2) in the Fuller space Cor(R;RNT1) x R2. Assume
that all the centers of (2.1) are isolated. If (uo, 00, Po) = (Toy, Toys 00, Po) € M s
a bifurcation point, then either the connected component C(ug, 0o, po) of the center
(up, 00, po) in S is unbounded or

C(”Oa go, pO) NM= {(UO, g0, po)a (ula g1, pl)a ey (Uq, Oq, pq)}a

where p; € Ry, (u;, 04, pi) = (Xo;, Ty, 04, i) €M fori=0,1,2,..., q. Moreover,
in the latter case, the crossing numbers v(u;, oy, 27/p;) satisfy

q
(2.7) Zei’y(ui, oi, 27 /p;) =0,

i=0
where €; = sgndet [ al(gz)lzyff(m) bg(odi) }

2.2. Framework for global continuation of periodic solutions. We now
outline the strategies to be carried out in the following sections for a priori estimates of
periods of the solutions in a continuum of periodic solutions and thereafter to obtain
global continuation of periodic solutions.

DEFINITION 2.4. Let € be a connected subset of the solution set of (2.1) in the
Fuller space C(R; RNTY) x R2. We say (z, 7, 0, p) € C(R; RN T1) x R? is a p-periodic
solution of system (2.1) if (x, T, o) is a p-periodic solution of (2.1). We call € a
continuum of slowly oscillating periodic solutions if for every (z, T, o, p) € €, there
exists to € R so that p > 7(tp) > 0. Similarly, we call € a continuum of rapidly
oscillating periodic solutions if for every (z, T, o, p) € €, there exists to € R so that
0 <p < 7(to).

Remark 2.5. The definition of slowly (rapidly, respectively) oscillating solutions
is different from the familiar definition for scalar equations, where slow (rapid, respec-
tively) oscillation means that successive zeros are spaced at distances larger (smaller,
respectively) than the delay at the zero solution. See, for example, Kaplan and Yorke
[19] for more details.

DEFINITION 2.6. Let C(z*, 7*, 0*, p*) be a connected component of the closure of
all the nonconstant periodic solutions of system (2.1), bifurcated from (z*, 7%, o*, p*)
in the Fuller space C(R; RN*1) x R2. Let I C R be an interval, mg € NU{0}, and U
be a subset in C(x*, 7, o*, p*). We call I x U x {mqg} a delay-period disparity set if
every solution (x, 7, o, p) € U satisfies mo7(t) # mp for every t € I and m € N. We
call IxU x{mo} a delay-period disparity set at (¢, v, mo) if (, T, mo) € I xU x{mo}
and I xU x{mq} is a delay-period disparity set. Delay-period disparity sets associated
with the Fuller space Car (R;RNTY) x R? are defined analogously.

We note that the period normalization of a solution (x, 7, o, p) does not change
its norm in the respective Fuller spaces. Theorem 2.3 shows that a connected compo-
nent of the closure of all the nonconstant periodic solutions of (2.1), bifurcated from
(z*, 7%, o*, p*), namely, C(z*, 7, o*, p*), either has finitely many bifurcation points
with the sum of S'-equivariant degrees (the summation in (2.7); see [22] for more de-
tails) being zero or C'(z*, 7*, o*, p*) is unbounded in the Fuller space C(R; RV*+1) x
R2. Therefore, if global persistence of periodic solutions when the parameter is far
from the local Hopf bifurcation value o* is desired, we should (1) verify that the sum
of S'-equivariant degrees of the bifurcation points along C'(z*, 7*, ¢*, p*) is nonzero,
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which implies that C'(z*, 7, o*, p*) is unbounded, and (2) find conditions to ensure
that the projection of C(x*, 7%, ¢*, p*) on the o-parameter space R is unbounded.
Assuming the nontriviality of the sum of the S!-degrees at the bifurcation points along
C(z*, 7%, o*, p*), it is sufficient to seek a continuous function M : R > o0 — M(c) > 0
such that for every (z,7,0, p) € C(z*, 7*, 0¥, p*) we have

(2.8) (@, 7)l +p < M(o).

Then we can conclude from (2.8) that the projection of C'(z*, 7*, o*, p*) on the o-
parameter space R is unbounded, for otherwise, by (2.8), C(z*, 7*, o*, p*) is bounded
in the Fuller space C(R; RV*1) x R?, which is a contradiction.

To achieve (2.8), we first give some sufficient geometric conditions ensuring the
uniform boundedness of all possible periodic solutions (z, 7, o) of (2.1), that is, we
find a continuous function M; : R 3 ¢ — Mi(o) > 0 such that for every (z, 7,0, p) €
C(z*, 7, o*, p*) we have

(2.9) I(z, 7| < Mi(0).

Furthermore, we seek a continuous function My : R 3 ¢ — Ms(o) > 0 such that for
every (z, 7,0, p) € C(a*, 7%, o*, p*) we have

(2.10) lp| < Ma(0).

Seeking the uniform bound M (o) in (2.10) has been a major challenge and is the
main focus of this paper and the earlier work in [17]. Earlier techniques for bounds
of periods of periodic solutions of differential equations (see [17] for a short summary
and the references therein) turn out to be not applicable for (2.1) due to the nature
of the state-dependent delay.

In [17] we developed an approach to obtain a uniform upper bound for periods of
the solutions in a continuum C(z*, 7*, o*, p*) of rapidly oscillating periodic solutions
where the virtual period p* of the bifurcation point (z*, 7%, o*, p*) satisfies

0 < p* < 7* and mp* # 7 for every m € N.

*

The approach can be outlined as follows. For each solution (zg, 10, 00, po) € C(z*, 7%,
o*, p*), we find a period-delay disparity set I x (U N C(z*, 7%, o*, p*)) x {1}. More
specifically, for each periodic solution (zg, 70, 00, po), we show that it satisfies 7o (tg) #
mpg for some tg € R and for all m € N. Then we find an open interval I > t,
and a small open neighborhood U > (xo, 79, 00, po) so that every (x,7, o, p) €
UnCz*, m, o, p*) satisfies 7(t) # mp for all t € [ and m € N. We then
develop a procedure to extend the period-delay disparity set along the continuum
C(z*, 7", o*, p) and a global estimate of the period values is then achieved.
However, extending this approach for continua of slowly oscillating periodic solu-
tions is highly nontrivial for the following reasons. On the one hand, the period-delay
disparity set in [17] was obtained through the self-mapping [ : [to, to + 7(t0)] > t —
t —7(t) + 7(to) € [to, to + T(to)], where 7(¢) < 1 for all ¢t € R. This mapping is
essential in [17] for us to obtain the inequality 7(¢) # mp for allm € Nand ¢t € I C R,
along a continuum of rapidly oscillating periodic solutions in the Fuller space. How-
ever, for solutions (z, 7, o, p) in a continuum of slowly oscillating periodic solutions,
it is hard, if not impossible, to find an appropriate self-mapping that can lead to the
inequality mo7(t) # mp for all m € N and ¢ € I with given my € N,mg > 1. On
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the other hand, the construction of the period-delay disparity set in [17] depends on
the negative (or positive) feedback assumption on f. To be more specific, we assume
that xf(x, x, o) is negative (or positive) if f(z, z, o) # 0. In [17], we studied the
global continua of rapidly oscillating periodic solutions for the state-dependent delay
differential equations

(2.11) #(t) =1 — h(z(t)) - (1 + tanh 7(t))

{ #(t) = —pa(t) +oblz(t — 7(1))),

with tanh(7) = (e*” —1)/(e?*” + 1) and u > 0, where b, h : R — R are C? functions
and zb(x) < 0 for  # 0. If the bifurcation parameter o is positive, then f(z) =
—px + ob(x) satisfies that z f(x) is negative for x # 0. If o is negative, then zf(x) is
in general neither always negative nor always positive for  # 0. This means that if
a continuum of nonconstant periodic solutions of (2.11) is located in the Fuller space
where o < 0, we cannot use the approach in [17] to obtain uniform lower and upper
bounds of periods along the continuum.

These difficulties necessitate a new approach to find upper and lower bounds of
periods for continua of periodic solutions of (2.1), in particular, for continua of slowly
periodic solutions. To this end, we investigate the continuum of periodic solutions,
bifurcated from (z*, 7%, o*, p*), where the virtual period p* satisfies

Jot" < p" < kot" for some ko, jo € NU{0}, ko > jo >0
and
mp* # mor™ for every m € N and myg € {ko, jo}-

We then find sufficient conditions so that for every (z, 7, o, p) € C(z*, 7, o*, p*),
there exist t1, to € R such that

(2.12) JoT(t1) < p < kot(t2).

Then by the uniform boundedness of the delay 7, the uniform boundedness of the
p-component of C'(z*, 7, o*, p*) follows from (2.12). Moreover, C'(z*, 7, o*, p*) is
a continuum of slowly oscillating periodic solutions if jo > 1 and is a continuum of
rapidly oscillating periodic solutions if jo = 0, kg = 1.

We organize the rest of the paper as follows. In section 3 we find for each periodic
solution a period-delay disparity set. Then we construct a monotonically increasing
sequence of connected subsets {A,}1> of C(y*, 2*, o*, p*) which, combined with
the uniform boundedness of the solutions (z, 7), provides a priori estimates of the
periods in terms of certain values of the state-dependent delay for continua of periodic
solutions of (2.1) in the Fuller space. In the last section, we present a detailed case
study to illustrate the general results.

3. A priori estimates for periods of periodic solutions in a connected
component. We will need the following assumptions to construct the period-delay
disparity sets.

(S5) There exist ko, jo € NU {0}, ko > jo > 0, so that jo7* < p* < ko7* and
for every Hopf bifurcation point (z, 7, 7, p) € C(z*, 7%, ¢*, p*), we have
moT # mp for all m € N, where mq € {ko, jo}.
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(S6) There exists a continuous function [ : RN x R > (z, 0) — I(z, o) € R such
that for every (z, o) € RV x R, 7 = I(z, o) is the unique solution for 7 of
g(z, 7, ¢) = 0 and the partial derivative d.l(z, o) exists for all x € RY and
oeR.

(ST) Let mg be as in (S5) with mg # 0 and o € R. Let ¢ be a constant in (0, Tmax],
where 0 < Typax < 400 is an upper bound of 7 for every periodic solution
(z, 7) of system (2.1) at 0 € R. Let 7 = [20, T1,--,Tis- -, Tmg—1)7 With
z; ERN.i=0,1,...,mo— 1 and define

F(n, o) =[f(xo, z1, 0), f(x1, T2, 7)., [(@me—1, To, cr)]T € RN,

Then the cyclic system of ordinary differential equations

(3.1) i(t) = F(n(t), o)
has no nonconstant periodic solution which satisfies both of the following
equations:
(i)
L(n(t)a U) = [l(xo(t), U)v l(xl(t)v U)v s ,l($m0_1(t), U)]T
(3.2) =[1,1,...,1]"
for all t € R;
(i)
H(n(t), 0) = [0ul(20(t), o) f (20 (1), 21(t), 0), Oel(21(1), 0)
flx1(t), z2(t), 0), ..., 0ul(Tme—1(t), O)
F@mo-1(t), xo(t), o))
(3.3) =1[0,0,...,0/"

for all ¢ € R, where the product in 9,I(-)f(-) is the standard inner
product on RY.
(S8) Every periodic solution (z, 7, o) of (2.1) satisfies that 7(¢) > 0 for all ¢t € R.

With future applications in mind, we consider here the existence of a delay-period
disparity set associated with periodic solutions of system (2.1) along C'(z*, 7*, o*, p*)
with greater generality than is immediately necessary for our work here.

LEMMA 3.1. Let mg be as in (S5). If a solution (xo, 10, 00, po) € C(x*, 7%, o*, p*)
satisfies moto(to) # mpo for some ty € R and for all m € N, then there ex-
ist an open neighborhood I > ty and an open neighborhood U > (xg, 70, 00, Po) in
C(R; RN*1) x R? such that every solution (x, T, o, p) € UNC(z*, 7%, o*, p*) satis-
fies moTo(t) # mp for allm € N and t € I.

Proof. The proof is similar to that of Lemma 2 in [17]. We omit the details
here. d

A global version with I = R in Lemma 3.1 is the following corollary.

COROLLARY 3.2. Let mg be as in (S5). If (zo, 70, 00, po) € C(z*, 7", 0%, p*)
satisfies moTo(t) # mpo for all t € R and for all m € N, then there exists an
open neighborhood U > (z, T0, 00, po) in C(R; RVNTY) x R? such that every solu-
tion (x, 7, 0, p) € UNC(z*, 7", o*, p*) satisfies mo7(t) # mp for all m € N and
teR.

Proof. By way of contradiction, if not, then there exists a sequence

{(ﬁkaTkaalmpka tk)}z_i? C C(x*77—*70—*7p*) x R
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so that mo7(tx) = ngpr with some ng € N and

lim |[(zg, Tk, ok, Pk) — (T, T0s 00, Do)l c(RRN+1)xR2 = 0.
k—-+oo

We note that the sequence of periods {pk}g‘l’ is convergent. Without loss of generality,
we assume that {t}°; is contained in a bounded interval in R and t;, — to for some
to as k — 4o00. Then we have limy_, oo np = limg_s 400 mo7x (tk) /PE = MmoT0(t0)/Po-
If moTo(to)/po € N, then it is a contradiction. Otherwise, there exists ng € N so that
moTo(to) = nopo. This is also a contradiction. a

THEOREM 3.3. Assume that system (2.1) satisfies (S5)—(S8). Then for every
nonconstant periodic solution (xg, T, 0o, po) € C(x*, 7*, o*, p*), there exist an open
interval I and an open neighborhood U > (x¢, To, 00, Po) such that every solution

(x, 7,0,p) € UNC(x*, 7%, o*, p¥)

satisfies that moT(t) # mp for allm € N and for allt € I.

Proof. The conclusion is trivial if mg = 0. We assume mg # 0 in the remaining
part of the proof. Let (zg, 70, 00, po) € C(z*, 7%, 0*, p*) be a nonconstant periodic
solution. We claim that there exists ¢y € R such that (z¢, 70, 00, po) is not mo7o(to)-
periodic.

Suppose the claim is not true. Then, for every t € R, (zq, 70, 00, Po) is mo7o(t)-
periodic. It follows that 79 must be a constant function. Otherwise, by (S8) there
exists a closed interval [pg, p1] with p; > pg > 0 in the range of 7 and for every p €
[po, p1], mop is a period of (xg, To, 00, po). Therefore, (xq, 7o, 00, po) has an arbitrary
period. Hence (z¢, 70, 00, po) is a constant solution, which is a contradiction to the as-
sumption that (zo, 70, 00, po) € C(z*, 7%, 0, p*) is a nonconstant periodic solution.

Now we assume that 79(t) = ¢ for every ¢ € R, where ¢g > 0 is a constant.
Then (zo, 70, 00, Po) is moco-periodic and xg is a nonconstant periodic function. Let
xi(t) = x(t—icy), =0, 1,...,mop—1. Then we have the following system of ordinary
differential equations:

@o(t) = f(zo(t), 21(t), 00),
(3.4) £4(8) = Fi(t), 201 (2), 00),
Fg-1(8) = F(@me-1(8), 20(t), 00).
Let n(t) = [zo(t), 1(t), ..., Tme—1(t)]T. Then by (S7) and (3.4) we have
(3.5) i(t) = F(n(t), o) for every t € R.

On the other hand, by (S6) and system (2.1), 79(t) = ¢o for every ¢t € R implies that
I(zo(t), 00) = co for every t € R. We notice that the ranges of ;, ¢ € {0, 1,..., m—1},
and xg are the same. Then we have [(z;(t), 009) = ¢ for every ¢t € R and hence by (3.4)
we have 9.l(x;(t), 00) f(2i(t), zit1(t), 09) =0foreveryt € Randi=0,1,...,m—1,
where we identify mg with O for the index ¢ of x;. Then we have both

(3.6) L(n(t), o0) = co[1, 1,...,1]T forall t € R
and
(3.7) H(n(t), 00) = [0, 0,...,0]T for all t € R.
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But (3.5), (3.6), and (3.7) contradict (S7). Then the claim is proved and there ex-
ists to € R such that (zq, 70, 00, po) is not mg7y(tp)-periodic. Therefore, we have
moTo(to) # mpo for all m € N. By Lemma 3.1, there exist an open interval I and an
open neighborhood U 3> (z¢, 70, 00, po) such that every solution

(x, 7,0,p) € UNC(x*, 7%, o, p¥)

satisfies that mo7(t) # mp for all m € N and for all ¢t € I. O
Remark 3.4. If N =1, we can replace assumptions (S6)—(S7) in Theorem 3.3 by
(S6") %(QJ, 7,0)#0if g(x, 7,0) = 0.
Indeed, by (S6’), we can conclude that zq is a constant function from the fact that
To(t) = co and g(xo(t), co, 00) = 0 for every t € R.

Now we are in position to show the existence of a delay-period disparity set
associated with every element, including bifurcation points, along C(y*, z*, o*, p*)
in the Fuller space Cy, (R; RY*1) x R2. We have the next theorem.

THEOREM 3.5. Let C(y*, z*, o*, p*) be a connected component of the closure
of all the nonconstant solutions of system (2.2), bifurcated from (y*, z*, o*, p*) in
the Fuller space Car(R;RNT1) x R2. Suppose that system (2.1) satisfies (S5)—(S8).
Then for every (yo, z0,00,p0) € C(y*, z*, c*, p*), there exist an open interval I and
an open neighborhood U > (yo, 20, 00, po) such that moz(t) # mp for every solution
(y, z, 0, p) e UNC(y*, z*, o, p*) and for every m € N and t € I.

Proof. Note that p > 0 for every solution (y, z, o, p) in C(y*, z*, o*, p*). It is
easy to show that the mapping

(3.8) v:Cy*, 2%, 0", p*) = C(z*, 7%, 0*, p*)

WO 2o = (o () 2 (2] o)

is continuous, where C(z*, 7%, o*, p*) C C(R; RNV *1) x R2. (See Theorem 4 in [17] for
a similar proof.) Therefore, C(z*, 7*, 0*, p*) is a connected component of periodic
solutions of (2.1).

We note that ¢ is a homeomorphism and for every solution (zg, 70, 0o, po) €
C(z*, 7, o*, p*), there exists a corresponding (yo, 20, 00, po) € C(y*, z*, c*, p*) so
that (xo, 70, 00, Po) = (Yo, 20, 00, Po)-

If (xo, 70, 00, Po) is a nonconstant periodic solution, then by Theorem 3.3, there
exist an open interval I’ and an open neighborhood U’ 3 (x¢, 79, 00, po) such that
moz(t) # mp for every solution (y, z, o, p) € U' N C(y*, z*, o*, p*) and for every
meNandtel.

If (0, 70, 00, Po) is a constant periodic solution, then it is a Hopf bifurcation point
because C(x*, 7%, o*, p*) which contains (z¢, 70, 00, po) is a connected component of
the closure of all the nonconstant periodic solutions. By (S5), we have mgry # mpo
for every m € N. Then by Lemma 3.1, for every #y € R, there exist an open interval
I' 3 ¢y and an open neighborhood U’ 3 (zg, 0, 00, po) such that mg7(t) # mp for
every solution (z, 7, o, p) € U' N C(x*, 7%, o*, p*) and for every m € Nand t € I'.

Therefore, for every (xo, 70, 00, po) € C(a*, 7%, 0*, p*), there exist an open in-
terval I’ 3 ¢y and an open neighborhood U’ 3 (z, 19, 00, po) such that mg7(t) # mp
for every solution (z, 7, o, p) € U'NC(x*, 7*, o*, p*) and for every m € Nand ¢t € I'.

Since ¢ is continuous, we can choose an open set U C Co, (R; RV 1) x R? small
enough so that (yo, 20, 00, po) € U C ¢t~1(U’) and the open set

A

{p:(y, z,0,p)€V}
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is nonempty. Then it follows by the definition of ¢ that mgz(t) # mp for every
(y, 2z, 0,p) e UNC(y*, z*, 0*, p*), meNand t € I. d

In the following we want to use the period-delay disparity set to construct uni-
form lower and upper bounds for periods of the solutions in a continuum of periodic
solutions and show that (2.10) is valid provided that (2.9) holds.

LEMMA 3.6 (the generalized intermediate value theorem [26]). Let f : X — Y
be a continuous map from a connected space X to a linearly ordered set Y with the
order topology. If a,b € X and y € Y lies between f(a) and f(b), then there exists
x € X such that f(z) =y.

Now we are able to state our main results in this section.

THEOREM 3.7. Let C(y*, z*, o*, p*) be a connected component of the closure of
all the nonconstant periodic solutions of system (2.2), bifurcated from (y*, z*, o*, p*)
in the Fuller space Cor(R;RNH1) x R2. Suppose that (2.1) satisfies (S5)—(S8) and all
the periodic solutions are real analytic. Then for every (y, z, o, p) € C(y*, z*, 0%, p*),
there exist t1, to € R so that joz(t1) < p < koz(t2).

Proof. We only prove that for every (y, z, o, p) € C(y*,z*,0*,p*), p < koz(t2)
for some to € R. The proof of p > joz(t1) for some ¢; € R is similar.

By Corollary 3.2 and (S5), there exists an open set U* in Oy (R;RY*1) x R2
such that R x (U* N C(y*, z*, o*, p*)) x {ko} is a delay-period disparity set with
(y*’ 2*7 0.*7 p*) cU*,

Let A* 5 (y*, 2%, ¢*, p*) be a connected component of (U* N C(y*, z*, o*, p*)).
Then, R x A* is connected in R x O (R; RY+1) x R2. Define S : R x Co, (R; RV +1) x
R? — R by

*

S(t7 Y, z, 0, p) =P - koZ(t)

By (S5), we have p* < koz* and hence S(¢t, y*, z*, 0%, p*) = p* — koz* < 0. Note that
S is continuous. By Lemma 3.6, we have

(39) S(tv Yy, z, 0, p) =D kOZ(t) <0

for every (t, y, z, 0, p) € Rx A*, for otherwise there exists (¢, yo, 20, 00, Po) € Rx A*
such that po = kozo(to) which contradicts the fact that R x A* x {ko} is a subset of
the delay-period disparity set R x (U* N C(y*, z*, o*, p*)).

Now we show that there exists a sequence of connected subsets of C(y*, z*, o*, p*),
denoted by {A4,}%,, ng € N or ng = +0o0, which satisfies that

(i) A*C A CAyC---C Ay and U, A, = C(y*, 2%, o*, p*);

(ii) for every (y, z, 0, p) € A, with n € {1,2,...,n0}, p < koz(t2) for some

ty € R.

Let A; := A*and [ =R. If A; = C(y*, 2%, o*, p*), then we are done by setting
A, = C(y*, z*, 0%, p*) and I,, = R for all n € N. If not, since the only sets both
closed and open in the connected topological space C(y*, z*, o*, p*) are the empty
set and the connected component C(y*, z*, o*, p*) itself, A; > (y*, z*, o*, p*) is not
both closed and open. Then the boundary of A; in the sense of the relative topology
induced by C(y*, z*, o*, p*) is nonempty. That is,

(3.10) DA # 0.

Let v = (y, 2, 7, p) € 0A;. By (3.9) and by the continuity of S, we have S(t, v) <0
for allt € I.
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Claim. There exists ¢ € Iy so that mp # koz(f) for all m € N.

Proof of the claim. Suppose the claim is not true. Then for every ¢ € I; there
exists some m € N so that mp = koz(t). Then by the continuity of z there exist a
subinterval I of I; and m € N so that mp = koz(t) for all ¢t € I. Then Z is constant
on I. Then % is constant on R since Z is analytic.

Let Z(t) = co, where ¢o > 0 is a constant. Then we have ¢ = ’Z—f. Let zo(t) =
g(%), t € R. Then z((¢t) is mp-periodic and so is x;(t) = zo(t — icg) for every
i=1,2,...,ko. Then (xo(t), z1(¢),...,TK,—1(t)), t € R, satisfies the cyclic ordinary
differential equation (3.4) with mg replaced by kq. Then by the proof of Theorem 3.3,
we know that this is a contradiction with (S7). This completes the proof of the claim.

Then by the claim and by Lemma 3.1, there exists a delay-period disparity set
I'x U x {ko} > (t, v, ko), and by Lemma 3.6, we have

(3.11) S(t, v) =p—koz(t) <0

for all (¢t,v) € I' xU'. Let I; = I' and Ay > ¥ be the connected component
of U' N C(y*, z*, o*, p*). Then it is clear that A; U A; is connected. Note that
D < koZ(t). Then by (3.11) we have

(3.12) S(t, y, z, 0, p) = p —koz(t) <0 for every (¢, y, 2, 0, p) € Iy X As.

Therefore, for every v € dA;, we can always find A; and I satisfying (3.12).
Then we define

Ay = A U U As.
TEDA,

It follows from (3.9) and (3.12) that for every (y, z, 0, p) € Az, p < koz(t) for some
t € R. Note that for every v € 0A;, A1 U Ay is connected. Therefore, Ay is connected.

Note that the existence of As only depends on the fact that 9A; # 0, in the sense
of the relative topology induced by C(y*, z*, ¢*, p*). Beginning with n = 1, we can
always recursively construct a connected subset of C(y*, z*, ¢*, p*) for each n > 1,
n € N, with 0A4,, # 0,

(3.13) Anpr =AU | 4
VEDA,

satisfying that for every (y, z, 0, p) € Ay,
(3.14) p < koz(t) for some t € R.

If the construction in (3.13) stops at some ng € N with 9A,, = 0, then A4,, =
C(y*, z*, o*, p*) and we are done. If not, we have ny = +00 and we obtain a sequence
of sets {A,},/> which is a totally ordered family of sets with respect to the set
inclusion relation C. Note that Uf{flAn is an upper bound of {4, f{fl Then by
Zorn’s lemma, there exists a maximal element A, for the sequence {4, };15.

Now we show that 0A, = 0 in the sense of the relative topology induced by
C(y*, z*, o*, p*). Suppose not; then for every o € JA there exists a delay-period

disparity set I, X (Uso X C(y*, 2*, 0, p*)) x {ko} with © € U so that
D —koz(t) <O0.

Let Ay be the connected component of Uy, N C(y*, z*, o*, p*). We distinguish two
cases.
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Case 1. Az \ Aso = 0 for all v € JA,,. Then A, is a connected component
of C(y*, z*, o, p*). Recall that C(y*, z*, o*, p*) itself is a connected component
of the closure of all the nonconstant periodic solutions of system (2.2). So we have
As = C(y*, 2%, o*, p*). That is, Ao = 0. This is a contradiction.

Case 2. Ay \ Aso # 0 for some ¥ € JA,. Then there exists AL = Ao Upecoa, As
satisfying that for every (y, z, 0, p) € A, p < koz(t) for some t € R and A is a
proper subset of A’_, where A’_ is a member of the sequence of sets {4, };1>]. This
contradicts the maximality of A.

The contradictions imply that dA., = 0, and hence A, = C(y*, z*, o*, p*).
Therefore, (3.14) holds for all (y, z, o, p) € C(y*, z*, ¢*, p*). This completes the
proof that for every (y, z, o, p) € C(y*,z*,0*,p*), we have p < koz(t) for all t € R.
Similarly, we can prove that for every (y, z, o, p) € C(y*,2*,0%,p*), joz(t) < p for
all ¢ € R. This completes the proof. O

COROLLARY 3.8. Let C(y*, z*, 0%, p*) be a connected component of the closure
of all the nonconstant periodic solutions of system (2.2), bifurcated at (y*, z*, o*, p*)
in the Fuller space Cor(R;RNH1) x R2. Suppose that (2.1) satisfies (S5)—(S8) and all
the periodic solutions are real analytic. If there exists a continuous function My : R 5
o — Mi(c) > 0 such that for every (y, z,0, p) € C(y*, z*, o*, p*) we have

(3.15) 2]l < Mi(o),

then for every (y, z, o, p) € C(y*, z*, o*, p*), we have p < koM (o).
Proof. By Theorem 3.7, we have for every (y, z, o, p) € C(y*, z*, o, p*) that
Joz(t) < p < koz(t) for all t € R. Then, by (3.15), we have p < koM, (o). O

4. An example. In this section we study the global continua of periodic solu-
tions for the following state-dependent delay differential equations,

$1(t) = —pa1(t) + ob(za(t — 7(1))),
(4.1) Ta(t) = —pxa(t) + ob(zi(t — 7(1))),
#(t) =1 — h(z(t)) - (1 + tanh 7(£)),

where z(t) = (z1(t), 22(t)) € R?, 7(t) € R, tanh(r) = (e>"—1)/(e*"+1), and u > Oisa
constant. Equation (4.1) describes a neural network with two neurons where the time
delay for information transmission from one neuron to another is state-dependent.
Analogous models with constant delay for neural networks with two neurons have
been widely studied in the literature. See, for example, Baptistini and Téboas [5],
Chen and Wu [6], Ruan and Wei [29], Faria [30], and the references therein.
We make the following assumptions:
(a1) b: R — R and h : R? — R are continuously differentiable functions with
b'(0) = —1.
() There exist hg < hy in (1/2, 1) such that hy; > h(z) > hg for all z € R2.
(a3) b is decreasing on R and the map R 3 y — yb(y) € R is injective.
(o) yb(y) < 0 for y # 0, and there exists a continuous function M : R 3 ¢ —
M(o) € (0, +00) so that

b(y) %
_ > P —
y 2|o|

for |y| > M(o).
(a5) There exists My > 0 such that [/ (x)| < My and |h'(z)| < My for every x € R.
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4.1. Uniform bound of periodic solutions of (4.1). We use the following
lemma, which was proved in [17], to obtain the uniform boundedness of the range
of periodic solutions (x, 7) of (4.1) with 0 € R. Here - denotes the standard inner
product on RY and G¢ denotes the complement of G.

LEMMA 4.1 (see [17]). Consider system (2.1) at o € R. Suppose that G; C RY
and G2 C R are bounded, balanced, convez, and absorbing open subsets which define
the Minkowski functionals pg, () and pg, (7). Let G = G1 X G2 and

Fmax X, 0)= max T - €, j’ ),
( ) {Z:pc, (2)<pc, (x)} f( )
€ - f(xv j? U)

Frin(z, 0) = min
{#:pc, ()<pc, (=)}
Then the range of all periodic solutions of (2.1) is contained in G if either of the
following conditions (H1) or (H2) holds:

(H1) Fupax(w, 0) < 0 for every x € G$ and 7-g(z, 7) < 0 for every 7 € G5, v € RV.

(H2) Fuin(z, 0) > 0 for every x € G$ and 7-g(z, 7) > 0 for every 7 € G5, © € RV.

LEMMA 4.2. Assume (a1)—(ayq) hold. Then the range of every periodic solution
(x1, z2, T) of (4.1) with o € R is contained in

0 = (=M(0), M(0)) x (~=M(0), M(0)) x (o, _W) '

Proof. If ¢ = 0, the only periodic solution of (4.1) is (0, 0, —%). By
(a2) and by (ag), we have 0 < —ln(Zh(ZO)_l) < —ln(z}l;_l) and 0 € (—M(0), M(0)). Tt

follows that

(4.2) (0, —%) € (—M(0), M(0)) x <0, _%> .

Now we assume o # 0. By (o), there exists a continuous function M : R 3 ¢ —
M (o) € (0, +00) so that for every |y| > M (o),

b(y) S

y 2|a|’

Let Gi = (—M(0), M(0)) x (=M (o), M(c)) C R? and Gf C R? be the comple-
mentary set of G;. Then the Minskowski functional pg, : R? 3 2 — pg,(z) € R

determined by Gi is pg, (z) = max{ ]\If(lgl), ]\If(il) }. We first show that
Foax(v,0) = max [z1, 2] - [pay + 0b(#2), —puwz + ob(@1)]”
{&:p6, (B)<pa, (=)}

(4.3) <0

for every z € G§, where x = [z1, 22] € R? and & = [%1, 2] € R?. We distinguish the
following four cases.
Case 1. x1 > max{M (o), |z2|}. Then we have

(4.4) Frax(z, 0) = max —px? + ox1b(Zo) — pas + oxab(d).

{#: max{|Z1], | &2} <21}
If x5 > 0, then by (as3) and (4.4), we have

Frone(@, 0) = —pa? + ox1b(—x1) — pad + oxeb(—xz1)  if o >0,
max\¥, 7) = —pad + ox1b(z1) — pad + oxeb(zy) if o <0.
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By (ay4) and by the assumption x1 > max{M (o), |z2|}, we have for o > 0,

Fnax (7, 0) = —pa? + ox1b(—x1) — pws + oxob(—x1)
< —px? + ox b(—x1) — pas 4+ ox1b(—x1)
= —pxt + 20w1b(—x1) — ps

po b(=z1)
= 20272 <% + - ) — pas
(4.5) <0,

and for o < 0,

Frax(, 0) = —pa? 4 ox1b(x1) — pxd + oxab(zy)
< —ua:% +ox1b(xr) — ,ux% + ox1b(x1)
= —px? + 20x1b(x) —

H b(z1) 2
= 992 [ 2 — _
B
(4.6) <0.

If 5 < 0, then by (a3) and (4.4), we have

Fonax(@, 0) = —pa} + oxb(—x1) — px3 + owob(zy)  if o >0,
max T —pa? 4 oxib(x1) — pas + oxeb(—z1)  if o <O0.

By (ay4) and the assumption 27 > max{M, |z2|}, we have for o > 0,

(—z1) — pas + ozab(wy)
< —pa? + ox b(—x1) — pas — oxb(zy)
e () M)

—Z T1

Frax(z, 0) = —H331 +ox1b

(4.7) <0,
and for o < 0,

Frax(z, U) = —px? + ox1b(x1) — pad + oxsb(—x)

(
—pxt + oxb(x) — pas — oxib(—x1)

(4.8) < 0.

Then inequalities (4.5), (4.6), (4.7), and (4.8) show that if 21 > max{M (¢), |z2|} and
o # 0, then Fl.x(x, 0) <O0.
Case 2. —x1 > max{M, |x2|}. Then we have

(4.9) Frax(z, 0) = max —px? + ox1b(Te) — prs + oxeb(F1).

{#: max{|Z1], [Z2|}<—z1}
If 5 > 0, then by (a3) and (4.9), we have

Frone(, 0) = —pa? + ox1b(—x1) — pad + oxeb(zy)  if o >0,
max(¥ ) = —pa? + ox1b(z1) — pas + oxeb(—z1)  if o <O0.
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By (ay4) and the assumption —z1 > max{M, |z2|}, we have for o > 0,

Frax(z, 0) = —ua:% +ox1b(—x1) — ua:% + oxab(xy)
< —pxt + ox b(—x1) — pas — oxb(zy)
b(— b
Z—UQJ% <E+ﬂ+ﬂ> —ua:%
g —I1 I
(4.10) <0,

and for o < 0

Frax(z, 0) = —ua:% + ox1b(x1) — ,ux% + oxab(—x1)

PN

r1) — pas — oxb(—x1)

(4.11) < 0.
If 5 < 0, then by (a3) and (4.9), we have

—pai + orib(—21) — paj + owsb(—z1) if o >0,
—pat + ow1b(z1) — pad + owsb(xr) if o <0.

Fax(z, 0) = {

By (ay4) and the assumption —z1 > max{M, |z2|}, we have for o > 0,

Frax (2, 0) = —pa? + o b(—x1) — pas + oxob(—x1)
< —ua:% +ox1b(—x1) — ,ux% + ox1b(—x1)
= —px? + 20x1b(—x1) — pad

b(—
:—20;5% <%+ ( xl)) —ux%

—I

(4.12) <0,
and for o < 0,

Frax(z, 0) = —ua:% + ox1b(xr) — ,ux% + oxab(x1)
< —pa? 4 oxb(xy) — pad + oxb(zy)
= —ua:% + 20x1b(x1) — ,ux%

po b(x)
(4.13) < 0.

Then inequalities (4.10), (4.11), (4.12), and (4.13) show that if —z1 > max{M (o), |z2|},
then Fihax(z, 0) < 0. Then by Case 1 and Case 2 we have proved that if o # 0 and
|z1] > max{M (o), |z2|}, then Fpax(x, o) < 0. By the symmetry between 1 and z,
in the first two equations of (4.1) we can similarly show that Fihax(z, o) < 0 in each
of the cases that xo > max{M (o), |z1|} and —xo > max{M (o), |x1|} with o #£ 0.

It follows that Fiax(z, o) < 0 for every x € G§. This completes the proof of
(4.3).
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It remains to show that the 7-coordinates are bounded so that all periodic solu-
tions of (4.1) are bounded. We introduce the following change of variable:

(4.14) 2(t) = 7(t) + In@ho — 1)

Then system (4.1) is transformed to

1(t) = —pai(t) + ob (xz (t — () + W)) ,
(4.15) Ea(t) = —pas(t) + ob (xl (t—z(t)+ W))

At) =1 — h(z(t)) (1 + tanh (z(t) - im(zho - 1))) .

By (a2) and the monotonicity of tanh 7, we have, for every z < W <0,

(1wt (1 (=~ S 0)))

z+ (1 —=h(z) (1 + tanh (0)))

(4.16) < 0.
Similarly, by (as) and the monotonicity of tanh 7, for every z > — M > 0, we
have
1
z- (1 — h(z) <1 + tanh (z 1 In(2ho — 1))))
<z- (1 — h(z) <1 + tanh (—% In(2h — 1))))
1—nh
zz-<1—h(x)<1+ 0))
ho

(4.17) < 0.

Then, by (4.16) and (4.17), we have, for every z ¢ (ln(220—1)7 —ln(z}f_l)),

(4.18) .. (1 — () (1 + tanh (z _ iln(ZhO _ 1)))) <o.

Thus it follows from Lemma 4.1, (4.3), and (4.18) that the range of every periodic solu-
tion (z, z) of (4.15) with o € Ris contained in (—M (o), M (o)) % (ln(2h° D ln(%o Ly,
Then, by (4.2) and by (4.14), the range of all the periodic solutions (z, T) of (4. 1) is
contained in

N = (—M(o), M(0)) x (=M(o), M(0)) x <07 _w> .

2

This completes the proof. a

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/19/12 to 129.100.144.165. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2418 QINGWEN HU, JIJANHONG WU, AND XINGFU ZOU

4.2. Global bifurcation of periodic solutions. Now we consider the global
Hopf bifurcation problem of system (4.1) under assumptions (aq)—(as). By (a3) and
(o), (z, 7) = (0, 7*) is the only stationary solution of (4.1), where 7* = —1 In(2h(0)—
1) > 0. Freezing the state-dependent delay 7(t) at 7* for the term z(t —7(t)) of (4.1)
and linearizing the resulting system with constant delay at the stationary solution
(0, 7*), we obtain the following formal linearization of system (4.1):

10 X(t) = —pX(t) — AX(t — 1),
(419 T(t) = —pX(t) — qT'(1),
where

0 o Vh(0) 1

In the following we regard o as the bifurcation parameter. We obtain the following
characteristic equation corresponding to (4.19):

(4.21) det[(A + )l + e 7 A+ ¢) = 0.

Note that the zero of A + ¢ = 0 is —¢q, which is real, and Hopf bifurcation points are
related to zeros of the first factor

det[A+ ) +e T M = A+ p—0e M)A+ ptoe ).

To locate local Hopf bifurcation points we let A = i3, 8 > 0, in (4.21) and express
the resulting equation in terms of its real and imaginary parts. We have

B = —osin(t*5),
(4.22) { 1= o cos(r* ),
or

B =osin(t*p),
(4.23) { = —ocos(t* ).

We summarize relevant information about (4.21) in the following.
LEMMA 4.3. We have the following conclusions:
(i) All the positive solutions of (4.22) and (4.23) can be represented by an in-
finite sequence {8} 2% which satisfies 0 < B1 < fa < -+ < By < ++-,
limy,— 4o B = +00, and

2n —1 2
Bn € 7(71 )ﬂ-,ﬂ forn > 1.
27* 27*

(ii) +iB, are characteristic values of the stationary solution (0, 7%, o), where
Opn == Bq% + /142'

If 0 # o0y, then the stationary solution (0, 7%, o) has no purely imaginary
characteristic value.
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(iii) Let Ap(0) = un(0) + ivp (o) be the root of (4.21) for o close to o, such that
Un(on) +iv,(0n) =i8n. Then
/ (0_) . — O'n(/,b + T*O"I%L)
O e R e P e e
Proof. We note that p > 0 and hence cos(7*3) # 0. Then the solutions of (4.22)
and (4.23) are also solutions of the following equations:

u

tan7*f = —é,
(4.24) iz
52 = g% — 12,
Conversely, by assuming §/c = —sinf and pu/o = — cosé in the second equation of

(4.24), we have tanf = —tan7* and hence 6 = km — 7" for k € Z. Depending on
whether k is even or odd, the set of solutions of (4.24) can be categorized into two
classes which solve (4.22) and (4.23), respectively. That is, the solutions of (4.24) are
also solutions of (4.22) and (4.23). Therefore, solving (4.22) and (4.23) for g > 0 is
equivalent to solving (4.24).

To solve (4.24), we note that the function z = tan7*f is a strictly increasing

1-to-1 mapping from the open interval ((Zé;i)ﬂ, SJT’I) to (—oo, 0) with tan(r* gJT’T) =

0 and 1imeﬁ( cCyonn tan(f) = —oo for every j > 1. Then, z = tan7*8 has
T Tor¥
a unique intersection with the straight line z = —f8/u, p > 0, in the strip area
((2’;;1)”, 207 x (—o0, 0) on the (8, z)-plane. That is, (4.24) has a unique solution
Bn € ((27;3)”, %’T”T) for every n > 1, n € N. This completes the proof of ().
The conclusion (ii) follows from (i) and from the second equation of (4.24).

To prove (iii), let F(\, 0) = A+ p+0ce™™ Y)(A+ p— oe~ ™ *). Then we have

oF
A

NeiBy, o=y = (1ﬁn+ll+02 * 727— zﬂn)
=2(p+ 0a7" cos27* By + i(By — 0T sIn 277 B,)).

We want to show that %—ﬂ A=iB,,oc=0, 7 0. Assume the contrary. Then we have
Bn = o27*sin(27*B,) and p = —o27* cos(27*B,). By (i), we have (8, # 0. Then
Bn = 2027 sin(7*B,) cos 7* B, # 0 implies that cos 7* 3, # 0. It follows that 8, /u =
—tan(27*B3,) = —2tan(7*3,)/(1 + tan?(7*3,)). By (4.24), we have tan(7*3,) = 0
or tan?(7*3,) = 1. If tan(7*3,,) = 0, then by (4.24), 3,, = 0. This is a contradiction
o (i). If tan?(7*B,) = 1, then by (4.24) we have £, = +u and hence o, = 0. This
contradicts (ii). Therefore, we have ‘3—§|>\:i3mg:gn # 0.

By the implicit function theorem, there exists a differentiable function ¢ —
An(0) = up(o) + v, (o) which is a root of (4.21) for o close to o, with uy(0y) +
tvn(0n) = iB,. Note that \,(c) — i8, # q as 0 — o,. We substitute A by
An(0) = up(0) +iv, (o) into (4.21) and obtain

(un(0) + ivn(0) + p)2 — o227 (un(o)Fivn(0)) — g,

Differentiating both sides of the above equation with respect to ¢ and then substitut-
ing o = 0, we have

(4.25)
(p+ 7% 0% cos(27* B )l (00) — (Br — T 02 sin(27* B, )0), (01) = 0 co8(27% ),
(By — 702 sin(27* B )ul, (00) + (1 + 7502 cos(27* B0, (o) = —0, sin(277B,,).
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By (4.22) and by (4.23), we have

cos(27*B,) =1 — 282 /o2,
(4.26) {sin(QT*ﬁn) = —2uBn/o}.

Note that we have p > 0, 7" > 0, and (3, > 0 for every n > 1. We combine (4.25)
with (4.22), (4.23), and (4.26) to obtain

o on(p+7707)
T (et (02 = 282)m)? + (14 2uT)2BY

u

n(0)

This completes the proof. a

As a preparation for describing the global continuation of periodic solutions of
(4.1), we now consider assumption (S7) so that we can use Theorems 3.7 and 3.8 to
obtain lower and upper bounds of periods in a connected component of the closure of
all the nonconstant periodic solutions of (4.1).

For notational convenience, let

_ |blz2)
(4.27) B(z) = [b(xl)} :
1
(4.28) s(z) = ~3 In(2h(z) — 1),
where z = (21, 72) € R%. We now assume the following:
(ag) For every x = (x1, z2) € R?, -2-h(x) - 8%2}1(33) £ 0.

) Ox
(a7) For every ¢ > 0 and o € R, the 1sys‘cem of algebraic equations

w
—~
8
~
Il

(4.29) s(Z)

&
¢,
—pr+oB(Z)=0

has at most one solution for (z, Z) = (x1, 22, 1, T2) € R x R? with z; # Z».
As a preparation for our main results in this section we have the next lemma.
LEMMA 4.4. Assume (c1—ay) and (ag)—(ar) hold. Let n = [yo, Y1, -+, Ym—1)7 €
R2?™ for every m € N, where y; € R?,i=0,1,...,m — 1. Let

(4.30) F(n, o) = [~puyo + 0B(y1), —pyr + 0B (ya), ..., —ym—1 + o B(yo)|" € R*™;
(4.31) L(n, o) = [S(y0)7 s(y1),---, S(ymfl)]T eR™.

Then for every ¢ > 0, there is no nonconstant periodic solution of n(t) = F(n(t), o)
which satisfies the constraint

(4.32) L(nt), o) =c[1,1,...,1]"

for every t € R.

Proof. By way of contradiction, we suppose that there exist ¢¢ > 0 and a
nonconstant periodic solution of 7(t) = F(n(t), o) which satisfies the constraint
L(n, o) = co[l, 1,...,1]T, where Ty > 0 is the minimal period of 7.

We first show that for every i € {0, 1,...,m — 1} and j € {1, 2}, the coordinate
function y; ; of n is a nonconstant function. Otherwise, there exist ¢’ € {0, 1,...,m —
1} and j' € {1, 2} so that y; ;. is a constant function. Without loss of generality
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we assume y;/ 1 is a constant function. Since s(y;/)(t) = ¢ for all t € R, h(yy) is a
constant function. Then we have

oh .
—a (yi/, 1(t), yi/,2(t)) 'yi/,2(t) =0 forallte R,
€r2

where BB—UZ denotes the partial derivative of h with respect to the second argument. By

(), we have g 2(t) = 0 for all ¢ € R and hence y;/ 2 is also a constant function. By
the cyclicity of the system 7(t) = F(n, o) with respect to y;, i € {0, 1, 2,...,m —1},
7 is a constant solution of the system n(t) = F(n, o). This a contradiction. So y; 1
and y; » are nonconstant periodic functions.

In the following we identify ¢ = m with ¢ = 0 for the first index 4 of y; ; and
identify j = 3 with j = 1 for the second index j. We claim that there exist i €
{0,1,2,...,m — 1} and jo € {1, 2} so that if y,,, ;, assumes the global maximum
or minimum at to € R, then w41 jo+1(to) # Yio,jo(fo). Suppose not. Then for
every i € {0, 1,2,...,m—1} and j € {1, 2}, if y; ; assumes the global maximum or
minimum at ¢ € R, then y;11 j4+1(¢) = v, ;(¢). By (4.27) and (4.30), we have

Ui, 5 (t) = —pyi, () + ob(yi, ;(t)) = 0.

Then, by (o) we have y; ;j(t) = 0. Then the global maximum and minimum of y; ;
is 0. It follows that y; ; is a constant function. This is a contradiction and the claim
is proved.

Now we choose ig € {0, 1, 2,...,m — 1}, jo € {1, 2}, and t* € R so that y;, j,
assumes its global maximum at t*. Then g, ;, (¢*) = 0. Since h(y;,)(t) is a constant
for all £ € R, we have

oh

. oh .
8—361(%071, Yio, 2)Vio, 1(t) + a—@(yio,la Yio, 2)Vio, 2(t) =0 for all t € R,

where 88—;11 denotes the partial derivative of h with respect to the first argument. Then

by (ar), we have

(4.33) Yig,1(t*) = i ,2(t*) = 0.

By the definition of L(n, o), we have

(4.34) s(yi(t) = s(yi,1 (1), yi2(t)) = co

forallt € R and i € {0, 1, 2,...,m — 1}. Therefore, by (4.33) and (4.34), we know

that (yi, (t%), Yie+1 (")) = Wie,1(t%), Yio,2(t*)s Yio+1,1(t"), Yig+1,2(t*)) is a solution of
the following algebraic equation of (z, z) € R? x R?:

s(z) = co,
(4.35) s(z) = co,

where y;y.1(t*) # Yig+1,2(t*). Similarly, we choose t* € R, where y;,,1 assumes its global
minimum on R. Then (yi, (%), Yig+1(8")) = (Yio,1(¢7); Yio 2(t"), Yig+1,1(E"), Yip11,2(17))
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is also a solution of (4.35) with y;, 1(t*) # yiy+1.2(t*). By (a7), we know that (4.35)
has at most one solution with z1 # Zo. If (4.35) does not have a solution, then it is a
contradiction to the fact that (y;, (t*), yi,+1(t*)) and (yi, (*), yio+1(t*)) are solutions.
If (4.35) has a unique solution, then y;, (t*) = y;, (¢*), which means that the global
maximum and global minimum of y;, j, are equal. Therefore, v;, j, is a constant
function and so is y;,. This is a contradiction. a

We discussed in [17] the global continuation (with respect to the parameter) of
rapidly oscillating periodic solutions of system (2.1) where f is a negative or positive
feedback, namely, xf(z, ¥, o) < 0 or f(x, 2, 0) > 0 for all z € RN and 0 € R. As
we pointed out in section 1, the approach developed in section 3 for lower and upper
bounds of periods along a continuum of periodic solutions in the Fuller space enables
us to obtain global continuation of both slowly oscillating and rapidly oscillating
periodic solutions of system (2.1) without the assumption that z f(x, x, o) is negative
or positive definite.

In the following, we consider system (4.1) and illustrate the general results we
obtained in the previous sections. By (i) of Lemma 4.3, we know that every possible
virtual period p, = 27/, n € N, satisfies that 47*/(2n) < p, <47*/(2n —1). Then
we can conjecture that there exists a connected component C(0, 7, ¢, p,) of slowly
oscillating periodic solutions bifurcated from (0, 7*, oy, pn) for n € {1, 2} and there
exists a connected component C'(0, 7%, o, py,) of rapidly oscillating periodic solutions
bifurcated from (0, 7, oy, pn) for every n > 3,n € N.

We verify these conjectures and obtain global continuation with respect to the
parameter o € R for C(0, 7%, o, pn), n € N, in the following main result.

THEOREM 4.5. Assume (a1—ar) hold and all the periodic solutions of system

(4.1) are real analytic. Let B3, € ((27;,})”, 2%), n > 1, be given in (i) of Lemma 4.3.

Let 0, = £1/p? + B2 for n € N. Then the following apply:
(i) For n € {1, 2}, there exists an unbounded continuum C(0, 7, oy, é—:) of
slowly oscillating periodic solutions of system (4.1). For everyn >3, n € N,
there exists an unbounded continuum C(0, 7%, oy, é,—:) of rapidly oscillating

periodic solutions of system (4.1).
(ii) For every n € N, let X be the projection of C(0, 7*, oy, %—:) onto the pa-
rameter space R. Then ¥ is unbounded with ¥ C (0, 400) if o, > 0 and

¥ C(—o00,0) if o, < 0.

(iii) For every ng € {1, 2} andn >3, n €N, (0, 7*, op,, IBQT”O) ZC(0, 7%, 0, Z&)

and (0’ 7_*’ On, é_:) ¢ C(O, T*, Un07 IQZTWO)

Proof. We first prove two claims.

Claim 1. For every n > 1, n € N, there exists a connected component
C(0, 7", op, é—:) of the closure of all the nonconstant periodic solutions of system
(4.1) in the Fuller space.

We prove Claim 1 by applying Theorem 2.1. Note that o, = £+/p? + 82 and by
(i) and (ii) of Lemma 4.3, we have

(4.36) By € (M 2"”) .

27* T2

System (4.19) has infinitely many isolated centers (0, 7%, 0,,). Except at these isolated
centers, there is no purely imaginary characteristic value of (4.19) with o € R.
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By Lemma 4.3, we know that if u, (o) +iv, (o) is the characteristic value of (4.19)
such that u,(oy) + v, (o) = 8y, then we have

d

do

(4.37) =

U (0)|o=0, = u;z(o)|o:0n

o+ 703)
(4 (2 = 2687)7%)% + (L4 2p7)2 B3

We note from (2.6) that the crossing number v(0, 7, o, [23—:) counts the difference,

when o varies from o;, to o', of the number of nonreal characteristic values with
positive real parts in a small neighborhood of (3, in the complex plane. Then the
nontriviality of the crossing number implies the appearance of purely imaginary char-
acteristic values.

By (4.37), the crossing number of the isolated center (0, 7%, oy, %—:) in the Fuller
space C(R; R?) x R? satisfies
2
(4.38) vy <O, T, On, B—ﬂ-

Also, it is clear that (as2), (as), and (ag) imply (S1), (S2), and (S4). Let us check
(S3). Noting that o, = +/pu? + 32 and , > 0, we obtain that

) = —sgn(o,) for every n € N.

0 0
4. — +— ) (—pub B(#
is nonsingular for all n € N, where the map R2xR? > (61, 03) — (—ub1+0B(63)) € R?

is given by the right-hand side of the first two equations of (4.1). Also, it follows from
« _ _ In(2h(0)-1)

—u Un]

(T:O'n,91:92:0 = |:o_ _,LL
n

T 5 that
(4.40) i(1 — h(71))(1 + tanh(y2)) = —h(0) L <0

. 872 94! Y2) lo=0n,v1=0, yo=7* = (627* T 1)2 .
Therefore, condition (S3) is satisfied by system (4.19). Then by Theorem 2.1, we

know that (0, 7%, 0,,, 2%) is a Hopf bifurcation point of (4.1) and Claim 1 is proved.

n

Claim 2. For every n > 1, n € N, the connected component C(0, 7%, o, Z—:) is
unbounded in the Fuller space C(R;R?) x R2.

Recall that the period normalization of periodic solutions does not change its
norm in the Fuller space C(R;R?) x R%2. So we transform the connected compo-
nent C(0, 7%, oy, %—:) into a connected component, denoted by € (0, 7%, oy, ;—:)7 in
C(R/2m;R?) x R? by period normalization and prove Claim 2 by means of Theo-
rem 2.3. We note from Lemma 4.3 that all the centers of (4.1) are isolated. Now
suppose that there exists ng € N so that €(0, 7", opn,, 27/8n,) is bounded in the
Fuller space. Then by Theorem 2.3, there are finitely many, namely, ¢+ 1, bifurcation
points {(0, 7%, o, 27/Bn;)}i_g in €(0, 7%, ony, 27/ By,) and

(4.41) €n;V(0, 7%, ony, 21/ Bp;) =0,

q
j=0
where €, is the value of

et ((a% + L) (—py + o B(0:)), 0 )
A2 ((1— h(n)(1 + tanh(y2))], 2 [(1 — h(1)(1 + tanh(72))
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evaluated at (61, 02, 0) = (0, 0, 0y;) and (71, 72, o) = (0, 7, 0y;). Then by (4.39)
and (4.40) we have

(4.42) €n;, =1l forall j=0,1,2,...,q.
If o = 0, then system (4.1) becomes the system of ordinary differential equations

£1(t) = —pz1 (1),
Ta(t) = —pxa(t),
#Ht) = 1 = h(z(t)) - (1 + tanh (1)),

which clearly has no nonconstant periodic solution. Also, (0, 7*, 0) is not a center of
the linear system (4.19); then by Lemma 4.5 in [16], (0, 7*, 0) is not a Hopf bifurcation
point of (4.1). Therefore, every connected component € (0, 7, oy, 270/8,), n € N,
is located in the Fuller space where o satisfies o - sgn(o,,) > 0. In particular, o, -
sgn(op,) > 0for j=0,1, 2,...,q. Then by (4.38) and (4.42) we have

q
Ze’n«j’}/(ov 7—*7 Unja 27T/ﬁn]) = —ngI’l(Cfno) 7& O
j=0

This is a contradiction to (4.41) and Claim 2 is proved.

Now we prove the conclusions (i)—(iii).

(i). We prove (i) by applying Theorem 3.7. By Claims 1 and 2, we know that
for every n > 1, n € N, C(0, 7*, oy, 2—:), is an unbounded and connected component
of periodic solutions bifurcated from (0, 7%, oy, [23—:) in the Fuller space. Then by
Theorem 3.7, it remains to verify conditions (S5)—(S8) and (S1’)—(S2’) so that we can
identify continua of slowly and rapidly oscillating periodic solutions.

By (4.36) we know that the virtual period p,, n > 1, of the bifurcation point
(0, 7%, o, Dn) satisfies

* *

2T 47

4.43 " -
(4.43) <Pn < 5y

For n = 1, it follows from (4.43) that 27* < p; < 47*. Then there exist ko = 4, jo = 2
so that jo7* < p1 < ko7*. Similarly, for n = 2, we have 7* < ps < %T*. Then there
exist kg = 2,j0 = 1 so that jo7* < pa < ko7*. For n > 3, we have 0 < %T* < Ppn <
%T* < 7*. Then there exist kg = 1,jo = 0 so that jo7* < p, < ko7*. That is, for
every n > 1, n € N, there exist ko, jo € NU {0}, ko > jo so that jor* < p, < koT*
and

(4,2) ifn=1,
(1,0) ifn>3.

Also, we show that for every m, n € N, mg € {0, 1, 2, 4},
(4.45) moT™ # mpy,.

It is clear that (4.45) is true if mg = 0. Suppose (4.45) is not true. Then there exist
m, i € N, and mg € {1, 2, 4} so that mpm = mo7*. Note that @Gn-l)m g « 2nT

2T* 27*
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and p, = %—: for every n € N. It follows that

1<ﬁl<
4

(4.46)
mo

| 3
| 3

If mo = 1, then we have 2 — 2 < m < Z, which is impossible since m € N. Similarly,
it is clear that (4.46) does not hold if mg = 2 or mg = 4. The contradictions verify
(S5).

Let 1 — h(z)(1 + tanh(7)) = 0; then we have 7 = —3 In(2h(z) — 1). By (a1—az),
the mapping ! : (z, 0) = l(z, 0) = —4In(2h(x) — 1) is continuously differentiable.
This verifies (S6).

By (a1—a4) and (ag)—(ar) and Lemma 4.4, we know that (S7) is satisfied.

Moreover, by (a1—a4) and Lemma 4.2, the range of all periodic solutions (z, 7)
of (4.1) with o € R is contained in

In(2hy — 1
(441) (M) M) x (~br(o). b)) (0.~
where M : R 5 0 — M(o) € (0, +00) is a continuous function. Therefore, (S8) is
satisfied.
Then by Theorem 3.7 and by (4.44), for every n € N and every (z, 7, 0, p) €
C (0, 7%, op, 27/ By), we have

(4.48) Jot(t) < p < kot()

for all t € R, where (ko, jo) satisfies (4.44). Then (i) is proved.

(ii). Let X be the projection of C (0, 7, oy, 27/Bn), n > 1, N, on the parameter
space R of . By the proof of Claim 2, we know that ¥ C (0, +00) if ¢, > 0 and
¥ C (00, 0) if 0, < 0. By (4.47), we know that for every o € X, there exists a
constant M (o) > 0 so that

(4.49) (@, 7)|| < M (o),

where (z, T, 0, p) is the solution associated with o in C (0, 7*, o, 27/8,).
We know from (4.47) and (4.48) that for every n € N and every (z, 7, 0, p) €
C (0, 7%, op, 27/ By), we have

. k() 1H(2h0 - 1)

(4.50) 0<p< >

Therefore the projection of C (0, 7*, o, 27/8,) on the parameter space R of p is
bounded. If ¥ is bounded, then by (i), the projection of C (0, 7*, o,, 27/8,) on
the space C(R;RNT1) of (z, 7) is unbounded in the supremum norm. But by the
continuity of M on R and by (4.49), the projection of C (0, 7*, oy, 27/3,) on the
space C(R;RN*1) of (x, 7) is uniformly bounded with respect to o € . This is a
contradiction and (ii) is proved.

(ii). (iii) follows from (4.43), (4.44), and (4.48) and the proof is complete. O
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