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Abstract. In this paper, we study the asymptotic behavior, the spreading speed, and the
existence/nonexistence of traveling waves of a class of nonmonotone discrete-time dynamical system.
As a byproduct, we also obtain some results on the global attractivity of a nontrivial constant fixed
point and on the existence of a nonconstant fixed point. We then apply the main results to three
model systems: (i) a spatially nonlocal integro-difference equation; (ii) a reaction-diffusion equation
with spatial nonlocality and time delay in the reaction term; and (iii) an equation with nonlocal
diffusion and delayed nonmonotone nonlinearity in the reaction term. The obtained results for these
three equations improve some existing ones by removing the symmetry of the kernel functions and
relaxing the conditions on the nonlinear terms.
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1. Introduction. In order to study reaction-diffusion equations, Aronson and
Weinberger [2, 3] introduced the concept of the spreading speed and showed that it
coincides with the minimal wave speed for traveling wave fronts under appropriate
assumptions. Since the solution of the initial value problem of reaction-diffusion
equations may also be considered as a solution to some discrete dynamical system in
an appropriate space, Weinberger [37] and Lui [21] established the theory of spreading
speeds and monostable traveling waves for a monotone discrete dynamical system.
This theory has been further developed recently in [7, 16, 17, 18, 19, 20, 38, 39, 47]
for more general monotone semiflows so that it can be applied to a variety of discrete
and continuous time evolution equations admitting the comparison principle.

However, many discrete and continuous time population models with spatial
structure are not monotone. For example, scalar discrete time integro-difference equa-
tions with nonmonotone growth functions and predator-prey type reaction diffusion
systems are among such models. The asymptotical behavior of some nonmonotone
continuous time integral equations and time-delayed reaction diffusion models have
been established in [35, 36]. The spreading speeds and the existence of monostable
traveling wave fronts were obtained for some nonmonotone continuous-time integral
equations and time-delayed reaction diffusion models in [4, 36]. Motivated by the
ideas of the above works, established in [5, 6, 9, 24, 26, 28, 40] was the existence
of monostable traveling wave fronts for several other classes of nonmonotone time-
delayed reaction-diffusion equations.
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3006 TAISHAN YI AND XINGFU ZOU

As explained in [2, 3], many spatial-temporal population models can be included
(as special cases) in the following form of discrete dynamical system:

(1.1)

{
un+1(x) = Q[un](x),

u0 = φ,

where Q : C+ → C+ and φ ∈ C+ � BC(RN ,R+), which is the set of bounded
and continuous functions from R

N to R+ equipped with the topology induced by
norm ||φ||C defined in section 2. By applying the results in [18, 19], the asymptotic
speeds of spread and traveling waves for some reflection-equivariant and nonmonotone
dynamical systems on BC([−τ, 0] × H,R+) with H = R or Z were explored in [42].
The restriction of reflection-equivalence implies that the the results and approaches
in [18, 19, 42] cannot be applied, at least directly, to those spatially nonlocal systems
with nonsymmetric kernels.

The main goal of this paper is to develop a new approach which can be applied to
spatially nonlocal systems which may not be monotone and allow nonsymmetric spa-
tial kernels. More specifically, without assuming the monotonicity of Q, we study the
asymptotic behavior of solutions, the spreading speed, and the existence/nonexistence
of traveling wave fronts of (1.1). In particular, we obtain the convergence of solutions
of (1.1) by using similar arguments to that of [41, 42, 44, 45, 46]. Combining the
proof for the existence of traveling wave fronts in [37, 42] with the Schauder fixed
point theorem, we obtain the existence of traveling wave fronts under much weaker
conditions. Here, our approach is different from that in [4, 5, 6, 13, 35, 36]. For exam-
ple, in order to prove the existence of traveling wave fronts, sub- and supersolutions
need to be constructed in the above works, and such constructions largely depend on
the particular forms of the equations. Our approach aims at revealing the relation
between the asymptotic behaviour of general solutions, traveling wavefronts, and the
spread phenomenon. As a byproduct of our approach, we are also able to establish
the global attractivity of a nontrivial constant steady state and the existence of a
nonconstant steady state. Note that by some different approaches, we also discuss
the global attractivity of a nontrivial constant steady state for a differential equa-
tion with spatial nonlocality in an unbounded domain in C+ \ {0} under the compact
open topology in [41, 45]. The main results will be applied to three particular model
equations: (i) a spatially nonlocal integro-difference equation; (ii) a reaction-diffusion
equation with spatial nonlocality and time delay in the reaction term; and (iii) an
equation with nonlocal diffusion as well as delayed nonmonotone nonlinearity in the
reaction term. We shall see that the resulting criteria for these systems can be amaz-
ingly simple and can even be optimal in some sense, and they improve some existing
results by removing the symmetry on the kernel functions and relaxing the conditions
on the nonlinear reaction terms in these three equations.

We point out that the recent works [1, 8] also made similar attempts to do what
we do in this paper on the traveling wavefront, but there is a significant difference.
To be more precise, while our work follows the discrete setting up as in Weinberger
[2, 3, 37] and many follow-up works, [1, 8] used the framework of integral equations
as in [4] which can also include many frequently encountered equations. In [1, 8],
semiwavefronts are the focus, which may also lead to wavefronts in some situations,
whereas in our work we directly explore wavefronts as well as the spreading speed and
the asymptotic behaviour of solutions. Some of our results on traveling wavefronts for
the particular equations may also be obtained by using the method/results in [1, 8]
(see subsections 4.2 and 4.3).
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SPREADING SPEEDS AND TRAVELING WAVE-FRONTS 3007

2. Preliminaries and basic hypothesis. We first introduce some notation.
Let R, R+, and R

N be the sets of all reals, and nonnegative reals, N-dimension
vectors, respectively, where N is a given positive integer. Denote the Euclidean norm
of RN by || · ||. Let C = BC(RN ,R) be the normed vector space of all bounded and
continuous functions from R

N to R with the so-called compact open topology, that
is, the topology induced by the norm

||φ||C �
∑
n≥1

2−n sup{|φ(x)| : x ∈ R
N with ||x|| ≤ n}, φ ∈ C.

Let C+ = {φ ∈ C : φ(x) ≥ 0 for all x ∈ R
N} and C◦

+ = {φ ∈ C : φ(x) > 0 for all x ∈
R

N}. It follows that C+ is a closed cone in the normed vector space C. Note that
C◦

+ �= Int(C+) due to the noncompactness of the spatial domain R
N .

For a given y ∈ R
N , define the translation operator Ty by Ty[φ](x) = φ(x− y) for

all x ∈ R
N and φ ∈ C.

For a ∈ R, ă ∈ C is defined as ă(x) = a for all x ∈ R
N . For any ξ, η ∈ C, we

write ξ ≥ η if ξ − η ∈ C+, and ξ > η if ξ ≥ η and ξ �= η. For simplicity of notation,
we shall write a � ă. For given numbers r, s > 0, define Cr = {φ ∈ C : 0 ≤ φ ≤ r}
and Cr,s = {φ ∈ C : r ≤ φ ≤ s}.

In what follows, we very often need to deal with the space C with N = 1, i.e.,
BC(R,R). For convenience of notation and statements, we denote this space with
N = 1 by X (i.e., X = BC(R,R)), again equipped also with the corresponding
compact open topology, accordingly, and let X+ = {φ ∈ X : φ(x) ≥ 0 for all x ∈ R}
and Xr = {φ ∈ X+ : φ(x) ≤ r for all x ∈ R} for all r > 0, and let Xr,s = {φ ∈ X+ :
r ≤ φ(x) ≤ s for all x ∈ R} for all s > r > 0.

In this paper, we say that a map Q : C+ → C is continuous(compact) if Q|Cr is
continuous(compact) for any r > 0.

Let r∗ > 0 be given and consider a continuous operator Q∗ : C+ → C+ possessing
the following properties:

(H1) Ty[Q
∗[φ]] = Q∗[Ty[φ]] for all (y, φ) ∈ R

N × C+.
(H2) Q∗ is order preserving in the sense that Q∗[φ] ≤ Q∗[ψ] for all φ, ϕ ∈ C+ with

φ ≤ ψ.
(H3) Q∗[0] = 0, Q∗[r∗] = r∗ and Q∗[α] > α for all α ∈ (0, r∗).
(H4) Q∗[α] < α for all α ∈ (r∗,∞).
Following Weinberger [37], for the discrete dynamical system of the form (1.1)

with Q replaced by Q∗, we can define the wave speed c∗ by choosing a checking
function ϕ that satisfies the following property:

(P1) ϕ is a continuous and nonincreasing function of one real variable with ϕ(−∞) ∈
(0, r∗) and ϕ([0,∞)) ≡ 0.

For any real number c and any unit vector ξ in R
N , we define Hc,ξ : Xr∗ → C+

and Rc,ξ : C(R, [0, r
∗]) → C(R, [0, r∗]) by

Hc,ξ[a](x) = a(x · ξ + c)

and

Rc,ξ[a](s) = max{ϕ(s), Q∗[Hc+s,ξ[a]](0)},

where x ∈ R
N , s ∈ R, and a ∈ Xr∗ . For simplicity, we denote Hc,ξ[a] by a(· · ξ + c)

and thus Rc,ξ[a](s) = max{ϕ(s), Q∗[a(· · ξ + c+ s)](0) for any a ∈ Xr∗ and s ∈ R.
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3008 TAISHAN YI AND XINGFU ZOU

Given real number c and unit vector ξ in R
N , the iteration scheme

an+1(c, ξ; ·) = Rc,ξ[an(c, ξ; ·)], a0(c, ξ; ·) = ϕ

generates a sequence {an(c, ξ; ·)} in Xr∗ . By the remarks after Lemma 5.1 in [37],
this sequence is convergent in Xr∗ . Let a(c, ξ; s) = lim

n→∞ an(c, ξ; s). We remark that

the sequence an depends upon the choice of the function ϕ, and thus a also depends
upon this choice. However, by Lemma 5.4 in [37], a(c, ξ; +∞) is independent of the
choice of ϕ. As in [37], the wave speed c∗ with respect to Q∗ along the direction ξ is
defined as

(2.1) c∗(ξ) ≡ sup{c : a(c, ξ; +∞) = r∗},

where ξ is any unit vector in R
N . If a(c, ξ,+∞) = r∗ for all c, we set c∗(ξ) = +∞.

For any set V of vectors in R
N , we define

nV = {v1 + v2 + · · ·+ vn : vj ∈ V for j = 1, · · ·, n}.

It is easily seen that if V is convex, then nV = {nv|v ∈ V }. Also, with respect to Q∗,
we define the following convex set:

(2.2) A∗ = {x ∈ R
N |x · ξ ≤ c∗(ξ) for all unit vector ξ ∈ R

N}.

For A,B ⊆ R
N , we write A ⊂⊂ B when ClA ⊆ IntB. For A ⊆ C, we write

A(x) � {φ(x) : φ ∈ A},
sup
x∈RN

A(x) � sup{φ(x) : x ∈ R
N and φ ∈ A},

inf
x∈RN

A(x) � inf{φ(x) : x ∈ R
N and φ ∈ A}.

3. Main results. Since we do not assume that Q is order preserving, we will
make use of two properly chosen auxiliary systems that are order preserving which are
closely related to Q in some way. In this section, we always assume that Q,Q−, Q+ :
C+ → C+ are continuous and compact with Q[0] = Q−[0] = Q+[0] = 0, Q−[r−] = r−

and Q+[r+] = r+ for two given numbers r+ ≥ r−. For any given u0 ∈ C+, the
recursion un+1 = Q[un] defines a sequence {un}∞n=0 in C+.

When Q+ (Q−) satisfies (H1)–(H3) with Q∗ and r∗ replaced by Q+ (Q−) and r+

(r−), respectively, the wave speed along the direction ξ for Q+ (Q−) is also defined
by (2.1) with r∗ replaced by r+ (r−), denoted by c∗+(ξ) (c

∗
−(ξ)). Replacing r∗ by r+

(r−) in (2.2), a convex set A+ (A−) is also defined.
Theorem 3.1. Assume that Q[φ] ≤ Q+[φ] for all φ ∈ C+, and Q

+ satisfies the
assumptions (H1)–(H3) with r∗ replaced by r+.

(i) Suppose that the set A+ is nonempty and bounded. Then for any open set A1

containing A+ and u0 ∈ Cr+ that has compact support, it holds that

(3.1) lim
n→∞ max

x/∈nA1

un(x) = 0.

(ii) If A+ is empty and c∗+(ξ) is bounded for all unit vectors ξ in R
N , then the

above statement holds when the maximum in (3.1) is taken over the whole
space R

N .
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SPREADING SPEEDS AND TRAVELING WAVE-FRONTS 3009

Proof. By applying Theorem 6.1 in [37] to Q+ and combining Proposition 4.1
in [37] with the fact that 0 ≤ Q[φ] ≤ Q+[φ] for all φ ∈ C+, we easily see that all
conclusions in this theorem hold. This completes the proof.

To proceed further to study the asymptotical behavior of un, we formulate the
following nonmonotone assumption on the nonlinearity Q:

(H5) There is h > 0 such that Q[h] = h and Q satisfies the assumptions (H1) and
(H3). Moreover, if s > r > 0, then inf

x∈RN
Q[Cr,s](x) > r or sup

x∈RN

Q[Cr,s](x) <

s.
Clearly, if Q satisfies (H5), then Q satisfies (H4).

Theorem 3.2. Assume that Q[φ] ≥ Q−[φ] for all φ ∈ C+ and Q− satisfies the
assumptions (H1)–(H3) with r∗ replaced by r−. Suppose that the interior of A− is
not empty and let A2 be any closed bounded subset contained in the interior of A−.
Then, for any σ > 0 there exists a rσ > 0 such that if u0(x) � σ on a ball of radius
rσ, it holds that

(3.2) lim inf
n→∞ min

x∈nA2

un(x) � r−.

Moreover, suppose that Q[φ] ≤ Q+[φ] for all φ ∈ C+, and Q
+ satisfies the assumptions

(H1-H4) with r∗ replaced by r+. If Q satisfies (H5), then

(3.3) lim
n→∞ min

x∈nA2

un(x) = lim
n→∞ max

x∈nA2

un(x) = h.

Proof. Using Theorem 6.2 in [37], we get lim inf
n→∞ min

x∈nA2

(Q−)n[u0](x) � r−. This

together with Proposition 4.1 in [37] leads to (3.2).
We now prove (3.3). Since A2 ⊂⊂ A− ⊆ A+ due to Proposition 5.5 in [37] and

the definition of A±, by a similar argument to the proof of (3.2), we have

lim sup
n→∞

max
x∈nA2

un(x) ≤ r+.

Take a closed bounded subset D0 with A2 ⊂⊂ D0 ⊂⊂ A−. Applying the above
obtained results to D0, we easily see

r− ≤ lim inf
n→∞ min

x∈nD0

un(x) � lim sup
n→∞

max
x∈nD0

un(x) ≤ r+.

For any ε ≥ 0, define

Aε
2 = {x ∈ D0 : dist(x,A2) ≤ ε},

U−(ε) = lim inf
n→∞ min{un(x) : x ∈ nAε

2},

and

U+(ε) = lim sup
n→∞

max{un(x) : x ∈ nAε
2}.

Then U−(ε) ≤ U+(ε), and for any τ ≥ σ ≥ 0, we know that A2 ⊆ Aσ
2 ⊆ Aτ

2 ⊆ D0, and
thus U±(ε) ∈ [r−, r+], U−(ε) is nonincreasing in ε ≥ 0 and U+(ε) is nondecreasing in
ε ≥ 0. Moreover, by A2 ⊂⊂ D0, there is ε0 > 0 such that for any ε0 > τ > σ > 0,
A2 ⊂⊂ Aσ

2 ⊂⊂ Aτ
2 ⊂⊂ D0. Due to the monotonicity of U±, we easily see that
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U±(ε) are continuous in ε ∈ [0, ε0], except possibly for ε from a countable set of
[0, ε0]. If U−(ε) < U+(ε) for any ε ∈ [0, ε0], then by (H5) and the continuity of
U±, we may assume, without loss of generality, that for some ε ∈ (0, ε0), U− is
continuous at ε and inf

x∈RN
Q[CU−(ε),U+(ε)](x) > U−(ε). According to the definition of

U−(τ), for any τ ∈ (0, ε), there exists sequences nk → ∞ and xk ∈ nkAτ
2 such that

lim
nk→∞ unk

(xk) = U−(τ). Since Aτ
2 ⊂⊂ Aε

2, we know that for any bounded subset B of

R
N , xk + B ⊆ (nk − 1)Aε

2 for all large k, which implies lim inf
k→∞

min
y∈B

unk−1(xk + y) and

lim sup
k→∞

max
y∈B

unk−1(xk + y) ∈ [U−(ε), U+(ε)]. These combined with (H1) imply

U−(τ) = lim
nk→∞unk

(xk) = lim
nk→∞Q[unk−1(·+ xk)](0)

≥ inf
x∈RN

Q[CU−(ε),U+(ε)](x) > U−(ε).

By the continuity of U− at ε and letting τ → ε, we have U−(ε) ≥ inf
x∈RN

Q[CU−(ε),U+(ε)]

(x) > U−(ε), a contradiction. Thus, U−(ε) = U+(ε) for some ε ∈ [0, ε0]. This,
together with (H5), gives U−(0) = U+(0) = h, and thus the conclusion follows. This
completes the proof.

In the following, we turn to the study of traveling waves of Q by applying some
results in [37]. We point out that other various methods have also been used to obtain
the traveling waves of some particular equations; see, e.g., [4, 5, 13, 24, 36] and the
references therein.

Let ϕ be a checking function that satisfies the property (P1) in section 2 with r∗

replaced by r−. For any k ∈ (0, 1), any real number c, and any unit vector ξ in R
N ,

we define the operators Hc,ξ : X+ → C+, Rc,ξ,k : X+ → X+, and R
±
c,ξ,k : X+ → X+

by

Hc,ξ[a](x) = a(x · ξ + c),

Rc,ξ,k[a](s) = max{kϕ(s), Q[Hc+s,ξ[a]](0)},
and

R±
c,ξ,k[a](s) = max{kϕ(s), Q±[Hc+s,ξ[a]](0)},

respectively, where a ∈ X+.
Lemma 3.1. Suppose that Q,Q± satisfy all conditions in Theorem 3.2. Also

assume that Q and Q± are compact. Then, for any unit vector ξ in R
N and c ≥ c∗+(ξ),

the following statements are true:
(i) For any k ∈ (0, 1), R−

c,ξ,k[a] ≤ Rc,ξ,k[a] ≤ R+
c,ξ,k[a] for all a ∈ X+ and R±

c,ξ,k

are order-preserving with the pointwise order.
(ii) For any k ∈ (0, 1), Rc,ξ,k|Xr and R±

c,ξ,k|Xr are continuous and compact for
all r > 0.

(iii) For any k ∈ (0, 1), there are two nonincreasing functions a+k , a
−
k ∈ Xr+ such

that a−k ≤ a+k , a
±
k (∞) = 0 and a±k (−∞) = r±, a±k = lim

n→∞(R±
c,ξ,k)

n[kϕ], and

thus Rc,ξ,k[a
±
k ] = a±k .

(iv) For any k ∈ (0, 1), there is ak ∈ Xr+ such that Rc,ξ,k[ak] = ak, and a
−
k ≤

ak ≤ a+k with the pointwise order, and thus ak(∞) = 0, lim inf
s→−∞ ak(s) ≥ r−,

and lim sup
s→−∞

ak(s) ≤ r+.
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Proof. First, we notice that (i) and (ii) follow from the continuity and compactness
of Q and Q± and the monotonicity of Q±.

(iii) By (ii) and Lemma 5.1 in [37], there are nonincreasing functions a+k , a
−
k ∈ Xr+

such that a+k ≥ a−k with the pointwise order, lim
n→∞(R±

c,ξ,k)
n[kϕ] = a±k , and thus

Rc,ξ,k[a
±
k ] = a±k . Proposition 5.2 in [37] gives a±k (∞) = 0 and a±k (−∞) = r±.

(iv) Let Yk = {a ∈ Xr+ : a−k (s) ≤ a(s) ≤ a+k (s) for all s ∈ R}. By (i) and (iii), we
easily see that Rc,ξ,k[Yk] ⊆ Yk. By the convexity of Yk and the compactness of Rc,ξ,k,
the Schauder fixed point theorem implies Rc,ξ,k[ak] = ak for some ak ∈ Yk. Hence, by
the choice of Yk, we have a

−
k ≤ ak ≤ a+k with the pointwise order, and thus ak(∞) = 0,

lim inf
s→−∞ ak(s) ≥ r− and lim sup

s→−∞
ak(s) ≤ r+. This completes the proof.

We say that W (x · ξ−nc) is a traveling wave of the map Q with the wave speed c
if W ∈ X+ is nonconstant and Q[W (· · ξ−nc)](x) =W (x · ξ− (1+n)c) for all integers
n. We say that W (x · ξ − nc) connects h to 0 if W (−∞) = h and W (∞) = 0.

Theorem 3.3. Assume that Q,Q± satisfies all conditions in Theorem 3.2. If
Int(A−) is not empty and ξ is a unit vector in R

N , then the following statements hold:
(i) If cξ · η < c∗−(η) for all unit vector η ∈ R

N , then Q has no traveling wave
W (x · ξ − nc) such that lim inf

s→−∞ W (s) > 0.

(ii) If Q,Q± are compact and c ≥ c∗+(ξ), then Q has a traveling wave W (x·ξ−nc)
with W (−∞) = h and lim inf

s→∞ W (s) = 0.

Proof. (i) Obviously, cξ ∈ Int(A−), and thus we may choose a closed bounded
subset A3 with cξ ∈ Int(A3) ⊆ A3 ⊂⊂ A−. Assume for the sake of contradiction
that Q has a traveling wave W (x · ξ − nc) such that lim inf

s→−∞ W (s) > 0. Then by

letting σ = 1
3 lim inf

s→−∞ W (s) and by Theorem 3.2, there exists a r0 = r0(σ) > 0 with

the property that if u0(x) � σ on a ball with radius r0, then lim
n→∞ min

x∈nA3

un(x) = h,

and thus lim
n→∞ min

x∈nA3

W (x · ξ − nc) = h. Then by (H5), there is x∗ ∈ R
N such that

W (x∗ · ξ) < h. By lim inf
s→−∞ W (s) > 0 and cξ ∈ Int(A3), we obtain that ncξ + x∗ ∈ nA3

for all large n, and hence

W (x∗ · ξ) = lim
n→∞W (x∗ · ξ + nc− nc)

= lim
n→∞ min

x=ncξ+x∗
W (x · ξ − nc)

≥ lim
n→∞ min

x∈nA3

W (x · ξ − nc) = h.

This is a contradiction which implies that the statement (i) holds.
(ii) By Lemma 3.1(iv), for any k ∈ (0, 1), there is a(c, ξ, k; ·) ∈ Xr+ such that

Rc,ξ,k[a(c, ξ, k; ·)] = a(c, ξ, k; ·), a−k ≤ a(c, ξ, k; ·) ≤ a+k , a(c, ξ, k;∞) = 0 and lim inf
s→−∞

a(c, ξ, k; s) ≥ r−, where a±k are defined as in Lemma 3.1(iii). Thus, for any k ∈ (0, 1),

there is sk ∈ R such that a(c, ξ, k; sk) =
r−
3 and a(c, ξ, k; s+sk) ≥ r−

3 for all s ≤ 0. By
the compactness of Q and the fact that a(c, ξ, k; s) = max{kϕ(s), Q[Hc+s,ξ[a(c, ξ, k; ·]]
(0)}, there is a subsequence kl of k in (0, 1) such that lim

l→∞
kl = 0 and a(c, ξ, kl; skl

+ ·)
tends to a functionW ∈ Xr+ in BC(R,R), as l → ∞. Thus,W (0) = lim

l→∞
a(c, ξ, kl; skl

)

= r−
3 and W (s) ≥ r−

3 for all s ≤ 0. In particular, for any given integers n, a(c, ξ, kl; · ·
ξ+skl

−nc) converge uniformly on bounded subsets of RN to W (· · ξ−nc), as l → ∞.
Therefore, by the fact that a(c, ξ, k; s) = max{kϕ(s), Q[a(c, ξ, k; · · ξ + s+ c)](0)}, we
know that W (x · ξ − (1 + n)c) = Q[W (· · ξ − nc)](x) for all integers n.
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3012 TAISHAN YI AND XINGFU ZOU

Choose a closed bounded subset A4 with ∅ �= Int(A4) ⊆ A4 ⊂⊂ A−. By (3.3) in

Theorem 3.2 and the fact that W (s) ≥ r−
3 for all s ≤ 0, we obtain lim

n→∞ min
x∈nA4

W (x ·
ξ − nc) = lim

n→∞ max
x∈nA4

W (x · ξ − nc) = h. Take a sequence sk with lim
k→∞

sk = −∞.

Then, by the choice of A4, there exist positive integer nk and xk ∈ Int(A4) such that
sk = nk(xk ·ξ−c) and lim

k→∞
nk = ∞. Thus, lim

n→∞W (sk) = lim
n→∞W (nkxk ·ξ−nkc) = h.

So, W (−∞) = h, and thus W is a nonconstant function.
We now claim that lim inf

s→−∞ W (s) = 0. Otherwise, there exists ε > 0 such that

W (s) > ε for all s ∈ R. This implies (see also the discussions of the last paragraph
in section 5) that W (x · ξ − nc) tends to h with the supremum norm as n → ∞.

Thus, there is a positive integer n0 such that W (x · ξ − n0c) ≥ r−
2 for all x ∈ R

N . By

letting x = n0cξ, we have W (0) ≥ r−
2 , a contradiction. This completes the proof of

the theorem.

Theorem 3.4. Suppose that Q and Q± satisfy all conditions in Theorem 3.2.
Assume that there is a bounded nonnegative measure m(x, dx) on R

n so that the
following hold:

(3.4) Q+[φ] ≤
∫
RN

φ(· − y)m(y, dy) for φ ∈ Cr+ ;

and for every δ > 0, there is an ε > 0 such that

(3.5) Q−[φ] � (1− δ)

∫
RN

φ(· − y)m(y, dy), for φ ∈ Cε.

Then, for any unit vector ξ ∈ R
N ,

(3.6) c∗−(ξ) = c∗+(ξ) = inf
μ>0

log

∫
RN

eμx·ξm(x, dx) � ĉ∗(ξ),

and thus A− = A+ � Â, where the right-hand side is ∞ in (3.6) if the integral on
the right diverges for all positives μ. Moreover, if Int(Â) is not empty and A0 is any
closed bounded subset contained in the interior of Â, then the following statements
hold:

(i) There exists a d0 > 0 with the property that if u0(x) > 0 on a ball of radius d0,
then lim

n→∞ min
x∈nA0

un(x) = lim
n→∞ max

x∈nA0

un(x) = h. Furthermore, if the support

of m(·, dx) contains a subset V in R
N with the property that any bounded

subset of RN is contained in a translation of the set nV for some integer n,
then for any u0 ∈ C+ \ {0}, lim

n→∞ min
x∈nA0

un(x) = lim
n→∞ max

x∈nA0

un(x) = h.

(ii) If cξ · η < c∗(η) for every unit vector η in R
N , then Q has no traveling wave

W (x · ξ − nc) such that lim inf
s→−∞ W (s) > 0.

(iii) Assume that the support of m(·, dx) contains a subset V in R
N with the prop-

erty that any bounded subset of RN is contained in a translation of the set
nV for some integer n. If Q,Q± are compact and c ≥ c∗(ξ), then Q has a
traveling wave W (x · ξ − nc) connecting h to 0.

Before giving the proof, we remark that by the definition, the infimum in (3.6) is
taken for values of μ belonging to the abscissa of integral convergence and is set to ∞
if the integral is not convergent for any positive values of μ.
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SPREADING SPEEDS AND TRAVELING WAVE-FRONTS 3013

Proof. First, applying Corollary in [37] to Q±, we easily get (3.6). The proof of
(ii) follows from Theorem 3.3. It remains to prove (i) and (iii).

(i) By (3.4)-(3.5) and the fact that Q satisfies (H3), there exist δ∗ ∈ (0, 1) and
ε∗ ∈ (0, r−) such that

(1− δ∗)
∫
RN

m(y, dy) > 1 and Q−[u] � (1− δ∗)
∫
RN

φ(·− y)m(y, dy) for all φ ∈ Cε∗ .

Define M : C+ → C+ by

M [φ](x) = min{ε∗, (1− δ∗)
∫
RN

min{ε∗, φ(x− y)}m(y, dy)} for x ∈ R
N , φ ∈ C+.

Note that Q−[φ] ≥ M [φ] for all φ ∈ C+ due to the definition of M . By applying
Theorem 6.2 and Lemma 8.8 in [37] to M , there exists a radius d0 with the property
that if u0(x) > 0 on a ball of radius d0, then

lim
n→∞ min

x∈nA0

Mn[u0](x) = ε∗.

Therefore,

lim inf
n→∞ min

x∈nA0

un(x) ≥ lim inf
n→∞ min

x∈nA0

(Q−)n[u0](x) ≥ lim inf
n→∞ min

x∈nA0

Mn[u0](x) = ε∗ > 0.

Following the proof of (3.2) in Theorem 3.2, we easily see that the first conclusion
of (i) holds. Again, by an argument similar to the proof of Theorem 6.5 in [37], the
second conclusion of (i) is also confirmed.

(iii) By Lemma 3.1(iv), for any k ∈ (0, 1), there is a(c, ξ, k; ·) ∈ Xr+ such that
Rc,ξ,k[a(c, ξ, k; ·)] = a(c, ξ, k; ·), a−k (c, ξ, k; ·) ≤ a(c, ξ, k; ·) ≤ a+k (c, ξ, k; ·), a(c, ξ, k;∞)
= 0 and lim inf

s→−∞ a(c, ξ, k; s) ≥ r−. Thus, for any k ∈ (0, 1), there is sk ∈ R such that

a(c, ξ, k; sk) =
r−
3 and a(c, ξ, k; s + sk) ≤ r−

3 for all s ≥ 0. By the compactness of Q
and the fact that

a(c, ξ, k; s) = max{kϕ(s), Q[Hc+s,ξ[a(c, ξ, k; ·)]](0)},
there is a subsequence kl of k in (0, 1) such that lim

l→∞
kl = 0 and a(c, ξ, kl; skl

+ ·)
tends to a function W ∈ Xr+ as l → ∞. Thus, W (0) = lim

l→∞
a(c, ξ, kl; skl

) = r−
3 and

W (s) ≤ r−
3 for all s ≥ 0. In particular, for all integers n, a(c, ξ, kl;x · ξ + skl

− nc)
converge uniformly on bounded subsets of RN to W (x · ξ−nc), as l → ∞. Therefore,
by the fact that a(c, ξ, k; s) = max{kϕ(s), Q[a(c, ξ, k; · · ξ + s+ c)](0)}, we know that
W (x · ξ − (1 + n)c) = Q[W (· · ξ − nc)](x) for all integers n.

Choose a closed bounded subset A1 with ∅ �= Int(A1) ⊆ A1 ⊂⊂ A− = Â.
By the second conclusion of Theorem 3.4(i), we get lim

n→∞ min
x∈nA1

W (x · ξ − nc) =

lim
n→∞ max

x∈nA1

W (x · ξ − nc) = h. Take any sequence sk with lim
k→∞

sk = −∞. Then,

by the choice of A1, there exists positive integer nk and xk ∈ Int(A1) such that
sk = nk(xk ·ξ−c) and lim

k→∞
nk = ∞. Thus, lim

n→∞W (sk) = lim
n→∞W (nkxk ·ξ−nkc) = h.

So, W (−∞) = h and W is a nonconstant function.

We claim that lim
s→∞W (s) = 0. Otherwise, there are W ∗ ∈ (0, r

−
3 ] and a sequence

bn such that lim
bn→∞

W (bn) = W ∗. Let wn(x) = W (x · ξ + bn) for all integers n and
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3014 TAISHAN YI AND XINGFU ZOU

x ∈ R
N . Without loss of generality, we may assume that lim

n→∞wn = φ for some φ ∈ C+

due to the compactness ofQ. In particular, φ(0) =W ∗ > 0, and hence φ ∈ C+\{0}. It
follows from the second conclusion of Theorem 3.4(i) that there are a positive integer

N0 and x0 ∈ N0A0 such thatQN0 [φ](x0) >
r−
2 . Again, by the continuity of Q, we have

lim
n→∞QN0 [wn](x0) >

r−
2 . Hence, there is n0 > 1 such that x0 · ξ + bn0 −N0c > 0 and

QN0 [wn0 ](x0) ≥ r−
2 . By (H1), we have W (x0 · ξ + bn0 −N0c) = QN0[wn0 ](x0) ≥ r−

2 .

But, by the facts that x0 · ξ + bn0 − N0c > 0 and W (s) ≤ r−
3 for all s ≥ 0, we have

W (x0 · ξ + bn0 −N0c) ≤ r−
3 , a contradiction. This completes the proof.

To describe the spreading speeds along a unit vector ξ in R
N , we give the following

results by appealing to the proof of Theorem 2.1 in [38] or the proof of Theorems 6.1
and 6.2 in [37].

Theorem 3.5. Suppose that Q and Q± satisfy all conditions in Theorem 3.2.
Assume that there is a bounded nonnegative measure m(x, dx) on R

n so that (3.4)
and (3.5). Then, for any unit vector ξ ∈ R

N , ĉ∗(ξ) in (3.6) satisfies the following
spreading properties:

(i) If u0 ∈ Cr and u0|x·ξ≥L ≡ 0 for some (r, L) ∈ [0, h)×(0,∞), and if ĉ∗(ξ) <∞,
then for any c > ĉ∗(ξ), it holds that

lim
n→∞[sup{un(x) : x · ξ ≥ nc}] = 0.

(ii) If u0 ∈ Ch and lim
K→∞

[inf{u0(x) : x · ξ ≤ −K}] > 0, then for any c < ĉ∗(ξ), it

holds that

lim
n→∞[sup{|un(x) − h| : x · ξ ≤ nc}] = 0.

Proof. By applying the proof of Theorem 2.1(1) in [38] to Q+ and combining
Proposition 4.1 in [37] with the fact that 0 ≤ Q[φ] ≤ Q+[φ] for all φ ∈ C+, we easily
see that (i) holds. It remains to prove (ii).

(ii) For any ε ∈ [0, ĉ∗(ξ)− c), define

V−(ε) = lim inf
n→∞ [inf{un(x) : x · ξ ≤ n(c+ ε)}]

and

V+(ε) = lim sup
n→∞

[sup{un(x) : x · ξ ≤ n(c+ ε)}].

Applying the proof of Theorem 2.1(2) in [38] to Q±, we may obtain for any ε ∈
[0, ĉ∗(ξ)− c),

lim inf
n→∞ [inf{(Q−)n[u0](x) : x · ξ ≤ n(c+ ε)}] ≥ r−

and

lim sup
n→∞

[sup{(Q+)n[u0](x) : x · ξ ≤ n(c+ ε)}] ≤ r+.

These inequalities, with the fact thatQ−[φ] ≤ Q[φ] ≤ Q+[φ] for all φ ∈ C+, imply that
r− ≤ V−(ε) ≤ V+(ε) ≤ r+ for all ε ∈ [0, ĉ∗(ξ) − c). Note that V−(ε) is nonincreasing
in ε ∈ [0, ĉ∗(ξ) − c) and V+(ε) is nondecreasing in ε ∈ [0, ĉ∗(ξ) − c). Due to the
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monotonicity of V±, we easily see that V±(ε) are continuous in ε ∈ [0, ĉ∗(ξ) − c),
except possibly for ε from a countable set of [0, ĉ∗(ξ)− c).

If V−(ε) < V+(ε) for any ε ∈ (0, ĉ∗(ξ) − c), then by (H5) and the continuity
of V±, we may assume, without loss of generality, that for some ε1 ∈ [0, ĉ∗(ξ) − c),
V+ is continuous at ε1 and sup

x∈RN

Q[CV−(ε1),V+(ε1)](x) < V+(ε1). Suppose τ ∈ (0, ε1).

According to the definition of V+(τ), there exists sequences nk → ∞ and xk · ξ ≤
nk(c+ τ) such that lim

nk→∞unk
(xk) = V+(τ). In view of τ < ε1, we know that for any

bounded subset B of RN , xk + B ⊆ (nk − 1)(c + ε1) for all large k, which implies
lim inf
k→∞

[min
y∈B

unk−1(xk + y)] and lim sup
k→∞

[max
y∈B

unk−1(xk + y)] ∈ [V−(ε1), V+(ε1)]. These

combined with (H1) imply

V+(τ) = lim
nk→∞unk

(xk) = lim
nk→∞Q[unk−1(·+ xk)](0)

≤ sup
x∈RN

Q[CV−(ε1),V+(ε1)](x) < V+(ε1).

By the continuity of V+ at ε1 and letting τ → ε1, we have V+(ε1) ≤ sup
x∈RN

Q[CV−(ε1),

V+(ε1)](x) < V+(ε1), a contradiction. Thus, V−(ε2) = V+(ε2) for some ε2 ∈ (0, ĉ∗

(ξ)− c). This, together with the monotonicity of V±, yields that

V−(ε) = V+(ε) = V−(0) = V+(0) for all ε ∈ [0, ε2].

Take xn ∈ R
N with xn · ξ ≤ n(c + ε2

3 ) for every positive integer n. In view of the
definitions of V± and the choices of xn and ε2, we easily see that lim

n→∞ un(xn) =

V±( ε23 ), and for any bounded subset B of RN , xn + B ⊆ (n− 1)(c+ ε2) for all large
n, which implies

lim inf
n→∞ [min

y∈B
un−1(xn + y)] = lim sup

n→∞
[max
y∈B

un−1(xn + y)] = V±(ε2) = V±(0).

These combined with (H1) imply

V+(0) = lim
n→∞ un(xn) = lim

n→∞Q[un−1(·+ xn)](0) = Q[V+(0)](0) ∈ [r−, r+].

This, together with (H5), gives V−(0) = V+(0) = h, and thus the conclusion follows.
This completes the proof.

Due to the property of ĉ∗(ξ) stated in (i) and (ii) in Theorem 3.5, we follow [38]
to call ĉ∗(ξ) the asymptotic speed of spread (spreading speed in short) of the discrete-
time semiflow {Qn}∞n=0 on C+ along the unit vector ξ ∈ R

N . We also remark that
for a given unit vector ξ ∈ R

N , spreading speed ĉ∗(ξ) is unique. The spreading speed
ĉ∗(ξ) can be vividly explained by the descriptions after Theorem 2.1 in [38]: “if u0(x)
is zero for all large values of ξ · x and uniformly above 0 for all sufficiently negative
values of ξ ·x, then an observer who moves in the direction ξ with a speed faster than
ĉ∗(ξ) will see the solution go down to at most 0, while an observer who moves in this
direction at a speed slower than ĉ∗(ξ) sees the solution approach h.” As pointed out
in [38], “if the model includes a phenomenon such as a prevailing wind, ĉ∗(ξ) may be
negative in some directions. In this case an observer who stands still sees the solution
go down to or below the unstable state 0 because the cloud of growing population
gets blown away.”

As a byproduct of Theorem 3.4, we easily obtain the following threshold dynamics.
Some related results for the delay differential equation with spatial nonlocality and
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the delayed reaction-diffusion equations in unbounded domains have been obtained
in [41, 45], by applying very different methods.

Theorem 3.6. Suppose that Q and Q± satisfies all conditions in Theorem 3.4.
Then the following statements are true:

(i) If 0 ∈ Int(Â), i.e., ĉ∗(ξ) > 0 for all unit vector ξ in R
N , then h is a globally

attractive fixed point of Q in C+ \ {0}, that is, lim
n→∞Qn[φ] = h for all φ ∈

C+ \ {0}; in particular, there is no nonconstant φ ∈ C+ such that Q[φ] = φ.
(ii) If 0 /∈ Int(Â), i.e., ĉ∗(ξ) ≤ 0 for some unit vector ξ in R

N , then there is
φ ∈ X+ such that Q[φ(· · ξ)] = φ(· · ξ), φ(∞) = 0 and φ(−∞) = h.

Remark 3.1. Under the case (i) in Theorem 3.6, by Theorem 3.4(iii), h cannot be
globally attractive with respect to the sup norm; and under the case (ii) in Theorem
3.6, h cannot be globally attractive, even with respect to the topology induced by
|| · ||C .

4. Applications. In this section, we shall apply the results obtained in section
3 to three particular model equations: (i) a spatially nonlocal integro-difference equa-
tion; (ii) a reaction-diffusion equation with spatial nonlocality and time delay in the
reaction term; (iii) an equation with nonlocal diffusion and delayed nonmonotone
nonlinearity in the reaction term. We will use f(·) to denote the nonlinear terms in
all these three equations, which will be assumed to satisfy the following conditions:

(A1) f is a continuously differentiable function on some right-neighborhood of 0.
(A2) f ′(0) > 1 and f(u) ≤ f

′
(0)u for all u ∈ [0,∞).

(A3) f has a unique positive fixed point u∗.
By (A1)–(A3), we easily see that f(u) > u for all u ∈ (0, u∗) and f(u) < u

for all u ∈ (u∗,∞). To study the convergent property, we formulate, in addition to
(A1)–(A3), another assumption on the nonlinearity f :

(A4) u∗ is the only positive fixed point of f2.
By establishing a relation of the globally stable dynamics of the nonlinear map

in the equation and the dynamics of the delay differential equations, we have shown
in [44, 45] that (A4) plays a crucial role in the delay independent (or absolute) global
stability of a positive equilibrium for some delay differential equations with spatial
effects. In this section, we shall see that (A4) also plays a similar role in describing
the global dynamics of the three models equations.

Note that (A4), together with (A1)–(A2), implies (see Proposition 2.1 in [44])
that

lim
n→∞ dist(fn([ε,M)), u∗) = 0 for any M > ε > 0,

which further implies the following property:
(p2) For any interval [a, b] ⊆ (0,∞) with a < b, either a < min{f(u) : u ∈ [a, b]}

or b > max{f(u) : u ∈ [a, b]}.
For a discussion of the equivalence relation of (A4) and (P2), see Lemma 5.3 in

[42].
Define

fL(u) = f ′(0)u for all u ∈ R+.

For any M ≥ max f([0, u∗]), define

fM (u) =

{
f(u), u ∈ [0,M ],
f(M), u > M,
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and let

f+
M (u) = max

v∈[0,u]
fM (v), and f−

M (u) = inf
v∈[u,∞)

fM (v) for u ∈ R+.

Then, we have the following results from Lemma 5.5 in [42].

Lemma 4.1. Let M ≥ max f([0, u∗]) and let fM , f±
M and fL be defined as above.

Then the following statements are true:

(i) f−
M (x) ≤ fM (x) ≤ f+

M (x) ≤ fL(x) for all x ∈ R+.
(ii) f+

M and f−
M are nondecreasing and continuous on R+.

(iii) There exist positive numbers u∗± such that f±
M (u∗±) = u∗± and 0 < u∗− ≤ u∗ ≤

u∗+ ≤M .
(iv) fM and f±

M satisfy assumptions (A1)–(A3); moreover, if f satisfies (A4), then
fM also satisfies assumption (A4).

(v) For any ε ∈ (0, 1), there is δ ∈ (0, u∗−) such that f−
M (x) ≥ (1 − ε)fL(x) for

any x ∈ [0, δ].

4.1. An integro-difference equation. Consider the integro-difference equa-
tion

(4.1)

{
un+1(x) =

∫
R f(un(y))k(x − y)dy � Q[un](x),

u0 ∈ X+.

Here, k : R → R is a nonnegative continuous function satisfying
∫
R
k(y)dy = 1, and

as in [13], we assume that
∫
R
e±αyk(y)dy < ∞ for all α ∈ [0,Δ±), where Δ± > 0 is

the abscissa of convergence and it may be infinity.

Let

c∗± = inf
μ∈(0,Δ±)

ln(f
′
(0)

∫
R
e±μyk(y)dy)

μ
.

Define

QM [φ](x) =

∫
R

fM (φ(x− y))k(y)dy, φ ∈ X+, x ∈ R,

and

Q±
M [φ](x) =

∫
R

f±
M (φ(x− y))k(y)dy, φ ∈ X+, x ∈ R.

By the assumptions (A1)–(A4), we easily see that Q−
M ≤ QM ≤ Q+

M , Q±
M satisfy

the assumptions (H1)–(H4), and QM satisfies the assumption (H5) with r± and h
replaced by u∗± and u∗, respectively.

In view of the above preparation and the fact that for any M ≥ max f([0, u∗]),
Q[XM ] ⊆ XM and Q[φ] = QM [φ] for all φ ∈ XM , we can apply Theorems 3.1(i) and
3.4 with m(y, dy) = f ′(0)k(y)dy to obtain the following result for (4.1).

Theorem 4.1. Assume that (A1)–(A4) hold. Then the following statements are
valid:

(i) c∗+(1) = c∗−(1), c∗+(−1) = c∗−(−1), and they do not depend on the choices
of M , where c∗±(ξ) are defined as in (2.1) with Q±

M . Denote c∗+ = c∗±(1),
c∗− = c∗±(−1).
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3018 TAISHAN YI AND XINGFU ZOU

(ii) If c∗− + c∗+ ≥ 0, then for any c1, c2 with (c1, c2) ⊇ [−c∗−, c∗+] and for any
u0 ∈ Xu∗

+
with compact support,

lim
n→∞ sup{un(x) : x /∈ (nc1, nc2)} = 0.

(iii) If c∗− + c∗+ > 0, u0 ∈ X+ \ {0}, and c1, c2 ∈ (−c∗−, c∗+) with c2 ≥ c1, then

lim
n→∞ min

x∈[nc1,nc2]
un(x) = lim

n→∞ max
x∈[nc1,nc2]

un(x) = u∗.

(iv) If c∗−+c∗+ > 0, then for any c ∈ (−c∗−, c∗+), (4.1) has no nonconstant traveling
wave U(x− cn) with lim inf

s→−∞ U(s) + lim inf
s→∞ U(s) > 0.

(v) If c∗− + c∗+ > 0, then for any c ≥ c∗+, (4.1) has a nonconstant traveling wave
U+(x − nc) connecting u∗ to 0; for any c ≤ −c∗−, (4.1) has a nonconstant
traveling wave U−(x− nc) connecting 0 to u∗.

Remark 4.1. The spreading speed and traveling wave fronts of (4.1) were also
studied in [13] under the assumption that the kernel k(·) in (4.1) is even. In addi-
tion, two conditions, denoted by (C1) and (C2), are required in [13]. One can easily
verify that either the condition (C1) or (C2) in [13] implies (A4). We also point out
that here we do not require that the kernel k(·) in (4.1) be symmetric. In what fol-
lows, we consider three concrete examples of nonlinear functions for f(u) in (4.1) to
demonstrate these.

Example 4.1. The first one is the Ricker’s function f(u) = que−pu, which is
widely adopted as birth function for fish population and for blowfly population (see,
e.g., [11, 12, 22, 23, 27, 31, 32, 42, 43]). Assume p > 1 and q > 0 and let u∗ = 1

q ln p.

Then all conclusions (except for the last conclusions of (iii) and (v)) in Theorem 4.1
hold. If p is further confined to p ∈ (1, e2], then by applying Theorem 4.1 and making
use of the proof of Theorem 4.1 and Remark 4.3 in [44], we can also obtain the last
conclusions of (iii) and (v) in Theorem 4.1. The conclusions are summarized in the
following theorem.

Theorem 4.2. Consider (4.1) with f(u) = que−pu. Suppose p > 1 and q > 0
and let u∗ = 1

p ln q. If p ∈ (1, e2), then all the conclusions of Theorem 4.1 hold.

Example 4.2. The second example of the nonlinear function f in (4.1) is the
Mackey–Glass hematopoiesis function f : R → R by f(u) = pu/(q + um) for all
u ∈ R+. This function was initially used by Mackey and Glass in [25] to model the
blood cell production in an ordinary differential equation model, and that model has
since been studied and modified by many researchers. Among other topics for these
models is the stability of a positive equilibrium, accounting for a long-term stable
blood concentration level. See, for example, Kuang [14] and Tang and Zou [34] and
the references therein. Applying Theorem 4.1, and taking advantage of the proof of
Theorem 4.2 and Remark 4.3 in [44], we obtain the following theorem.

Theorem 4.3. Consider (4.1) with f(u) = pu/(q+ um). Suppose that p > q > 0

and m > 0 and let u∗ = (p − q)
1
n . If m ≤ 2p

p−q , then all the conclusions of Theorem
4.1 hold.

We point out that [13] also obtained the conclusions of Theorems 4.2 and 4.3 when
the kernel k(x) is symmetric : k(x) = k(−x) for all x ∈ R. Our approach does not
require this symmetry, and hence our results improve the corresponding ones in [13].

In addition to removing symmetry of the kernel, our general results are also
applicable for some nonlinear functions when the results in [13] cannot be applied.
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To see this, we consider the following example.
Example 4.3. Consider (4.1) with

f(u) =

⎧⎪⎪⎨
⎪⎪⎩

ue2−u, u /∈ [u∗∗,∞),
2u
u∗∗ , u ∈ [u

∗∗
2 , u∗∗],

1, u ∈ (u
∗∗
4 , u

∗∗
2 ),

4u
u∗∗ , u ∈ [0, u

∗∗
4 ],

where u∗∗ is the unique positive solution of ue2−u = 2 in (0, 1). Clearly, it is easy to
verify that f satisfies the assumptions (A1)–(A4). But f(x)/x is not nondecreasing
on [0, 2], and thus f does not satisfy the assumption (C2) in [13]. Thus, the results in
[13] cannot be applied to (4.1) with the above f , but our Theorem 4.1 is applicable
to this system.

4.2. A delayed nonlocal reaction-diffusion equation. Consider the follow-
ing reaction diffusion equation with time delay and spatial nonlocality in the reaction
term
(4.2){

∂u
∂t (t, x) = uxx(t, x)− μu(t, x) + μ

∫
R
f(u(t− τ, y))k(x− y)dy, (t, x) ∈ (0,∞)× R,

u(θ, x) = ϕ(θ, x), (θ, x) ∈ [−τ, 0]× R,

where μ > 0, τ ≥ 0 and f : R+ → R+ satisfies (A1)–(A4) stated in the beginning of
this section and the initial data ϕ belongs to BC([−τ, 0]× R,R+).

For the kernel, we assume that k : R → [0,∞) is continuous and satisfies∫
R
k(y)dy = 1 and

∫
R
eρyk(y)dy <∞ for ρ ∈ R.

A prototype of the kernel is k(x) = 1√
4πα

e−
x2

4α with which (4.2) is the model

derived in So, Wu, and Zou [33] to describe the growth of the matured population of a
single species. Moreover, Yi, Chen, and Wu in [41] established the global attractivity
of (4.2) under some conditions, and Yi, Chen, and Wu in [42] also obtained some
results on the asymptotic speeds of spread and traveling waves of (4.2) when k(·)
possesses the following symmetry: k(x) = k(−x) for all x ∈ R. Here, we do not
assume this symmetry. We should mention that for nonsymmetric kernel functions,
Gomez, Prado, and Trofimchuk [8, section 5.1] have also obtained some results on
existence/nonexistence of traveling wave for (4.2) by using a sub- and super-solution
method.

For any c ∈ R, let

λ1 =
−c−

√
c2 + 4μ

2
, λ2 =

−c+
√
c2 + 4μ

2

and denote

mc(y, dy) =
μf ′(0)
λ2 − λ1

[∫ 0

−∞
e−λ1zk(z + y + τc)dz +

∫ ∞

0

e−λ2zk(z + y + τc)dz

]
dy.

Furthermore, for any g ∈ C(R+,R+), define the operators Kc, Lc, Q[·; c, g] : X+ →
X+ by

Kc[φ](x) =

∫
R

φ(y)k(x − y + τc)dy,

Lc[φ](x) =
μ

λ2 − λ1

[∫ x

−∞
eλ1(x−y)φ(y)dy +

∫ ∞

x

eλ2(x−y)φ(y)dy

]
,

Q[φ; c, g](x) = Lc[Kc[g(φ(·))]](x).
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The following lemma itemizes some properties of these maps.
Lemma 4.2. Let c ∈ R, g ∈ C(R+,R+), and M ≥ max f([0, u∗]). Then the

following statements hold:
(i) Kc, L, Q[·; c, g] are all continuous and compact maps, that is, Kc|Xr , L|Xr ,

Q[·; c, g]|Xr are all continuous and compact.
(ii) Q[φ; c, f−

M ] ≤ Q[φ; c, fM ] ≤ Q[φ; c, f+
M ] for all φ ∈ X+.

(iii) Q[XM ; c, f ] ⊆ XM and Q[φ; c, f ] = Q[φ; c, fM ] for all φ ∈ XM .
(iv) Q[·; c, f±

M ] satisfies the assumptions (H1)–(H4) with r± replaced by u∗±, re-
spectively.

(v) Q[·; c, fM ] satisfies the assumptions (H5) with h replaced by u∗.
(vi) Q[·; c, f±

M ] and mc(y, dy) satisfy the inequalities in (3.4) and (3.5).
Proof. (i) By using a similar proof to that of Lemma 2.2(iv) in [45], we easily see

that Kc is a continuous and compact map.
Define J1, J2 : X+ → X+ by

J1[φ](x)=

∫ x

−∞
eλ1(x−y)φ(y)dy, J2[φ](x)=

∫ ∞

x

eλ2(x−y)φ(y)dy, for φ ∈ X+, x ∈ R.

To prove the continuity and compactness of Lc, it suffices to show that J1|X1 and
J2|X1 are continuous and compact, due to the linear property.

We first prove the continuity of J1|X1 . Let ε > 0 and φ, φn ∈ X1 with n ∈ N and
lim
n→∞φn = φ. By Lemma 2.1(i) in [45], we only need to show that

lim
n→∞(sup{|J1(φn)(x)− J1(φ)(x)| : x ∈ I}) = 0

for any bounded and closed interval I ≡ [a, b] ⊆ R. Indeed, for any ε > 0, by taking

Tε = 1 + | ln(
−ελ1

6 )

λ1
| and using Lemma 2.1(i) in [45], there exists nε > 1 such that

|φn(x) − φ(x)| < −ελ1

6 for all x ∈ [a − Tε, b + Tε] and n ≥ nε. It follows from the
definition of J1 that, for any x ∈ I and n ≥ nε,

|J1[φn](x) − J1[φ](x)|

=

∫ 0

−∞
|φn(x+ y)− φ(x+ y)|e−λ1ydy

≤
∫ 0

−Tε

|φn(x+ y)− φ(x + y)|e−λ1ydy +

∫ −Tε

−∞
|φn(x+ y)− φ(x+ y)|e−λ1ydy

≤ −ελ1
6

∫ 0

−Tε

e−λ1ydy +

∫ −Tε

−∞
e−λ1ydy

≤ −ελ1
6

1

−λ1 +
1

−λ1 e
λ1Tε

< ε.

This means that J1|X1 is continuous.
We next prove the compactness of J1|X1 . Note that J1[X1] ⊆ X−1

λ1

. This together

with Lemma 2.1(ii) in [45] and the Arzelà–Ascoli theorem implies that it suffices to
show that J1[X1]|I is a family of equicontinuous functions in C(I,R) for any bounded
and closed interval I ≡ [a, b] ⊆ R. Indeed, for any ε ∈ (0, −4

λ1
), by taking δε =

1
λ1

ln(1 + ελ1

4 ), it follows from the definition of J1 that, for any φ ∈ X1 and x, x̃ ∈ I
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with x̃− x ∈ [0, δε),

|J1[φ](x̃)− J1[φ](x)| = |
∫ x̃

−∞
φ(y)eλ1(x̃−y)dy −

∫ x

−∞
φ(y)eλ1(x−y)dy|

≤ (eλ1x − eλ1x̃)

∫ x

−∞
φ(y)e−λ1ydy +

∫ x̃

x

φ(y)eλ1(x̃−y)dy

≤ −2

λ1
[1− eλ1(x̃−x)]

<
−2

λ1
[1− eλ1δε ]

< ε.

This implies that J1|X1 is compact.
By similar arguments, we can show that J2|X1 is also continuous and compact,

and so is Lc.
Now, by the boundedness, compactness, and continuity of g,Kc, and Lc, we easily

know that Q[·; c, g] is a continuous and compact map.
(ii) The proof follows from Lemma 4.1(i) and the definition of Q[·; c, ·].
(iii) By Lemma 4.1(iii), f([0,M ]) ⊆ [0,M ] and fM ([0,M ]) ⊆ [0,M ], and hence

Q[XM ; c, f ] ⊆ XM and Q[XM ; c, fM ] ⊆ XM . This, combined with the definition of
Q[·; c, ·] and the fact that fM |[0,M ] ≡ f |[0,M ], implies that Q[φ; c, f ] = Q[φ; c, fM ] for
all φ ∈ XM .

(iv) The proof follows from Lemma 4.1(ii)–(iv) and the definitions of Q[·; c, f±
M ].

(v) By Lemma 4.1 and the definition of Q[·; c, fM ], we easily verify that Q[·; c, fM ]
satisfies the assumptions (H1) and (H3). Fix s > r > 0, and without loss of gen-
erality we may assume that fM ([r, s]) > r due to Lemma 4.1(iv). Thus, there is
δ = δr,s > 0 such that fM ([r, s]) ≥ r + δ. By the monotonicity of Kc, Lc, we obtain
Kc[XfM ([r,s])] ≥ Kc[r + δ] = r + δ and Lc[Kc[XfM ([r,s])]] ≥ Lc[r + δ] = r + δ. This,
combined with the fact that fM (Xr,s) ⊆ XfM ([r,s]) and the definition of Q[·; c, fM ],
gives inf

x∈R

Q[Xr,s; c, fM ](x) ≥ r+ δ > r. Therefore, Q[·; c, fM ] satisfies the assumption

(H5).
(vi) Note that

∫
R
φ(x − y)m(y, dy) = Q[φ; c, fL](x) for all (x, φ) ∈ R × X+.

It follows from Lemma 4.1(i) and the definitions of Q[φ; c, fL] and Q[φ; c, fM ] that
Q[·; c, f+

M ] and mc(y, dy) satisfy the inequality in (3.4). In view of Lemma 4.1(v),
for any δ ∈ (0, 1) there is ε ∈ (0, u∗−) such that f−

M (x) ≥ (1 − δ)fL(x) for any
x ∈ [0, ε]. Thus, f−

M (φ) ≥ (1 − δ)fL(φ) for any φ ∈ Xε, which together with the
monotonicity and linearity of Kc, Lc implies that, for any φ ∈ Xε, Lc[Kc[fM (φ)]] ≥
Lc[Kc[(1− δ)fL(φ)]] = (1− δ)Lc[Kc[f

L(φ)]]. So, Q[·; c, f−
M ] and mc(y, dy) satisfy the

inequality in (3.5).
The proof of the lemma is completed.
Note that if Q[φ; c, f ] = φ for some φ ∈ X+, then φ ∈ Xsup f([0,u∗]). Thus, by

Lemma 4.2(iii), we shall tacitly approve that f = fsup f([0,u∗] in this subsection.
Let

k̂(ρ) =

∫
R

eρyk(y)dy and l(c, ρ) =
μf ′(0)e−ρτc

ρc+ μ− ρ2
k̂(ρ) for all c, ρ ∈ R

and

l±(c, ρ) =
∫
R

e±ρymc(y, dy) for c ∈ R, ρ ∈ R+.
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Then we have the following.
Lemma 4.3. The following statements are true:

(i) l±(c, ρ) = l(c,±ρ) for all c, ρ ∈ R with 0 < ρ <
±c+

√
c2+4μ

2 , while l±(c, ρ) =

∞ for all c, ρ ∈ R with ρ ≥ ±c+
√

c2+4μ

2 .

(ii) ±∂l±(c,ρ)
∂c < 0 for all c, ρ ∈ R with 0 < ρ <

±c+
√

c2+4μ

2 .
Proof. We only consider the case of “+,” since the other case can be dealt with

by similar arguments.
(i) For any c ∈ R, ρ > 0, it follows from the definitions of l, l+, Fubini’s theorem,

and the linear transformations of variables that

l+(c, ρ) =
μf ′(0)
λ2 − λ1

∫
R

eρy[

∫ 0

−∞
e−λ1zk(z + y + τc)dz +

∫ ∞

0

e−λ2zk(z + y + τc)dz]dy

=
μf ′(0)e−ρτck̂(ρ)

λ2 − λ1
[

∫ 0

−∞
e−(λ1+ρ)zdz +

∫ ∞

0

e−(λ2+ρ)zdz],

which yields the statement (i).
(ii) By the statement (i) and a simple computation, we have

∂l+(c, ρ)

∂c
= μf ′(0)k̂(ρ)

∂

∂c

e−ρτc

ρc+ μ− ρ2

= −μρf ′(0)k̂(ρ)e−ρτc 1 + τ(ρc + μ− ρ2)

(ρc+ μ− ρ2)2

< 0,

where 0 < ρ <
c+
√

c2+4μ

2 .
The proof of the lemma is completed.
To proceed further to study the convergence property, we give the following as-

sumptions on the nonsymmetry kernel function k(·).
(K1) k̂(ρ) ≥ 1 for all ρ ∈ R.

(K2) k̂(ρ)
1
ρ k̂(−ρ̃) 1

ρ̃ ≥ 1 for all ρ, ρ̃ > 0.
Note that the assumption (K1) implies (K2), while the assumption (K1) holds if

k(x) = k(−x) for all x ∈ R.
Let

p±(c) = inf
ρ>0

1

ρ
log l±(c, ρ) for c ∈ R

and

c∗+ = inf{c ∈ R : p+(c) ≤ 0} and c∗− = sup{c ∈ R : p−(c) ≤ 0}.

Lemma 4.4. The following statements are true:
(i) p±(c) ≤ 0 for all ±c > ±c∗± and p±(c) > 0 for all c < ±c∗±.
(ii) If (K2) holds, then p+(c) + p−(c) > 0 for all c ∈ R.
(iii) If p+(c) + p−(c) > 0 for all c ∈ R, then c∗+ ≥ c∗−; in particular, c∗+ = −c∗−

when k(x) = k(−x) for all x ∈ R.
Proof. (i) We only consider the case of “+,” since the other case can be dealt with

by similar arguments. Note that p+(c) is nonincreasing in c due to the definition of p+
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and Lemma 4.2(ii). This, together with the definition of c∗+, implies that p+(c) ≤ 0
for all c > c∗+ and p+(c) > 0 for all c < c∗+.

(ii) Let a(ρ, c) = 1
ρ log

μf ′(0)
μ−ρc−ρ2 with ρ ∈ Ia � (0,

−c+
√

c2+4μ

2 ) and b(ρ, c) =

1
ρ log

μf ′(0)
μ+ρc−ρ2 with ρ ∈ Ib � (0,

c+
√

c2+4μ

2 ) for all c ∈ R. Then lim
ρ→0+

a(ρ, c) =

lim
ρ→0+

b(ρ, c) = ∞. Suppose that c ≥ 0. Clearly, infρ∈Ib b(ρ, c) ≥ − 1
ρ log(1+

c
μρ) ≥ − c

μ .

By lim
ρ→0+

a(ρ, c) = ∞, there exists δ ∈ Ia such that infρ∈Ia a(ρ, c) = inf{a(ρ, c) : ρ ∈
Ia and ρ ≥ δ}. By letting I0a = {ρ ∈ Ia∩[δ,∞) : ∂a(ρ,c)

∂ρ = 0}, we have infρ∈Ia a(ρ, c) =

infρ∈I0
a
a(ρ, c) ≥ inf{ c+2ρ

μ−cρ−ρ2 : ρ ∈ Ia ∩ [δ,∞)} > c
μ . Thus, infρ∈Ia a(ρ, c) + infρ∈Ib

b(ρ, c) > 0 . Similarly, infρ∈Ia a(ρ, c)+ infρ∈Ib b(ρ, c) > 0 for all c ≤ 0. These together
with the assumption (K2) and the definitions of p± and l± imply that for any c ∈ R,
we have

p+(c) + p−(c) = inf
ρ>0

[a(ρ, c) +
1

ρ
log(k̂(ρ))− τc] + inf

ρ∈>0
[b(ρ, c) +

1

ρ
log(k̂(−ρ)) + τc]

≥ inf
ρ>0

a(ρ, c) + inf
ρ>0

b(ρ, c) + inf
ρ>0

1

ρ
log(k̂(ρ)) + inf

ρ>0

1

ρ
log(k̂(−ρ))

> inf
ρ>0

1

ρ
log(k̂(ρ)) + inf

ρ>0

1

ρ
log(k̂(−ρ))

≥ 0.

(iii) We shall prove c∗+ ≥ c∗−; otherwise, c∗+ < c∗−. Thus, by (i) and taking
c ∈ (c∗+, c∗−), we have p±(c) ≤ 0, a contradiction.

Since k(x) = k(−x) for all x ∈ R, we have k̂(ρ) = k̂(−ρ) ≥ 1 for all ρ > 0. Thus,
l+(c, ρ) = l−(−c, ρ) for all (c, ρ) ∈ R× (0,∞). These, combined with the definition of
c∗±, yield c

∗
+ = −c∗−.

The proof of the lemma is completed.
Let

l̃(c, ρ) =
μf ′(0)e−ρτc

ρc+ μ− ρ2
k̂(−ρ), p̃±(c) = inf

ρ>0

1

ρ
log l̃(c,±ρ) for c, ρ ∈ R

and

c̃∗+ = inf{c ∈ R : p̃+(c) ≤ 0} and c̃∗− = sup{c ∈ R : p̃−(c) ≤ 0}.
Similarly, we have the following results.

Lemma 4.5. The following statements are true:
(i) p̃±(c) ≤ 0 for all ±c > ±c̃∗± and p̃±(c) > 0 for all c < ±c̃∗±.
(ii) If (K2) holds, then p̃+(c) + p̃−(c) > 0 for all c ∈ R.
(iii) If p̃+(c) + p̃−(c) > 0 for all c ∈ R, then c̃∗+ ≥ c̃∗−; in particular, c̃∗+ = −c̃∗−

when k(x) = k(−x) for all x ∈ R.
Note that l(−c,±ρ) = l(c,∓ρ) for all c ∈ R and ρ > 0. Thus, by Lemma 4.4(iii)

and the definitions of c∗± and c̃∗±, we easily obtain the following lemma.
Lemma 4.6. If p+(c) + p−(c) > 0 for all c ∈ R, then c̃∗+ = −c∗− ≥ c̃∗− = −c∗+.
With the above preparation, we are in the position to state and prove the main

results for (4.2).
Theorem 4.4. Assume that (A1)–(A4) and (K2) hold. Then the following state-

ments are valid:
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3024 TAISHAN YI AND XINGFU ZOU

(i) For any c ≥ c∗+, (4.2) has a traveling wave φ(x − ct) with φ(∞) = 0 and
φ(−∞) = u∗.

(ii) For any c ≤ c∗−, (4.2) has a traveling wave φ(x − ct) with φ(−∞) = 0 and
φ(∞) = u∗.

(iii) For any c ∈ (c∗−, c
∗
+), (4.2) has no nonconstant traveling wave φ(x− ct).

Proof. By some simple computations, we know that for any φ ∈ X+, φ = Q[φ; c, f ]
if and only if u(t, x) = φ(x − ct) satisfies (4.2).

(i) Suppose that c ≥ c∗+. If c > c∗+, then by Lemma 4.4, we have p+(c) ≤ 0 and
p+(c) > −p−(c). Applying Theorem 3.6(ii) to Q[·; c, f ] with mc(y, dy) defined in the
beginning of this subsection, we conclude that there is a nonconstant φc ∈ XM such
that Q[φc; c, f ] = φc with φc(∞) = 0 and φc(−∞) = u∗.

Suppose that c = c∗+. We shall prove p+(c
∗
+) ≤ 0; otherwise, p+(c

∗
+) > 0. Note

that by using the discussions in the previous paragraph, there exist two sequences
{cm ∈ (c∗+,∞) : m ∈ N} and {φm ∈ XM : φm(∞) = 0 and φm(−∞) = u∗}m∈N such
that lim

m→∞ cm = c∗+ and Q[φm; cm, f ] = φm for all m ∈ N. Let B = {φm : m ∈ N}.
Then B ⊆ XM and Kcm [φm] ∈ XM , where M = sup f([0, u∗]). By a proof similar to
that for the compactness of Lc in Lemma 4.2(i), we can show that ∪m∈NLcm [XM ] is
precompact, and hence B is precompact. Without loss of generality, we may assume
that the limiting of φm exists, and sup{x ∈ R : φm(x) = u∗

3 } = 0 due to (H1). Hence,

φm(0) = u∗
3 and φm(x) ≤ u∗

3 for all x ∈ [0,∞). Let φ = lim
m→∞φm. Then φ(0) = u∗

3 ,

φ(x) ≤ u∗
3 for all x ∈ [0,∞) and Q[φ; c∗+, f ] = φ. This together with Theorem 3.4(i)

and p+(c
∗
+) > 0 implies lim sup

x→∞
φ(x) = u∗, a contradiction. Thus, p+(c

∗
+) ≤ 0. By

the above arguments for the case of c > c∗+, we easily obtain a nonconstant φc ∈ XM

such that Q[φc; c, f ] = φc with φc(∞) = 0 and φc(−∞) = u∗.
(iii) Suppose that c ∈ (c∗−, c∗+). By Lemma 4.4, we have p−(c) > 0 and p+(c) > 0.

Applying Theorem 3.6(i), we know that Q[·; c, f ] has no nonconstant φ ∈ X+ such
that Q[φ; c, f ] = φ, that is, (4.2) has no nonconstant traveling wave φ(x− ct).

To complete the proof of (ii), we apply the conclusion in (i) to the following
auxiliary system, which is exactly the same as (4.2) when k(·) is symmetric:
(4.3){

∂u
∂t (t, x) = uxx(t, x)− μu(t, x) + μ

∫
R
f(u(t− τ, y))k(y − x)dy, (t, x) ∈ (0,∞)× R,

u(θ, x) = ϕ(θ, x), (θ, x) ∈ [−τ, 0]× R.

This together with Lemmas 4.5 and 4.6 leads to the following conclusion:
(S) For any c ≥ c̃∗+ = −c∗−, (4.3) has a nonconstant traveling wave φ̃(x− ct) with

φ̃(∞) = 0 and φ̃(−∞) = u∗.
It is clear that the statement (S) implies the statement (ii) of the theorem with

c, φ replaced by −c, φ̃(−·), respectively.
The proof of the theorem is completed.

4.3. An equation with nonlocal diffusion and delayed reaction. Consider
the following equation with nonlocal diffusion and delayed reaction

(4.4)

⎧⎨
⎩

∂u
∂t (t, x) = d[

∫
R
u(t, y)k(x− y)dy − u(t, x)]− μu(t, x) + μf(u(t− τ, x))

(t, x) ∈ (0,∞)× R,
u(θ, x) = ϕ(θ, x), (θ, x) ∈ [−τ, 0]× R,

where d, μ > 0, τ ≥ 0 and the initial data ϕ belongs to BC([−τ, 0]× R,R+).
It is known that nonlocal diffusion may demonstrate essential differences from

random diffusion in some context. Taking a bounded spatial domain as an example,
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SPREADING SPEEDS AND TRAVELING WAVE-FRONTS 3025

the solution semiflow of an equation with the random diffusion (represented by a
Laplacian operator) is compact, while the solution semiflow of an equation with
nonlocal diffusion (such as PDE in (4.4)) is not compact, and hence many exist-
ing methods/approaches cannot be applied, at least directly. See, e.g., [10, 15] and
the references therein for more details.

For (4.4), Pan, Li, and Lim [29, 30] investigated the existence of traveling wave
fronts using the approach of upper-lower solutions and monotone iteration developed
in [40]. In order for the approach to be applicable, some monotonicity conditions were
posed in [29, 30]; in addition, the kernel function k(·) was assumed to be symmetric.
Here, we only assume that f : R+ → R+ satisfies (A1)–(A4) stated at the beginning
of this section; and the kernel k : R → (0,∞) is continuous and satisfies

∫
R
k(y)dy = 1

and
∫
R
eρyk(y)dy <∞ for ρ ∈ R. Thus, we do not require the symmetry for k(·) and

neither do we assume the quasi-monotonicity posed in [29, 30].
Following the scheduling in [37], Yagisita [47] and Fang and Zhao [7] obtained

some general results on the existence/nonexistence of traveling waves which are ap-
plicable to (4.4) with the quasimonotone nonlinearity f for τ > 0. By applying the
existence/nonexistence of traveling waves and asymptotic behaviour of solutions in
nonlocal and nonmonotone convolution equations with nonsymmetric kernels in [8]
and by using the discussions of subsection 6.1 in [1], one may also establish results
in this section. This suggests that the approach of [8] may be equally effective for
equation (4.4), as far as traveling wavefronts go.

For any c ∈ R and g ∈ C(R+,R+), let λ = λ(c) � d+μ
c for all c �= 0 and define

K[·; c, g], L[·; c], and Q[·; c, g] : X+ → X+ by

K[φ; c, g](x) =
1

d+ μ

[
d

∫
R

φ(y)k(x − y) dy + μg(φ(x + cτ))

]
,

L[φ; c](x) =

⎧⎨
⎩

λ
∫∞
x
eλ(x−y)φ(y) dy, c > 0,

φ(x), c = 0,

−λ ∫ x

−∞ eλ(x−y)φ(y) dy, c < 0,

Q[φ; c, g](x) = L[K[φ; c, g]; c](x).

Also let

mc(y, dy) =

⎧⎪⎨
⎪⎩

1
c

[
d
∫∞
0 e−λzk(z + y) dz + μf ′(0)

∫∞
0 e−λzδ−cτ (y + z) dz

]
dy, c > 0,

1
d+μ [dk(y) + μf ′(0)δ0(y)]dy, c = 0,
−1
c

[
d
∫ 0

−∞ e−λzk(z + y) dz + μf ′(0)
∫ 0

−∞ e−λzδ−cτ (y + z) dz
]
dy, c < 0.

The following lemma summarizes some properties for the maps K[·; c, g], L[·; c],
Q[·; c, g].

Lemma 4.7. Let r > 0, c ∈ R, g ∈ C(R+,R+) and for any M ≥ max f([0, u∗]),
the following statements are true:

(i) K[·; c, g]|Xr , L[·; c]|Xr , Q[·; c, g]|Xr are all continuous maps for any c ∈ R.
(ii) L[Xr × J ] is precompact for any bounded closed interval J ⊆ R \ {0}, and

hence Q[·; c, g]|Xr is compact map for any c �= 0.
(iii) Q[φ; c, f−

M ] ≤ Q[φ; c, fM ] ≤ Q[φ; c, f+
M ] for all φ ∈ X+.

(iv) Q[XM ; c, f ] ⊆ XM and Q[φ; c, f ] = Q[φ; c, fM ] for all φ ∈ XM .
(v) Q[·; c, f±

M ] satisfies the assumptions (H1)–(H4) with r± replaced by u∗±, re-
spectively.

(vi) Q[·; c, fM ] satisfies the assumptions (H5) with h replaced by u∗.
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3026 TAISHAN YI AND XINGFU ZOU

(vii) Q[·; c, f±
M ] and mc(y, dy) satisfy the inequalities in (3.4) and (3.5).

Proof. (i) By the continuity of g and using a similar proof to that of Lemma
2.2(iv) in [45], we easily see that K[·; c, g]|Xr is a continuous map. By the continuity
of J1 and J2 in subsection 4.2, we also easily see that L[·; c]|Xr and Q[·; c, g]|Xr are
continuous.

(ii) Let J be a bounded closed interval in R \ {0}. Without loss of generality,
we may assume J ⊆ (0,∞). By (i) and the definition of Q[·; c, g], it suffices to
prove the compactness of L[Xr × J ]. Note that L[Xr × J ] ⊆ Xr. This together
with Lemma 2.1(ii) in [45] and the Arzelà–Ascoli theorem implies that it suffices
to show that L[Xr × J ]|I is a family of equicontinuous functions in C(I,R) for any
bounded and closed interval I ≡ [a, b] ⊆ R. Indeed, for any ε ∈ (0, 1), by taking
δε = 1

d+μ log( 3r
3r−ε ) · (inf J), it follows from the definition of L that, for any φ ∈ Xr,

c ∈ J and x, x̃ ∈ I with x− x̃ ∈ [0, δε),

|L[φ; c](x̃)− L[φ; c](x)| = |
∫ ∞

x̃

λφ(y)eλ(x̃−y)dy −
∫ ∞

x

λφ(y)eλ(x−y)dy|

≤ (eλx − eλx̃)

∫ ∞

x

λφ(y)e−λydy|+
∫ x

x̃

λφ(y)eλ(x̃−y)dy

≤ 2r[1− eλ(x̃−x)]

< ε,

confirming that (ii) holds.

(iii) The proof follows from Lemma 4.1(i) and the definitions of Q[·; c, fM ] and
Q[·; c, f±

M ].

(iv) By Lemma 4.1(iii), f([0,M ]) ⊆ [0,M ] and fM ([0,M ]) ⊆ [0,M ], and hence we
have Q[XM ; c, f ] ⊆ XM and Q[XM ; c, fM ] ⊆ XM . This, combined with the definition
of Q[·; c, ·] and the fact that fM |[0,M ] ≡ f |[0,M ], implies that Q[φ; c, f ] = Q[φ; c, fM ]
for all φ ∈ XM .

(v) The proof follows from Lemma 4.1 and the definition of Q[·; c, f±
M ].

(vi) By Lemma 4.1 and the definition of Q[·; c, fM ], we easily verify that Q[·; c, fM ]
satisfies the assumptions (H1) and (H3). Fix s > r > 0; without loss of generality, we
may assume that fM ([r, s]) > r due to Lemma 4.1(iv). Thus, there is δ = δr,s > 0 such
that fM ([r, s]) ≥ r + δ. By the monotonicity of K[·; c, fM ], L[·, c], we conclude that
K[Xr,s; c, fM ] ≥ r+ μ

d+μδ > r and L[K[Xr,s; c, fM ]; c] ≥ L[r+ μ
d+μδ; c] = r+ μ

d+μδ > r.

This, combined with the definition of Q[·; c, fM ], gives inf
x∈R

Q[Xr,s; c, fM ](x) ≥ r +
μ

d+μδ > r. Therefore, Q[·; c, fM ] satisfies the assumption (H5).

(vii) Note that
∫
R
φ(x − y)m(y, dy) = Q[φ; c, fL](x) for all (x, φ) ∈ R × X+.

It follows from Lemma 4.1(i) and the definitions of Q[φ; c, fL] and Q[φ; c, fM ] that
Q[·; c, f+

M ] and mc(y, dy) satisfy the inequality in (3.4). In view of Lemma 4.1(v),
for any δ ∈ (0, 1) there is ε ∈ (0, u∗−) such that f−

M (x) ≥ (1 − δ)fL(x) for any
x ∈ [0, ε]. Thus, f−

M (φ) ≥ (1 − δ)fL(φ) for any φ ∈ Xε, which together with the
monotonicity and linearity of K[·; c, fM ] and L[·, c] implies that for any φ ∈ Xε,
L[K[φ; c, fM ]; c] ≥ L[K[φ; c, (1−δ)fL]; c] = (1−δ)L[K[φ; c, fL]; c]. So, Q[·; c, f−

M ] and
mc(y, dy) satisfy the inequality in (3.5).

The proof is completed.

Note that if Q[φ; c, f ] = φ for some φ ∈ X+, then φ ∈ Xsup f([0,u∗]). Thus, by
Lemma 4.7(iv), we shall tacitly approve f = fsup f([0,u∗] in the rest of this subsection.
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Let

k̂(ρ) =

∫
R

eρyk(y) dy and l(c, ρ) =
1

cρ+ d+ μ
[dk̂(ρ) + μf ′(0)e−ρcτ ] for ρ, c ∈ R

and

l±(c, ρ) =
∫
R

e±ρymc(y, dy) for c ∈ R, ρ ∈ R+.

Then we have the following.
Lemma 4.8. The following statements are true:

(i) l±(c, ρ) = l(c,±ρ) for all (c, ρ) ∈ J± � {(a, b) ∈ R×(0,∞) : d+μ±ab > 0},
while l±(c, ρ) = ∞ for all (c, ρ) /∈ J±.
(ii) ±∂l±(c,ρ)

∂c < 0 for all (c, ρ) ∈ J±.
Proof. We only consider the case of c > 0, since the other case can be dealt with

by similar arguments.
(i) For any ρ > 0, it follows from the definitions of l, l±, Fubini’s theorem, and

the linear transformations of variables that

l±(c, ρ) =
∫
R

e±ρymc(y, dy)

=
1

c

∫
R

e±ρy

[
d

∫ ∞

0

e−λzk(z + y) dz + μf ′(0)
∫ ∞

0

e−λzδ−cτ (y + z) dz

]
dy

=

[
d

c
k̂(±ρ) + μf ′(0)e∓ρτc

c

] ∫ ∞

0

e−(λ±ρ)z dz,

which yields the statement (i).
(ii) The proof follows from the statement (i) and the definition of l, and the proof

of the lemma is completed.
Let

p±(c) = inf
ρ>0

1

ρ
log l±(c, ρ) for c ∈ R,

and define

c∗+ = inf{c ∈ R : p+(c) ≤ 0} and c∗− = sup{c ∈ R : p−(c) ≤ 0}.
Then we have the following.

Lemma 4.9. The following statements are true:
(i) p±(c) ≤ 0 for all ±c > ±c∗± and p±(c) > 0 for all c < ±c∗±.
(ii) p+(c)+p−(c) > 0 for all c ∈ R, provided that (K1) holds (see subsection 4.2).
(iii) c∗+ > 0 > c∗−, provided that (K1) holds; in particular, c∗+ = −c∗− > 0 when

k(x) = k(−x) for all x ∈ R.
Proof. (i) We only consider the case of “+,” since the other case can be dealt with

by similar arguments. Note that p+(c) is nonincreasing in c due to the definition of p+
and Lemma 4.8(ii). This, together with the definition of c∗+, implies that p+(c) ≤ 0
for all c > c∗+ and p+(c) > 0 for all c < c∗+.

(ii) Suppose that c = 0. By k(R) ⊆ (0,∞) and the continuity of k, there is δ > 0
such that k(x) ≥ δ for all x ∈ [−2, 2]. Thus, we have

lim inf
ρ→∞

log k̂(ρ)

ρ
≥ lim inf

ρ→∞
log[ δ(e

2ρ−e−2ρ)
ρ ]

ρ
≥ lim inf

ρ→∞
log[ δ

2ρe
2ρ]

ρ
= 2.
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3028 TAISHAN YI AND XINGFU ZOU

Similarly, lim inf
ρ→∞

log k̂(−ρ)
ρ ≥ 2. Thus, we have

lim inf
ρ→∞

log l±(0, ρ)
ρ

= lim inf
ρ→∞

log[dk̂(±ρ)+μf ′(0)
d+μ ]

ρ
≥ lim inf

ρ→∞
log k̂(±ρ)

ρ
≥ 2.

This, combined with the fact that 1
ρ log l±(0, ρ) ≥ 1

ρ log[
d+μf ′(0)

d+μ ] > 0 for all ρ > 0,

implies that p±(0) > 0 and hence p+(0) + p+(0) > 0.
Now, it suffices to consider the case of c > 0 since the remaining case c < 0

can be dealt with similarly. Let a(c, ρ) = 1
ρ log

d+μf ′(0)e−τcρ

d+μ+cρ with ρ ∈ (0,∞) and

b(c, ρ) = 1
ρ log

d+μf ′(0)eτcρ

d+μ−cρ with ρ ∈ J � (0, d+μ
c ). Noticing that

lim
ρ→0+

b(c, ρ) = lim
ρ→( d+μ

c )−
b(c, ρ) = ∞,

we know that infρ∈J b(ρ, c) = infρ∈J0 b(ρ, c), where J0 = {ρ ∈ J ∩ [δ.∞) : ∂b(c,ρ)
∂ρ = 0}

for some δ ∈ J . It is easy to verify that ∂b(c,ρ)
∂ρ = 0 if and only if b(c, ρ) = μτcf ′(0)eτcρ

d+μf ′(0)eτcρ +
c

d+μ−cρ . Thus,

inf
ρ∈J

b(ρ, c) = inf
ρ∈J0

[
μτcf ′(0)eτcρ

d+ μf ′(0)eτcρ
+

c

d+ μ− cρ
]

≥ inf{[ μτcf
′(0)eτcρ

d+ μf ′(0)eτcρ
+

c

d+ μ− cρ
] : ρ ∈ [δ,

d+ μ

c
)}

> lim
ρ→0+

[
μτcf ′(0)eτcρ

d+ μf ′(0)eτcρ
+

c

d+ μ− cρ
]

=
μτcf ′(0)
d+ μf ′(0)

+
c

d+ μ
.

Similarly, in view of lim
ρ→0+

a(c, ρ) = ∞ and lim
ρ→∞ a(c, ρ) = 0, letting J0 = {ρ ∈ (0,∞) :

∂a(c,ρ)
∂ρ = 0}, we similarly obtain

inf
ρ>0

a(ρ, c) ≥ min{0, inf
ρ∈J0

[− μτcf ′(0)e−τcρ

d+ μf ′(0)e−τcρ
− c

d+ μ+ cρ
]}

≥ lim
ρ→0+

−[
μτcf ′(0)e−τcρ

d+ μf ′(0)e−τcρ
+

c

d+ μ+ cρ
]

= −[
μτcf ′(0)
d+ μf ′(0)

+
c

d+ μ
].

Note that by the assumption (K1), we have 1
ρ log(l

+(c, ρ)) ≥ a(c, ρ) and 1
ρ log(l

−(c, ρ))
≥ b(c, ρ) for all (c, ρ) ∈ R× (0,∞). It follows from the definitions of p± and l± that
for any c ∈ R,

p+(c) + p−(c) = inf
ρ>0

[
1

ρ
log(l+(c, ρ))] + inf

ρ∈>0
[
1

ρ
log(l−(c, ρ))]

≥ inf
ρ>0

a(ρ, c) + inf
ρ>0

b(ρ, c)

> 0.
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(iii) By the proof of the case c = 0 in (ii), we have p±(0) > 0, which together
with Lemma 4.8(ii) and the definition of c∗+ and c∗− implies c∗+ ≥ 0 ≥ c∗−.

We only prove c∗+ > 0, since c∗− < 0 can be proved by similar arguments. Other-
wise, c∗+ = 0, and thus by (i), we have p+(c) ≤ 0 for all c ∈ (0,∞). Clearly, by (K1),

there exist M1 > 1 and δ1 > 0 such that l+(c, ρ) ≥ d+μf ′(0)e−ρcτ

cρ+d+μ ≥ d+μf ′(0)e−ρτ ]
ρ+d+μ ≥

M1 > 1 for all (c, ρ) ∈ [0, 1]×(0, δ1]. Thus,
log[l+(c,ρ)]

ρ ≥ M1

δ1
for all (c, ρ) ∈ [0, 1]×(0, δ1].

Note that l+(c, ρ) ≥ dk̂(ρ)
ρ+d+μ for all (c, ρ) ∈ [0, 1] × (0,∞). By the proof of the case

c = 0 in (ii), lim inf
ρ→∞

log[ dk̂(ρ)
ρ+d+μ ]

ρ = lim inf
ρ→∞

log k̂(ρ)
ρ ≥ 2. Thus, there exists γ1 > δ1 such

that log[l+(c,ρ)]
ρ ≥ 1 for all (c, ρ) ∈ [0, 1]× [γ1,∞). So, log[l+(c,ρ)]

ρ ≥ min{1, M1

δ1
} > 0 for

all (c, ρ) ∈ [0, 1]× ((0, δ1] ∪ [γ1,∞)). This together with the definition of p+ and the
fact that p+(c) ≤ 0 for all c ∈ (0, 1] implies that there exist sequences {cm} in (0, 1)

and {ρm} in [δ1, γ1] such that lim
m→∞ cm = 0 and lim inf

m→∞
log[l+(cm,ρm)]

ρm
≤ 0. Without

loss of generality, we may assume that lim
m→∞ ρm = ρ∗ for some ρ∗ ∈ [δ1, γ1]. Hence, by

(K1), lim inf
m→∞

log[l+(cm,ρm)]
ρm

≥ log[
d lim inf
m→∞[k̂(ρm)]+μf′(0)

d+μ ]

ρ∗ ≥ log[ d+μf′(0)
d+μ ]

ρ∗ > 0, a contradiction.

Since k(x) = k(−x) for all x ∈ R, we have k̂(ρ) = k̂(−ρ) ≥ 1 for all ρ > 0. Thus,
l+(c, ρ) = l−(−c, ρ) for all (c, ρ) ∈ R× (0,∞). These, combined with the definition of
c∗±, yield c∗+ = −c∗−. This completes the proof of the lemma.

Let

l̃(c, ρ) =
1

cρ+ d+ μ
[dk̂(−ρ) + μf ′(0)e−ρcτ ], p̃±(c) = inf

ρ>0

1

ρ
log l̃(c,±ρ) for c, ρ ∈ R,

and

c̃∗+ = inf{c ∈ R : p̃+(c) ≤ 0}, c̃∗− = sup{c ∈ R : p̃−(c) ≤ 0}.
Note that l(−c,±ρ) = l(c,∓ρ) for all c ∈ R and ρ > 0. Thus, by the definitions of c∗±
and c̃∗±, we easily easily obtain the following lemma.

Lemma 4.10. If (K1) holds, then c̃∗+ = −c∗− > 0 > c̃∗− = −c∗+.
For any (a, b, δ) ∈ (0, 1)× (1,∞)× (0,∞), define A[·; a, b], B[·; a, b, δ] : X+ → X+

by

A[φ; a, b] = aΓ[φ] + (1 − a)bφ, B[φ; a, b, δ] = aΓ[φ] + (1− a)hb,δ(φ),

where Γ[φ](x) =
∫
R
φ(y)k(x − y)dy, hb,δ(φ)(x) = hb,δ(φ(x)) and

hb,δ(u) =

{
bu, u ∈ (0, δb ),
δ, u ≥ δ

b .

Lemma 4.11. Assume that (K1) holds and let (a, b, δ) ∈ (0, 1)× (1,∞)× (0,∞)

and c∗±[b] = inf
ρ>0

log(bk̂(±ρ))
ρ . Then the following statements are true:

(i) c∗±[b] > 0.
(ii) lim

n→∞minx∈[nc1,nc2](A[·; a, b])n[φ](x) = ∞ for all φ ∈ X+ \ {0} and c1, c2 ∈
(−c∗−[b], c∗+[b]) with c1 ≤ c2.

(iii) For any φ ∈ X+ \ {0} and c1, c2 ∈ (−c∗−[b], c∗+[b]) with c1 ≤ c2, there exist
ε > 0 and an integer N0 > 0 such that maxx∈[nc1,nc2]B

n[φ](x) > ε for all
n ≥ N0.
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(iv) lim
n→∞minx∈[nc1,nc2] |B[·; a, b, δ])n[φ](x) − δ| = 0 for all φ ∈ X+ \ {0} and

c1, c2 ∈ (−c∗−[b], c∗+[b]) with c1 ≤ c2.

Proof. (i) By (K1) and b > 1, we have log(bk̂(±ρ))
ρ ≥ log b

ρ > 0 for all ρ > 0. This

together with the fact that lim inf
ρ→∞

log(bk̂(±ρ))
ρ ≥ 2 due to the proof of the case c = 0 in

Lemma 4.9(ii) implies c∗±[b] > 0, that is, (i) holds.
(ii) Suppose that φ ∈ X+\{0} and c1, c2 ∈ (−c∗−[b], c∗+[b]) with c1 ≤ c2. Take b0 >

1 such that a
b0

+ b− ab > 1. Let D[φ](x) = Γ[hb0,δ(φ)](x) for all (x, φ) ∈ R×X+ and
A = A[·; a, b]. By applying Theorem 4.1(iii) to D with f and u∗ replaced, respectively,
by hb0,δ and δ, we have

lim
n→∞ min

x∈[nc1,nc2]
|Dn[φ](x) − δ| = 0.

Thus, there is an integer N1 > 0 such that min
x∈[nc1,nc2]

Dn[φ](x) ≥ δ
2 for all n ≥ N1.

So, bn0Γ
n[φ](x) ≥ Dn[φ](x) ≥ δ

2 and hence Γn[φ](x) ≥ δ
2

1
bn0

for all n ≥ N1 and

x ∈ [nc1, nc2]. Now, we remark that for any n ≥ N1 and x ∈ [nc1, nc2],

An[φ](x) =

n∑
l=N1

X l
na

l[b− ab]n−lΓl[φ](x)

≥
n∑

l=N1

X l
na

l[b− ab]n−lΓl[φ](x)

≥ δ

2

n∑
l=N1

X l
n[
a

b0
]l[b− ab]n−l.

In view of a
b0
+ b−ab > 1 and lim

n→∞
Xl

n[
a
b0

]l[b−ab]n−l

[ a
b0

+b−ab]n = 0 for each nonnegative integer l,

we have lim
n→∞

n∑
l=N1

X l
n[

a
b0
]l[b − ab]n−l = ∞, and hence lim

n→∞minx∈[nc1,nc2]A
n[φ](x) =

∞.
(iii) Suppose that φ ∈ X+ \{0} and c1, c2 ∈ (−c∗−[b], c∗+[b]) with c1 ≤ c2. Without

loss of generality, we may assume that c1 < 0, c2 > 0 and φ ∈ Xδ has compact support
due to the monotonicity of B(·) := B[·; a, b, δ]. Letting c3 ∈ (−c∗[ b], c1), c4 ∈ (c2, c

∗
+[b])

and applying the statement (ii), there exists a integer N1 > 0 such that An[φ](x) ≥ δ
for all n ≥ N1 and x ∈ [nc3, nc4]. In view of choices of c3, c4 and φ, there is an integer
N2 > N1 such that T−y[A

n[φ]] ≥ φ and An[φ](y) ≥ δ for all n ≥ N2 and y ∈ [nc1, nc2].
Take α > 0 such that An[αφ] ≤ δ for all nonnegative integers n ≤ 2N2 − 1. Thus,

T−y[B
n[αφ]] ≥ αφ and Bn[αφ](y) ≥ αδ for all integers

n ∈ [N2, 2N2 − 1] and y ∈ [nc1, nc2].

By the monotonicity of B, we apply the above inequalities repeatedly to obtain that,
for any integer n ≥ N2,

T−y[B
n[αφ]] ≥ αφ and Bn[αφ](y) ≥ αδ for all y ∈ [nc1, nc2].

In particular, Bn[αφ](y) ≥ αδ for all n ≥ N2 and y ∈ [nc1, nc2], which yields (iii)
with N0 = N2 and ε = αδ.
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Finally, by (iii) and by using an argument similar to the proof of Theorem 3.2,
we easily get (iv).

The proof of the lemma is completed.

Theorem 4.5. Assume that (A1)–(A4) and (K1) hold. Then the following state-
ments are valid:

(i) For any c ∈ [c∗+,∞), (4.4) has a traveling wave φ(x− ct) with φ(∞) = 0 and
φ(−∞) = u∗.

(ii) For any c ∈ (−∞, c∗−], (4.4) has a traveling wave φ(x − ct) with φ(−∞) = 0
and φ(∞) = u∗;

(iii) For any c ∈ (c∗−, c∗+), (4.4) has no nonconstant traveling wave φ(x− ct).

Proof. By some simple computations, we know that for any φ ∈ X+, φ = Q[φ; c, f ]
if and only if u(t, x) = φ(x − ct) satisfies (4.4). We remark that c∗+ > 0 > c∗− due to
Lemma 4.9(iii)

(i) Suppose c > c∗+. Then by Lemma 4.9, we have p+(c) ≤ 0 and p+(c) > −p−(c).
Applying Theorem 3.6(ii) to Q[·; c, f ] with mc(y, dy) defined as in this subsection, we
obtain that there is a nonconstant φc ∈ XM such that Q[φc; c, f ] = φc with φc(∞) = 0
and φc(−∞) = u∗.

Next, we consider the case c = c∗+ > 0. We shall prove p+(c
∗
+) ≤ 0. Other-

wise, p+(c
∗
+) > 0. Note that there exist two sequences {cm} and {φm} satisfying

cm ∈ (c+,∞), φm ∈ XM , φm(∞) = 0, and φm(−∞) = u∗ such that lim
m→∞ cm =

c∗+ and Q[φm; cm, f ] = φm for all m ∈ N, where M = sup f([0, u∗]). Obviously,
K[φm, cm, f ] ∈ XM for m ∈ N. By Lemma 4.7(ii), we know that ∪m∈NL(XM ], cm)
is precompact, and hence {φm} is precompact. Without loss of generality, we may
assume that the limiting of φm exists, and sup{x ∈ R : φm(x) = u∗

3 } = 0 due to

(H1). Hence, φm(0) = u∗
3 and φm(x) ≤ u∗

3 for all x ∈ [0,∞). Let φ = lim
m→∞φm.

Then φ(0) = u∗
3 , φ(x) ≤ u∗

3 for all x ∈ [0,∞) and Q[φ; c∗+, f ] = φ. This together with
Theorem 3.4(i) and p+(c

∗
+) > 0 implies lim sup

x→∞
φ(x) = u∗, a contradiction. Thus,

p+(c
∗
+) ≤ 0. By the above arguments for the case of c > c∗+, we easily obtain a

nonconstant φc ∈ XM such that Q[φc; c, f ] = φc with φc(∞) = 0 and φc(−∞) = u∗.

(iii) Suppose that c ∈ (c∗−, c∗+) \ {0}. By Lemma 4.9(i), we have p−(c) > 0 and
p+(c) > 0. Applying Theorem 3.6(i), we know that Q[·; c∗+, f ] has no nonconstant
φ ∈ X+ such that Q[φ; c, f ] = φ, that is, (4.4) has no nonconstant traveling wave
φ(x − ct).

Suppose that c = 0 and (4.4) has a nonconstant traveling wave φ(x − ct) with
c = 0 (i.e., standing wave); then Q[φ; 0, f ] = φ and φ ∈ Xmax f([0,u∗]). We claim that
inf
s∈R

φ(s) = 0; otherwise, inf
s∈R

φ(s) > 0. Hence, u ≥ ū > 0, where u = inf
s∈R

φ(s) and

ū = sup
s∈R

φ(s). Then u ≥ d
d+μu+

μ
d+μ inf f([u, ū]) and ū ≤ d

d+μ ū+
μ

d+μ sup f([u, ū]), that

is, f([u, ū]) ⊇ [u, ū]. Hence, (A4) implies u = ū = u∗, that is, φ = u∗, contradiction.
By the assumptions of f , there exist δ > 0 and b ∈ (1, f ′(0)) such that f(x) ≥ bx for
all x ∈ [0, δ] and f(x) ≥ bδ for all x ∈ f([0, u∗]) \ [0, δ]. Letting a = d

d+μ , we have

φ = (Q[·; 0, f ])n[φ] ≥ (Q[·; 0, hb,δ])n[φ] = (B[·; a, b, δ])n[φ]. By Lemma 4.11(iii), there
is α ∈ (0,min{c∗−[b], c∗+[b]}) such that lim

n→∞min|x|≤nαB[·; a, b, δ])n[φ](x) ≥ αδ. Hence,

φ ≥ αδ > 0, a contradiction. This proves the statement (iii).
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To complete the proof of (ii), we consider the following auxiliary system:

(4.5)

⎧⎨
⎩

∂u
∂t (t, x) = d[

∫
R
u(t, y)k(y − x)dy − u(t, x)]− μu(t, x) + μf(u(t− τ, x))

(t, x) ∈ (0,∞)× R,
u(θ, x) = ϕ(θ, x), (θ, x) ∈ [−τ, 0]× R,

This equation can be considered as the spatial reflection of (4.4), and when the kernel
k(·) is even, (4.5) is exactly the same as (4.4). Applying the conclusion in (i) to (4.5)
and making use of Lemma 4.10 gives the following result:

(E) For any c ∈ [c̃∗+,∞) = [−c∗−,∞), (4.5) has a nonconstant traveling wave

φ̃(x − ct) with φ̃(∞) = 0 and φ̃(−∞) = u∗.
It is clear that the statement (E) implies the statement (ii) of the theorem with

c, φ replaced by −c, φ̃(−·), respectively.
The proof of the lemma is completed.

5. Discussion. First, we briefly discuss the conclusion (i) in Theorem 3.6. Theo-
rem 3.6(i) confirms that under some assumptions, h is globally attractive in
BC(R, [0,∞)) \ {0} with respect to the compact open topology. One naturally won-
ders if it is also globally attractive in BC(R, [0,∞)) \ {0} with respective to the usual
supremum norm. The answer to this question is no, and we explain why below by
making a connection to the existence of traveling wave front solutions of Q. By The-
orem 3.4(iii) and taking c ≥ ĉ∗(ξ), Q has a traveling wave W (x · ξ − nc) connecting
h to 0 such that W is continuous on R. This implies that the positive equilibrium h
cannot attract all positive solutions with respect to the supremum norm, because the
positive solution u(t, x) =W (x · ξ−nc) cannot approach h in the supremum norm as
t→ ∞ due to the fact that W (∞) = 0.

However, the positive equilibrium h can be attractive with respect to the supre-
mum norm in a subset of BC(R, [0,∞)) \ {0}. To see this, define

C>
+ = {φ ∈ BC(R, [0,∞)) : there exists εφ > 0 such that φ(x) > εφ for all x ∈ R},

and let

||φ||sup = sup{|φ(θ, x)| : (θ, x) ∈ [−1, 0]× R}, φ ∈ BC(R,R).

That is, C>
+ consists of those bounded continuous functions that are bounded below

by a positive constant. If φ ∈ C>
+ , then there exists εφ ∈ (0, r−) such that φ(x) > εφ

for all x ∈ R. Thus, by the monotonicity of Q− and Proposition 4.1 in [37], we have

Qn[φ] ≥ (Q−)n[φ] ≥ (Q−)n[εφ] > 0.

By appealing to the arguments in the proof of Theorem 3.2 with some slight modifi-
cations, we conclude that lim

n→∞ ||Qn[φ] − h||sup = 0.

Second, we point out that in subsections 4.2 and 4.3, we have only obtained
some results on the existence/nonexistence of traveling wavefronts for (4.2) and (4.4),
without concluding anything on the spreading speeds and asymptotic behaviours of
these two equations. This is because both systems (4.2) and (4.4) contain a time
delay τ > 0, and accordingly, BC([−τ, 0] × R,R) should be adopted as the phase
space, equipped with the topology induced by the norm

|||φ||| �
∑
n≥1

2−n sup{|ϕ(θ, x)| :θ ∈ [−τ, 0], x ∈ R with |x| ≤ n} for ϕ ∈ BC

([−τ, 0]× R,R).
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This is a different space from the one dealt with in section 3, and hence, one cannot
directly apply the results on the spreading speeds and asymptotic behaviors to these
two systems. It is possible to follow the same framework in section 3 to establish
some similar results on the spreading speeds and asymptotic behavior for these two
systems, but we decide not to do so in this already lengthy paper and will leave it for
a possible future project. However, as far as traveling wave solutions are concerned,
one only needs to consider the corresponding profile equations containing a parameter
c and the delay τ , which has the same phase space as discussed in section 3, and as
such, one can directly apply the results on traveling wavefronts in section 3 to the
operators Q properly formulated from the respective profile equations in these two
sections.
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