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Abstract. Direct cell-to-cell transfer of HIV-1 is found to be a more potent and efficient means
of virus propagation than virus-to-cell infection. In this paper we propose a mathematical model to
consider these two modes of viral infection and spread, in which infection age is also incorporated. By
a rigorous analysis of the model, we show that the model demonstrates a global threshold dynamics,
fully described by the basic reproduction number, which is identified explicitly. The formula for the
basic reproduction number of our model reveals that the basic reproduction number of a model that
neglects either cell-to-cell spread or virus-to-cell infection might be underevaluated.
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1. Introduction. It is known that the primary target cell for human immunode-
ficiency virus type 1 (HIV-1) infection is the CD4+ T cell. For decades it was believed
that the spreading of HIV-1 within a host was mainly through free circulation of the
viral particles, with a repeated process consisting of attachment of viruses to T cells,
fusion of viruses into the T cells, replication and assembling of viruses inside the in-
fected T cells, release of newly produced viral particles from the infected cells, and
diffusion of the released viral particles to catch other T cells. However, recent stud-
ies have revealed that a large number of viral particles can also be transferred from
infected cells to uninfected cells through the formation of virally induced structures
termed virological synapses [13].

Indeed, the direct cell-to-cell transmission of HIV-1 is found to be a more potent
and efficient means of virus propagation than the virus-to-cell infection mechanism.
Cell-to-cell spread not only facilitates rapid viral dissemination but may also promote
immune invasion and, thereby, influence the disease [23]. Cell-to-cell spread of HIV-1
may reduce the effectiveness of neutralizing antibodies and viral inhibitors. However,
it is unclear whether this mechanism of HIV-1 viral spread is susceptible or resistant
to inhibition (by neutralizing antibodies) and to entry inhibition, causing some con-
troversy in this field of study [2, 24]. Despite the controversies, it is commonly agreed
that the high efficiency of infection by large numbers of virions is likely to result in a
transfer of multiple virions to a target cell [6, 14]. In particular, a recent study pub-
lished in Nature [38] shows that cell-to-cell spread of HIV-1 does reduce the efficacy
of antiretroviral therapy, because cell-to-cell infection can cause multiple infections of
target cells, which can in turn reduce the sensitivity to the antiretroviral drugs.

While HIV-1 can pass directly from an infected T cell to an uninfected and
receptor-bearing T cell via virological synapses or membrane nanotubes, many other
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HIV-1 VIRUS DYNAMICS WITH TWO TRANSMISSION MODES 899

viruses also have some mechanisms to support their cell-to-cell transmissions [34, 35,
36]. For example, murine leukemia virus (MLV) moves between fibroblasts either
by polarized assembly and budding at intact intercellular junctions [27] or by cross-
ing adhesive bridges formed by filopodia [37]. Herpes simplex virus type-1 (HSV-1)
can spread between a fibroblast and a T cell via a virological synapse, while it can
also move between fibroblasts by assembly and budding at basolateral intercellular
junctions [36]. In fact, the cell-to-cell spread mode has been adopted by a variety of
animal virus families, including Asfar, Flavi, Herpes, Paramyxo, Pox, Rhabdo, and
Retroviridae.

To compare the two transmission modes, Dimitrov et al. [7] studied the kinetics of
HIV-1 accumulation in cell culture supernatants during multiple rounds of infections
by viral production models. They found that the infection rate constant is the critical
parameter that affects the kinetics of HIV-1 infection, and furthermore the infectivity
of HIV-1 during cell-to-cell transmission is greater than the infectivity of cell-free
viruses. Dixit and Perelson [8] studied the kinetics of HIV-1 infection by exploring
the mechanisms of multiple infections. They found that multiple infections can be
caused by both cell-free infection mode and cell-to-cell transmission mode. In cell-to-
cell transfer mode, by contact of a target cell, an infectious cell can transfer multiple
virions or genomes. However, in cell-free mode, multiple genomes are acquired one
by one in a series of infectious contacts of a target cell with free virions.

Dynamical system models have been widely and effectively used to model viral
infection dynamics. Most existing models consider only the virus-to-cell infection
mechanism. Among such models is the following classic and basic model proposed
in [1, 29, 30, 31], which describes the virus dynamics within a host by a system of
ordinary differential equations:

(1.1)

⎧⎪⎪⎨
⎪⎪⎩

dT (t)
dt = h− dTT (t)− βV (t)T (t),

dT∗(t)
dt = βV (t)T (t)− δT ∗(t),

dV (t)
dt = bT ∗(t)− cV (t),

where T (t), T ∗(t), and V (t) are the concentrations of uninfected T cells, infected
T cells, and free viral particles at time t, respectively. The model assumes that
uninfected T cells are produced at a constant rate h and infected by free virions at a
rate βV (t)T (t). The free virions are produced from the infected cells at a rate bT ∗(t).
Uninfected T cells, infected T cells, and free virions are lost at rates dTT (t), δT

∗(t),
and cV (t), respectively. For this model, the virus dynamics are fully determined by
an important parameter, called the basic reproduction number and given by R0 =
βhb/cδdT , in the following sense: if R0 < 1, then V (t) → 0 and T ∗(t) → 0 as t→ ∞,
implying infection cannot persist; while if R0 > 1, the virus will persist in the host
[21].

Based on (1.1), there have been a variety of modifications/generalizations of (1.1)
that have resulted from incorporating into (1.1) various factors/effects, such as im-
mune responses (CTLs), nonlinear infection rate, latencies in virus infection and repli-
cations, and drug therapies. For details see, e.g., [16, 28, 40, 41, 42, 43, 44] and the
references cited therein. Among these generalizations is the following model proposed
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900 XIULAN LAI AND XINGFU ZOU

and studied by Nelson and Perelson [28]:

(1.2)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dT
dt = h− dTT − (1− nrt)βVIT,

dT∗
dt =

∫∞
0
f(s)e−μs(1− nrt)βVI(t− s)T (t− s)dτ − δT ∗,

dVI

dt = (1 − np)NδT
∗ − cVI ,

dVNI

dt = npNδT
∗ − cVNI ,

where nrt and np are the efficacy of reverse transcriptase (RT) inhibitor and protease
inhibitor, respectively, and VI and VNI are the populations of infectious and non-
infectious virions, respectively. Here, a time delay, s, from the time of initial infection
until the production of new virions, is considered and assumed to vary according to a
probability distribution f(s). The term e−ms accounts for the survival rates of cells
that are infected at time t and become productively infected s time units later. Note
that the VNI equation in (1.2) is decoupled from the other three equations, which,
by renaming the parameters, constitute the model system of the form investigated
in Zhu and Zou [43]. We point out that, as in (1.1), all those variations in [16, 28,
40, 41, 42, 43, 44] have assumed that uninfected T cells can only be infected by the
attachment of free virions, while the mechanism of cell-to-cell transmission has been
neglected.

As far as cell-to-cell infection is concerned, much less has been done in mathemat-
ical modeling. Culshaw, Ruan, and Webb [3] studied the cell-to-cell spread of HIV-1
by the model

(1.3)

⎧⎨
⎩

dT
dt = rT (t)

(
1− T (t)+T∗(t)

K

)
− βT (t)T ∗(t),

dT∗
dt = β′ ∫ t

−∞ T (s)T ∗(s)f(t− s)e−msds− δT ∗(t).

Here, a logistic growth for the uninfected cells is assumed, with r being the intrinsic
growth rate of uninfected cells and K being the effective carrying capacity of the
host. Assuming that f(u) is a probability distribution, the integral in (1.3) reflects
the variance of productivity of virions by infected cells at different infection ages. We
see that in this model, only cell-to-cell infection is considered (at rate βT (t)T ∗(t)),
while virus-to-cell infection mechanism is neglected, in contrast to (1.1) and its vari-
ations/modifications.

Recently, Komarova et al. [17] studied the relative contribution of free-virus and
synaptic transmission to the spread of HIV-1 using a dynamical system model. With
data fitting they determined that the two transmission pathways contribute approxi-
mately equally to the growth of the virus population. Komarova, Levy, and Wodarz
[18] and Komarova and Wodarz [19] further investigated the effect of synaptic trans-
mission on virus dynamics and viral fitness in HIV infection. More specifically, using
dynamical system models, they discussed the cell-to-cell transmission in different con-
texts such as multiple infection and different viral synaptic strategies and explored the
effect of different strategies of the virus on the basic reproductive ratio of the virus.
In a more recent paper [20], using a virus infection dynamical model with multiple
infections, Komarova, Levy, and Wodarz explored the role of synaptic transmission in
susceptibility of HIV infection to antiretroviral drugs. They found that multiple in-
fections via synapses do not simply reduce susceptibility to treatment, which depends
on the relative probability of individual virions to infect a cell during cell-free virus
and synaptic transmission.
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In this paper, we propose a dynamical system model that incorporates both the
cell-to-cell infection mechanism and the virus-to-cell infection mode. As in [3, 28, 43],
we also consider infection age. But we will adopt the simpler production mechanism
for uninfected cells, as in (1.1) and (1.2). We also consider a well-mixed situation and
no multiple infection for both modes of transmission. All these considerations lead to
the following model:

(1.4)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dT (t)
dt = h− dTT (t)− β1T (t)V (t)− β2T (t)T

∗(t),
dT∗(t)

dt =
∫∞
0

[β1T (t− s)V (t− s) + β2T (t− s)T ∗(t− s)]e−μsf(s)ds

−δT ∗(t),
dV (t)
dt = bT ∗(t)− cV (t),

where β1 is the infection rate of free virus and β2 is the infection rate of productively
infected cells. The infected cells may die or be cleared at rate μ before becoming
productively infected, and thus, after a time period of length s, only a proportion
e−μs survives. The time for infected cells to become productively infected may vary
from individual to individual, and hence, a distribution function f(s) is introduced
to account for such variance. For mathematical tractability, yet without losing the
major biological feature, we assume that f : [0,∞) → [0,∞) has compact support,
f(s) ≥ 0, and

∫∞
0
f(s) ds = 1. Other parameters in (1.4) are as in (1.1) and are

self-explanatory.
In the rest of this paper, we will analyze the model (1.4). In section 2, we

address the well-posedness of (1.4) by verifying the positivity and boundedness of
solutions of system (1.4) with reasonable initial data. In section 3, we identify the
basic reproduction numberR0 of the model, in terms of which we discuss local stability
of the infection-free equilibrium and the positive equilibrium. In section 4, we prove
the persistence of infection under R0 > 1, and in section 5, we further explore the
global stability of the two equilibria. Our theoretical results show that the virus
dynamics governed by (1.4) are fully determined by R0. Thus, the dependence of
R0 on the model’s parameters may reveal some insights into the virus spread in the
presence of both infection modes, and we discuss this in section 5.

We conclude this introduction by pointing out the main difference of this work
from [17, 18, 19, 20]. The dynamical system models in [17, 18, 19, 20] are all given
by ordinary differential equations. Such ordinary differential equation models have
neglected the effect of infection ages, which correspond to various stages during the
complicated process of virus replication (see, e.g., [3, 28, 43]), and the survival rate
of infected cells before they become productive. Our model (1.4) incorporates not
only both cell-to-cell infection mechanism and virus-to-cell infection mode, but also
an infinite intracellular delay, which reflects the fact that an infected cell may remain
latent forever. Moreover, while [17, 18, 19, 20] contain some analysis on the basic
reproduction number R0 and offer some interesting insights into virus replication as
well as some supportive numeric results, in this work, in addition to the mathemat-
ical derivation of R0, the global dynamics of the model are completely determined
analytically.

2. Positivity and boundedness of solutions. The model (1.4) is a system of
integro-differential equations with infinite delays. For such a system, the phase space
needs to be equipped with some norm that accounts for fading memory. In other
words, we need to specify a continuous and nondecreasing function g : (−∞, 0) →
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[1,∞) satisfying (i) g(0) = 1; (ii) g(s+ t)/g(s) → 1 uniformly on (−∞, 0] as t → 0−;
and (iii) g(s) → ∞ as s → −∞. For details on this topic, see, e.g., [9, 12, 22]. For
the purposes of this paper, we choose g(s) = e−Δs with Δ ∈ (0, μ/2). Accordingly,
the phase space is given by

(2.1) CΔ :=

{
φ ∈ C((−∞, 0],R) :

φ(θ)eΔθ is uniformly continuous on

(−∞, 0] and supθ≤0{|φ(θ)|eΔθ} <∞

}
,

equipped with the norm ‖φ‖ = supθ≤0{|φ(θ)|eΔθ}.
For a given function u(t) = (x(t), y(t), z(t)) : (∞, τ ] → R

3 (τ > 0), we follow
the standard notation to define ut ∈ CΔ ×CΔ ×CΔ by ut(θ) = (xt(θ), yt(θ), zt(θ)) =
u(t+θ) = (x(t+θ), y(t+θ), z(t+θ)), respectively, for θ ∈ (−∞, 0]. By the fundamental
theory of functional differential equations [9, 12, 22], we know that for any initial
function φ ∈ CΔ ×CΔ ×CΔ, (1.4) has a unique solution (T (t), T ∗(t), V (t)) satisfying
(T0, T

∗
0 , V0) = φ.

The fact that all unknown variables in the model are populations suggests that
we need only consider nonnegative initial functions, i.e., initial functions taken from
the natural positive cone of this phase space given by X := C+

Δ × C+
Δ × C+

Δ where
C+

Δ = {φ ∈ CΔ : φ(θ) ≥ 0 for θ ∈ (−∞, 0]}.
For an initial function φ = (φ1, φ2, φ3) ∈ X , if φ2(θ) = 0 = φ3(θ) for all

θ ∈ (−∞, 0] (i.e, there is no initial inoculation/invasion of both viruses and infec-
tious cells), one easily sees (e.g., by uniqueness of solution) that the T ∗(t) and V (t)
components of the corresponding solution remain zero for all t ≥ 0. However, if either
φ2(θ) > 0 or φ3(θ) > 0 for some θ ∈ (−∞, 0], these two components of the correspond-
ing solution should remain positive for all t > 0. It is also reasonable to expect that a
solution should remain bounded. The following theorem establishes these properties
of well-posedness for the model (1.4).

Theorem 2.1. Let (T (t), T ∗(t), V (t)) be the solution of the system (1.4) with
initial conditions

(2.2) φ ∈ X0 :=

{
φ = (φ1, φ2, φ3) ∈ X :

either φ2(θ) > 0 or φ3(θ) > 0

for some θ ∈ (−∞, 0]

}
.

Then T (t), T ∗(t), and V (t) are all positive and bounded for t > 0.
Proof. Let a(t) = dT + β1T

∗(t) + β2V (t). From the first equation in (1.4), we
then have

T (t) = e
∫ t
0
a(ξ) dξT (0) +

∫ t

0

e
∫

t
ξ
a(θ) dθh dξ > 0 for t ≥ 0.

Next, we prove the positivity of T ∗(t) and V (t). Denote by r(t) the integral term
in the second equation of (1.4). From the second and the third equations in (1.4),
one obtains

T ∗(t) = e−δtT ∗(0) +
∫ t

0

e−δ(t−ξ)r(ξ) dξ, V (t) = e−ctV (0) +

∫ t

0

e−c(t−ξ) bT ∗(ξ) dξ,

which together with φ ∈ X0 implies that T ∗(t) > 0 and V (t) > 0 for small t > 0. We
now show T ∗(t) > 0 and V (t) > 0 for all t > 0. Otherwise, there exists t2 > 0 such
that min{T (t2), V (t2)} = 0 for the first time. If T ∗(t2) = 0, T ∗(t) > 0 for 0 ≤ t < t2,
and V (t) > 0 for 0 ≤ t ≤ t2, then

dT ∗(t2)
dt

=

∫ ∞

0

[β1T (t2 − s)V (t2 − s) + β2T (t2 − s)T ∗(t2 − s)]e−μsf(s)ds > 0,
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which is a contradiction to T ∗(t2) = 0, T ∗(t) > 0 for 0 ≤ t < t2. If V (t2) = 0,
V (t) > 0 for 0 ≤ t < t2, and T

∗(t) > 0 for 0 ≤ t ≤ t2, then

dV (t2)

dt
= bT ∗(t2) > 0,

which is also a contradiction. Therefore, T ∗(t) > 0 and V (t) > 0 for all t > 0.
To prove boundedness, first by the positivity of solutions we have

dT (t)

dt
< h− dTT (t).

It follows that lim supt→∞ T (t) ≤ h/dT , implying T (t) is bounded.
Next, we prove the boundedness of T ∗(t) and V (t). To this end, we define

G(t) =

∫ ∞

0

e−μsf(s)T (t− s)ds+ T ∗(t) +
δ

2b
V (t).

Since T (t) is bounded and
∫∞
0
f(s) ds is convergent, the integral in G(t) is well defined

and differentiable with respect to t. Moreover, when taking the time derivative ofG(t),
the order of the differentiation and integration can be switched. Thus, we have

dG(t)

dt
= h

∫ ∞

0

e−μsf(s)ds− dT

∫ ∞

0

e−μsf(s)T (t− s)ds

−
∫ ∞

0

e−μsf(s)[β1T (t− s)V (t− s) + β2T (t− s)T ∗(t− s)]ds

+

∫ ∞

0

e−μsf(s)[β1T (t− s)V (t− s) + β2T (t− s)T ∗(t− s)]ds− δT ∗(t)

+
δ

2
T ∗(t)− c

δ

2b
V (t)

= h

∫ ∞

0

e−μsf(s)ds− dT

∫ ∞

0

e−μsf(s)T (t− s)ds− δ

2
T ∗(t)− c

δ

2b
V (t)

≤ hη − dG(t),

where

(2.3) η =

∫ ∞

0

e−μsf(s)ds, d = min

{
dT ,

δ

2
, c

}
> 0.

Therefore, lim supt→∞G(t) ≤ hη/d, implying that lim supt→∞ T ∗(t) ≤ hη/d and
lim supt→∞ V (t) ≤ 2bhη/δd. Hence T ∗(t) and V (t) are also bounded.

3. Local stability of equilibria and the basic reproduction number. Sys-
tem (1.4) has the infection-free equilibrium E0 = (h/dT , 0, 0). In order to determine
the stability of E0, we consider the linearization of (1.4) at E0:

(3.1)

⎧⎪⎨
⎪⎩

du1(t)
dt = −dTu1(t)− β1

h
dT
u3(t)− β2

h
dT
u2(t),

du2(t)
dt =

∫∞
0

[
β1

h
dT
u3(t− s) + β2

h
dT
u2(t− s)

]
e−μsf(s)ds− δu2(t),

du3(t)
dt = bu2(t)− cu3(t).

The characteristic equation of this linear system is given by

(3.2)

∣∣∣∣∣∣
λ+ dT β2h/dT β1h/dT

0 λ+ δ − η̄(λ)β2h/dT −η̄(λ)β1h/dT
0 −b λ+ c

∣∣∣∣∣∣ = 0,
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where

η̄(λ) =

∫ ∞

0

e−(μ+λ)sf(s)ds.

We see that (3.2) has an eigenvalue λ1 = −dT < 0, and other eigenvalues are deter-
mined by

[λ+ δ − η̄(λ)β2h/dT ](λ+ c)− η̄(λ)β1bh/dT = 0.

That is,

(λ+ δ)(λ+ c) = (λ+ c)η̄(λ)β2h/dT + η̄(λ)β1bh/dT

= η̄(λ)

(
λ
hβ2
dT

+R0
cδ

η

)
=
δη̄(λ)

η
(λR02 + cR0),

or

(3.3)

(
λ

δ
+ 1

)
(λ+ c) = R0

η̄(λ)

η

(R02

R0
λ+ c

)
,

where η = η̄(0) and

(3.4) R01 =
hηβ1b

dT δc
, R02 =

hηβ2
dT δ

, R0 = R01 +R02.

We first consider the case R0 < 1. We show that if λ = x + iy is a solution of
(3.3), then x < 0. Otherwise, x ≥ 0 would imply∣∣∣∣λδ + 1

∣∣∣∣ ≥ 1, |λ+ c| >
∣∣∣∣R02

R0
λ+ c

∣∣∣∣ ,
∣∣∣∣ η̄(λ)η

∣∣∣∣ ≤ 1,

and thus ∣∣∣∣
(
λ

δ
+ 1

)
(λ+ c)

∣∣∣∣ >
∣∣∣∣R0

η̄(λ)

η

(R02

R0
λ+ c

)∣∣∣∣ ,
which is a contradiction to (3.3). Therefore, all roots of (3.3) have negative real parts
when R0 < 1, implying that E0 is locally asymptotically stable.

Next we consider the case R0 > 1. Let

ψ(λ) :=

(
λ

δ
+ 1

)
(λ+ c)−R0

η̄(λ)

η

(R02

R0
λ+ c

)
.

Then ψ(0) = c(1−R0) < 0. On the other hand, note that

η̄(λ) =

∫ ∞

0

e−(μ+λ)sf(s)ds ≤
∫ ∞

0

f(s)ds = 1.

Thus,

ψ(λ) ≥
(

λ

dT∗
+ 1

)
(λ+ c)−R0

1

η

(R02

R0
λ+ c

)

=
1

dT∗
λ2 +

(
c

dT∗
+ 1− R02

η

)
λ− R0c

η
→ ∞ as λ→ ∞,
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implying limλ→+∞ ψ(λ) = +∞. Therefore, there exists a positive (real) number λ∗

such that ψ(λ∗) = 0. This means that if R0 > 1, then (3.3) has a positive eigenvalue,
and hence E0 is unstable.

Summarizing the above analysis, we have proven the following theorem on the
local stability/instability of E0.

Theorem 3.1. Let R0 be as in (3.4). If R0 < 1, the infection-free equilibrium
E0 is locally asymptotically stable; if R0 > 1, E0 is unstable.

When R0 > 1, model system (1.4) has a unique positive equilibrium Ē =
(T̄ , T̄ ∗, V̄ ) given by

T̄ =
h

dT

1

R0
, T̄ ∗ =

dT c

β1b+ β2c
(R0 − 1), V̄ =

b

c
T̄ ∗ =

bdT
β1b+ β2c

(R0 − 1).(3.5)

Linearizing (1.4) at Ē yields

du1(t)

dt
= −dTu1(t)− β1V̄ u1(t)− β1T̄ u3(t)− β2T̄

∗u1(t)− β2T̄ u2(t),

du2(t)

dt
=

∫ ∞

0

[
β1T̄ u3(t− s) + β1V̄ u1(t− s) + β2T̄ u2(t− s)

+β2T̄
∗u1(t− s)

]
e−μsf(s)ds− δu2(t),

du3(t)

dt
= bu2(t)− cu3(t).

The characteristic equation of this linear system is given by

J̄(λ) =

∣∣∣∣∣∣
λ+ dT + β1V̄ + β2T̄

∗ β2T̄ β1T̄
−η̄(λ)(β1V̄ + β2T̄

∗) λ+ δ − η̄(λ)β2T̄ −η̄(λ)β1T̄
0 −b λ+ c

∣∣∣∣∣∣ = 0.

Noticing that dT + β1V̄ + β2T̄
∗ = dTR0, we have

J̄(λ) =

∣∣∣∣∣∣
λ+ dTR0 β2T̄ β1T̄

η̄(λ)(λ + dT ) λ+ δ 0
0 −b λ+ c

∣∣∣∣∣∣ = 0,

or

(λ+ dTR0)(λ+ δ)(λ + c)− bβ1T̄ η̄(λ)(λ + dT )− β2T̄ η̄(λ)(λ + dT )(λ + c) = 0.

This equation is equivalent to

(λ+ dTR0)(λ+ δ)(λ + c) = bβ1T̄ η̄(λ)(λ + dT ) + β2T̄ η̄(λ)(λ + dT )(λ+ c)

= (λ+ dT )η̄(λ)T̄ [bβ1 + β2(λ+ c)]

= (λ+ dT )η̄(λ)

(
λ
hβ2
dTR0

+
cδ

η

)

= (λ+ dT )
δη̄(λ)

η

(
λ
R02

R0
+ c

)
,

that is,

(3.6) (λ+ dTR0)

(
λ

δ
+ 1

)
(λ+ c) = (λ+ dT )

η̄(λ)

η

(
λ
R02

R0
+ c

)
.
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Assume λ = x+ iy is a solution of (3.6). We show that x < 0 if R0 > 1. Otherwise,
x ≥ 0 would imply

|λ+ dTR0| > |λ+ dT | ,
∣∣∣∣λδ + 1

∣∣∣∣ ≥ 1, |λ+ c| >
∣∣∣∣λR02

R0
+ c

∣∣∣∣ ,
∣∣∣∣ η̄(λ)η

∣∣∣∣ ≤ 1,

and thus ∣∣∣∣(λ+ dTR0)

(
λ

δ
+ 1

)
(λ + c)

∣∣∣∣ >
∣∣∣∣(λ+ dT )

η̄(λ)

η

(
λ
R02

R0
+ c

)∣∣∣∣ .
This is a contradiction to (3.6). Therefore, if R0 > 1, then all roots of (3.6) have
negative real parts, implying that Ē is locally asymptotically stable. Thus, we have
proven the following theorem.

Theorem 3.2. Let R0 be as in (3.4). If R0 > 1, model system (1.4) has a
positive equilibrium Ē given by (3.5) which is locally asymptotically stable.

Theorems 3.1 and 3.2 show that R0 defined by (3.4) determines whether or not
an infection caused by a small inoculation/invasion of virus can persist. Indeed, R0

is the basic reproduction number of the model (1.4).
We can justify R01 and R02 in (3.4) from a biological point of view. R01 can be

rewritten as

R01 = β1
h

dT
· 1
δ
· η · b

c
,

where h/dT is the total number of uninfected cells when all cells are uninfected; β1
is the infection rate by free viruses; 1/δ is the life span of infected cells; η is the
total survival rate of infected cells at all ages; b is the burst size of viruses; 1/c
is the virus clearance rate; and b/c represents the total number of virus particles
produced efficiently from one infected cell. Therefore, R01 means the total number
of newly infected cells that arise from any one infected cell when almost all cells
are uninfected, where the infection occurs by free-virus infection of cells, that is, the
basic reproduction number corresponding to virus-to-cell infection mode. Similarly,
we rewrite R02 as

R02 = β2
h

dT
· 1
δ
· η,

where β2 is the infection rate by the cell-to-cell transfer; 1/δ is the life span of infected
cells; and η is the total survival rate of infected cells at all ages. Therefore, R02 means
the total number of newly infected cells that arise from any one infected cell when
almost all cells are uninfected, where the infection occurs by virus-to-cell transfer,
that is, the basic reproduction number corresponding to cell-to-cell infection mode.

To see this mathematically, we just need to look at the linearization of (1.4) at
the infection-free equilibrium E0, that is, system (3.1), which carries all information
of virus dynamics when the virus population is very small. Note that variables u2(t)
and u3(t) correspond to T ∗(t) and V (t), and at low densities these two variables
are governed only by the last two equations (decoupled from the first one). Let
u(t) = (u2(t), u3(t))

T ; then the equations of u2 and u3 in (3.1) can be rewritten as

d

dt
u(t) =

∫ ∞

0

Bu(t− s)e−μsf(s)ds− Cu(t),
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where

B =

[
β2

h
dT

β1
h
dT

0 0

]
, C =

[
δ 0
−b c

]
.

We assume the initial distributions of u2(t) and u3(t) are ψ(θ) = (ψ2(θ), ψ3(θ)); then
without new infection these populations evolve as

S0(t)ψ := e−Ctψ.

If new infection occurs at time t = 0, since there is a time delay s, from the time of
initial infection until becoming productively infectious, the total distributions of the
new infection populations are

Lψ : =

∫ ∞

0

∫ ∞

s

Be−C(t−s)ψe−μsf(s)dtds

=

∫ ∞

0

B

∫ ∞

s

e−C(t−s)dt · ψe−μsf(s)ds

=

∫ ∞

0

BC−1ψe−μsf(s)ds

= BC−1ψ

∫ ∞

0

e−μsf(s)ds

= BC−1ηψ.

Notice that

C−1 =
1

cδ

[
c 0
b δ

]
, BC−1 =

1

cδ

[
cβ2

h
dT

+ bβ1
h
dT

β1δ
h
dT

0 0

]
.

Therefore,

R0 = ρ(L) = ρ(BC−1)η =
1

cδ

[
β2c

h

dT
+ β1b

h

dT

]
=
β1hbη

dT cδ
+
β2hη

dT δ
.

Making use of the result and procedure on the basic reproduction number for struc-
tured models (here there is the structure in infection age) in [39], we confirm that R0

is the basic reproduction number.

4. Persistence of infection. In this section, we will show that the model system
is persistent when R0 > 1. Such a property itself is of some biological significance; in
addition, it will be used in constructing the Lyapunov functional in section 5 to prove
the global stability of the positive equilibrium.

Due to the infinite delay in the model, the solution semiflow of (1.4)–(2.2) may
not be compact, and this brings in some mathematical challenge. In the following,
just as in Röst and Wu [33], we will apply a theorem in Hale and Waltman [10] to
achieve our goal. To this end, let S(t), t > 0, be the solution semiflow of model system
(1.4)–(2.2). Then, we shall make use of the following theorem on the semiflow S(t)
on X , which does not require S(t) to be compact.

Theorem 4.1 (Hale and Waltman [10, Theorem 4.2]). Suppose we have the
following:

(i) X0 is an open and dense set in X with X0 ∪X0 = X and X0 ∩X0 = ∅;
(ii) S(t) satisfies S(t)X0 ⊂ X0 and S(t)X0 ⊂ X0 for t > 0;
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(iii) S(t) is point dissipative in X;
(iv) γ+(U) is bounded in X if U is bounded in X;
(v) S(t) is asymptotically smooth;
(vi) A = ∪x∈Ab

ω(x) is isolated and has an acyclic covering Q = ∪k
i=1Qi, where

Ab is the global attractor of S(t) restricted to X0;
(vii) For each Qi ∈ Q, W s(Qi) ∩X0 = ∅, where W s refers to the stable set.

Then S(t) is uniformly persistent; that is, there is a σ > 0 such that for any x ∈ X0,

lim inf
t→∞ d(S(t)x,X0) ≥ σ.

Applying the above theorem, we can prove the following persistence result for
(1.4)–(2.2).

Theorem 4.2. For system (1.4), if R0 > 1, then the solution semiflow S(t) is
uniformly persistent; that is, there exists a σ > 0 such that any solution of (1.4)–(2.2)
satisfies

lim inf
t→∞ T (t) ≥ σ, lim inf

t→∞ T ∗(t) ≥ σ, lim inf
t→∞ V (t) ≥ σ.

Proof. Let X0 be as in (2.2) and

X0 = {φ = (φ1, φ2, φ3) ∈ X : φ2(θ) = φ3(θ) = 0 for all θ ∈ (−∞, 0]} .
We just need to verify the conditions in Theorem 4.1. (i) is obvious, and (ii) has
been confirmed in section 2. We now prove (iii); that is, the solutions of (1.4)–(2.2)
are ultimately bounded. By lim supt→∞ T (t) ≤ h/dT , we know that there exists an
N1 > 0 such that T (t) ≤ h/dT + 1 for all t > N1. Let M1 be the maximum of T (t)
on [0, N1]. Then, for any 0 < t ≤ N1, we have

‖Tt‖ = sup
−∞<θ≤0

|Tt(θ)|e	θ = sup
−∞<s≤t

|T (s)|e	se−	t

≤ max
{‖φ1‖e−	t,M1e

	te−	t
} ≤ max {‖φ1‖,M1} ,

and for t > N1, we obtain

‖Tt‖ = sup
−∞<θ≤0

|Tt(θ)|e	θ = sup
−∞<s≤t

|T (s)|e	se−	t

≤ max
{‖φ1‖e−	t,M1e

	N1e−	t, h/dT + 1
}
.

Thus, there is an N2 > N1 such that

‖φ1‖e−	t ≤ h/dT + 1 and M1e
	N1e−	t ≤ h/dT + 1 for t ≥ N2,

and therefore,

(4.1) ‖Tt‖ ≤ h/dT + 1 =: TM for t ≥ N2.

Similarly, from lim supt→∞ T ∗(t) ≤ hη/d and lim supt→∞ V (t) ≤ 2bhη/δd (see proof
of Theorem 2.1), we know that there exist N3 > 0 and N4 > 0 such that

(4.2) ‖T ∗
t ‖ ≤ hη/d+ 1 =: T ∗

M for t ≥ N3,

(4.3) ‖Vt‖ ≤ 2bhη/δd+ 1 =: VM for t ≥ N4.

D
ow

nl
oa

de
d 

09
/0

5/
14

 to
 1

29
.1

00
.1

44
.1

95
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HIV-1 VIRUS DYNAMICS WITH TWO TRANSMISSION MODES 909

Thus, the solution (T (t), T ∗(t), V (t)) is ultimately bounded; that is, S(t) is point
dissipative in X , proving (iii).

Noticing that the three bounds in (4.1), (4.2), and (4.3) are all independent of
initial functions, condition (iv) is verified.

Next we verify condition (v): S(t) is asymptotically smooth; that is, for any
bounded subset U of X , for which S(t)U ⊂ U for t ≥ 0, there exists a compact set M
such that d(S(t)U,M) → 0 as t→ ∞. Let U be an arbitrarily given bounded set in X ,
and let (Tt, T

∗
t , Vt) be the segment of solution with initial condition (φ1, φ2, φ3) ∈ U .

Set

M1 =
{
φ ∈ C+

Δ : supθ≤0 φ(θ)e
�
2 θ ≤ TM

}
,

M2 =
{
φ ∈ C+

Δ : supθ≤0 φ(θ)e
�
2 θ ≤ T ∗

M

}
,

M3 =
{
φ ∈ C+

Δ : supθ≤0 φ(θ)e
�
2 θ ≤ VM

}
,

and let M = M1 × M2 × M1. It follows from Lemma 3.2 in Burton and Hutson
[5] that M is compact in X . Then, by using exactly the same argument in proving
limt→∞ d(Et,M) = 0 in the proof of Theorem 6.1 in Röst and Wu [33], we conclude
that

lim
t→∞ d(Tt,M1) = 0, lim

t→∞ d(T ∗
t ,M2) = 0, lim

t→∞ d(Vt,M3) = 0.

Therefore, S(t) is asymptotically smooth, proving (v).

For condition (vi), it is obvious that A = {E0}, and it is isolated, where E0 =
(h/dT , 0, 0). Thus the covering Q is simply Q = {E0}, which is acyclic because there
is no orbit connecting E0 to itself in X0.

Finally, we verify (vii). To showW s(E0)∩X0 = ∅, we suppose the opposite, that
is, that there exists a solution ut ∈ X0 such that

lim
t→∞ T (t) =

h

dT
, lim

t→∞ T ∗(t) = 0, lim
t→∞V (t) = 0.

Note that R0 > 1 is equivalent to

h

dT

(
β1b

c
+ β2

)∫ ∞

0

e−μsf(s)ds > δ.

Choose ε > 0 to be sufficiently small such that

(4.4)

(
h

dT
− ε

)(
β1b

c
+ β2

)∫ ∞

0

e−μsf(s)ds > δ.

For this ε, there exists a τ0 > 0 such that T (t) > h/dT − ε for all t > τ0. Truncating
the integral in (4.4), there is another τ1 > 0 such that

(4.5)

(
h

dT
− ε

)(
β1b

c
+ β2

)∫ τ1

0

e−μsf(s)ds > δ.
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Let τ2 = τ0 + τ1. Then, for t ≥ τ2, we have

dT ∗

dt
≥

∫ τ1

0

[β1T (t− s)V (t− s) + β2T (t− s)T ∗(t− s)]e−μsf(s)ds− δT ∗(t)

=

∫ t

t−τ1

[β1T (ξ)V (ξ) + β2T (ξ)T
∗(ξ)]e−μ(t−ξ)f(t− ξ)dξ − δT ∗(t)

≥
(
h

dT
− ε

)∫ t

t−τ1

[β1V (ξ) + β2T
∗(ξ)]e−μ(t−ξ)f(t− ξ)dξ − δT ∗(t)

=

(
h

dT
− ε

)∫ τ1

0

[β1V (t− s) + β2T
∗(t− s)]e−μsf(s)ds− δT ∗(t).

This suggests the following comparison system for (T ∗(t), V (t)):

(4.6)

⎧⎪⎨
⎪⎩
n′
1(t) =

(
h

dT
− ε

)∫ τ1

0

[β1n2(t− s) + β2n1(t− s)]e−μsf(s)ds− δn1(t),

n′
2(t) = bn1(t)− cn2(t)

for t ≥ τ2. Notice that this is a monotone system, and hence, by the comparison
theorem and the equations limt→∞ T ∗(t) = 0 and limt→∞ V (t) = 0, one should have
limt→∞(n1(t), n2(t)) = (0, 0). On the other hand, the two equations for n1(t) and
n2(t) are in the same forms of the second and third equations in (3.1), except the upper
limit∞ in the integral is replaced by τ1 and the h/dT is perturbed to h/dT−ε. Repeat-
ing the same argument for proving the instability of E0 in Theorem 3.1 and replacing
the conditionR0 > 1 by (4.5), we conclude that the characteristic equation of (4.6) has
a positive real eigenvalue, which is a contradiction to limt→∞(n1(t), n2(t)) = (0, 0).
Thus, we have W s(E0) ∩X0 = ∅, confirming condition (vii).

Now, by Theorem 4.1, there exists a σ1 > 0 such that lim inft→∞ d(S(t)φ,X0) ≥
σ1 for every φ ∈ X0, implying that the T ∗ and V components of the solution with
initial function φ ∈ X0 satisfy

lim inf
t→∞ ‖T ∗

t ‖ ≥ σ1 and lim inf
t→∞ ‖Vt‖ ≥ σ1.

By estimates similar to those in the proof of Theorem 2.1, we obtain

(4.7) lim inf
t→∞ T ∗(t) > σ1 and lim inf

t→∞ V (t) > σ1.

It remains to show the persistence of T (t). From (4.1) and (4.2), we have

dT (t)

dt
> h− (dT + β1TM + β2T

∗
M )T (t) for t ≥ N5,

where N5 = max{N3, N4}. This means that whenever T (t) < σ2 := h/(dT + β1TM +
β2T

∗
M ) with t ≥ N5, T (t) will be increasing, which implies that lim inft→∞ T (t) >

σ2/2. Taking σ = min{σ1, σ2/2}, the proof of the theorem is completed.

5. Global stability of equilibria. In this section, we prove that E0 is actually
globally asymptotically stable when R0 < 1, and so is Ē provided that R0 > 1. There-
fore, the model (1.4) demonstrates global threshold dynamics. We shall achieve our
goal by constructing an appropriate Lyapunov functional. The form of our Lyapunov
functional is motivated by the Lyapunov function in [15], and similar functionals have
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recently been applied to many other models, including some with infinite delays; see,
e.g., [25, 26] and the references therein.

We first deal with the global asymptotic stability of E0 under R0 < 1.

Theorem 5.1. If R0 < 1, the infection-free equilibrium E0 is indeed globally
asymptotically stable.

Proof. Let T0 = h/dT , and let (T (t), T ∗(t), V (t)) be a solution of system (1.4)–
(2.2) satisfying T (t) > 0. Let

Ψ01(T, T
∗, V )(t) = T (t)− T0 ln

T (t)

T0
+

1

η
T ∗(t) +

hβ1
cdT

V (t).

Calculating the time derivative of Ψ01 along (1.4), we have

(5.1)

d
dtΨ01(t) =

(
1− T0

T (t)

)
[h− dTT (t)− β1T (t)V (t)− β2T (t)T

∗(t)]
+ 1

η

∫∞
0

[β1T (t− s)V (t− s) + β2T (t− s)T ∗(t− s)]e−μsf(s)ds

− δ
ηT

∗(t) + hβ1

dT c [bT
∗(t)− cV (t)]

= dTT0

(
2− T0

T (t) − T (t)
T0

)
− β1T (t)V (t)− β2T (t)T

∗(t)
+β1T0V (t) + β2T0T

∗(t)
+ 1

η

∫∞
0

[β1T (t− s)V (t− s) + β2T (t− s)T ∗(t− s)]e−μsf(s)ds

− δ
ηT

∗(t) + hβ1

dT c [bT
∗(t)− cV (t)]

= dTT0

(
2− T0

T (t) − T (t)
T0

)
+ β1T0V (t) + β2T0T

∗(t)− δ
ηT

∗(t)

+hβ1

dT c [bT
∗(t)− cV (t)]− 1

η

∫∞
0
f(s)e−μs[β1T (t)V (t)

+β2T (t)T
∗(t)− β1T (t− s)V (t− s)− β2T (t− s)T ∗(t− s)]ds

= dTT0

(
2− T0

T (t) − T (t)
T0

)
+ δ

η (R0 − 1)T ∗(t)

− 1
η

∫∞
0 f(s)e−μs[β1T (t)V (t) + β2T (t)T

∗(t)
−β1T (t− s)V (t− s)− β2T (t− s)T ∗(t− s)]ds.

In light of the integral term in the last equation in (5.1), we define

Ψ02(T, T
∗, V )(t) =

∫ ∞

0

f(s)e−μs

∫ t

t−s

[β1T (τ)V (τ) + β2T (τ)T
∗(τ)]dτds.

Then,

d

dt
Ψ02(t) =

∫ ∞

0

f(s)e−μs[β1T (t)V (t) + β2T (t)T
∗(t)

−β1T (t− s)V (t− s)− β2T (t− s)T ∗(t− s)]ds.

Using Ψ01(t) and Ψ02(t), we define the following functional:

Ψ0(t) = Ψ01(t) +
1

η
Ψ02(t).

Then

(5.2)
d

dt
Ψ0(t) = dTT0

(
2− T0

T (t)
− T (t)

T0

)
+
δ

η
(R0 − 1)T ∗(t).
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Notice that

2− T0
T (t)

− T (t)

T0
≤ 0

for all T (t) > 0, and the equality holds if and only if T (t) = T0. Hence if R0 < 1,
then Ψ′

0(t) ≤ 0. Let E = {(T (t), T ∗(t), V (t)) : Ψ′
0(t) = 0} and M be the largest

invariant set in E. By the LaSalle invariance principle (e.g., [11, Theorem 5.3.1] or
[22, Theorem 2.5.3]), all nonnegative solutions tend to M . Note that Ψ′

0(t) = 0 if and
only if T (t) = T0 and T ∗(t) = 0. Using this and the invariance of M , we easily see
that M is indeed the singleton M = {E0}, showing that every nonnegative solution
with T (t) > 0 indeed approaches E0. Hence E0 is globally attractive under R0 < 1,
which, together with the local stability of E0 established in section 3, confirms the
global asymptotic stability of E0 under R0 < 1.

For Ē, we also have the following theorem about its global stability.
Theorem 5.2. If R0 > 1, then any solution u(t) = (Tt, T

∗
t , Vt) of (1.4)–(2.2)

converges to the positive equilibrium Ē, that is,

lim
t→∞(T (t), T ∗(t), V (t)) = (T̄ , T̄ ∗, V̄ ).

Proof. For convenience of notation, we denote P (x) = x− 1− lnx and let

Ψ1(T, T
∗, V )(t) = T (t)− T̄ ln

T

T̄
+

1

η

[
T ∗(t)− T̄ ∗ ln

T ∗(t)
T̄ ∗

]

+
β1T̄ V̄

T̄ ∗b

[
V (t)− V̄ ln

V (t)

V̄

]
,

Ψ11(T, V )(t) =

∫ ∞

0

e−μsf(s)

∫ t

t−s

P

(
T (τ)V (τ)

T̄ V̄

)
dτds,

Ψ12(T, T
∗)(t) =

∫ ∞

0

e−μsf(s)

∫ t

t−s

P

(
T (τ)T ∗(τ)

T̄ T̄ ∗

)
dτds.

By the boundedness and persistence of solutions established in sections 2 and 4, and
the assumption that f(s) has compact support, we know that the above functions are
well defined for large t. Let

Ψ2(t) = Ψ1(t) +
β1T̄ V̄

η
Ψ11(t) +

β2T̄ T̄
∗

η
Ψ12(t).

Taking the derivative of Ψ2(t) and making use of the equations defining the positive
equilibrium Ē, we obtain, after simplifications, the following:

d

dt
Ψ2(t) =

dT
T̄

(
2− T̄

T (t)
− T (t)

T̄

)
+
β1T̄ V̄

η

∫ ∞

0

e−μsf(s)

[
3− T̄

T (t)

− T̄
∗T (t− s)V (t− s)

T ∗(t)T̄ V̄
− T ∗(t)V̄
T̄ ∗V (t)

+ ln
T (t− s)V (t− s)

T (t)V (t)

]
ds

+
β2T̄ T̄

∗

η

∫ ∞

0

[
2− T̄

T (t)
− T (t− s)T ∗(t− s)

T̄ T ∗(t)
+ ln

T (t− s)T ∗(t− s)

T (t)T ∗(t)

]
ds.

Notice that

(5.3) 2− T̄

T (t)
− T (t)

T̄
≤ 0.
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Also note that P (x) ≥ 0 for all x ∈ (0,∞) and P (x) = 0 if and only if x = 1. Making
use of this function P (x), we have

3− T̄

T (t)
− T̄ ∗T (t− s)V (t− s)

T ∗(t)T̄ V̄
− T ∗(t)V̄
T̄ ∗V (t)

+ ln
T (t− s)V (t− s)

T (t)V (t)
(5.4)

= −P
(

T̄

T (t)

)
− P

(
T̄ ∗T (t− s)V (t− s)

T ∗(t)T̄ V̄

)
− P

(
T ∗(t)V̄
T̄ ∗V (t)

)
≤ 0,

and

2− T̄

T (t)
− T (t− s)T ∗(t− s)

T̄ T ∗(t)
+ ln

T (t− s)T ∗(t− s)

T (t)T ∗(t)
(5.5)

= −P
(

T̄

T (t)

)
− P

(
T (t− s)T ∗(t− s)

T̄ T ∗(t)

)
≤ 0

for all T (t), T ∗(t), V (t) > 0. Thus Ψ′
2(t) ≤ 0. Let E = {(T (t), T ∗(t), V (t)) : Ψ′

2(t) =
0}, and let M be the largest invariant set in E. By the LaSalle invariance principle
(e.g., [11, Theorem 5.3.1] or [22, Theorem 2.5.3]) and Theorem 2.1, every positive
solution tends to M .

It remains to show that M = {Ē}. From (5.3), (5.4), and (5.5), we know that

d

dt
Ψ2(t) = 0,

⇔
⎧⎨
⎩

T (t) = T̄ , T̄ ∗T (t− s)V (t− s) = T ∗(t)T̄ V̄ , T ∗(t)V̄ = T̄ ∗V (t),
T (t− s)V (t− s) = T (t)V (t), T (t− s)T ∗(t− s) = T̄ T ∗(t),
T (t− s)T ∗(t− s) = T (t)T ∗(t),

⇔
{
T (t) = T̄ , T ∗(t)V̄ = T̄ ∗V (t),
T (t− s)V (t− s) = T̄ V (t), T (t− s)T ∗(t− s) = T̄ T ∗(t).

Applying T ∗(t)V̄ = T̄ ∗V (t) to the third equation in (1.4), we have dV (t)
dt = 0, meaning

that V (t) is a constant; this in turn implies that T ∗(t) is also a constant. Since T (t) =
T̄ , by the uniqueness of the positive equilibrium, we then conclude that T ∗(t) = T̄
and V (t) = V̄ . Therefore, M = {Ē}; that is, Ē is globally attractive for all positive
solutions. The global attractivity and the local stability of Ē proved under R0 > 1
lead to the global asymptotic stability of Ē, completing the proof.

6. Conclusion and discussion. HIV-1 has two predominant infection modes:
the classical virus-to-cell infection and cell-to-cell spread. In the classical virus-to-cell
infection, viruses released from infected cells randomly move around to find a new
target cell to infect. Recently, it was revealed that HIV-1 infection may also occur by
the transfer of viruses through direct contact between infected cells and uninfected
cells via certain structures, such as membrane nanotubes or macromolecular adhesive
contacts termed virological synapses [36]. During this cell-to-cell transmission, many
viral particles can be simultaneously transferred from infected to uninfected CD4+ T
cells.

In this paper, we have considered a mathematical model to describe the presence
of both of these transmission modes. By a rigorous analysis, we have shown that the
model has a threshold dynamics. Such a threshold dynamics is fully determined by
the basic reproduction number R0 in the sense that the infection-free equilibrium E0
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is globally asymptotically stable if R0 < 1, and when R0 > 1, E0 yields to a globally
asymptotically stable positive equilibrium Ē, implying the infection will persist.

Examining the formula for the basic reproduction number R0, we found that it is
larger than that given in existing models that considered only one infection mode. In-
deed, note that when β1 = 0, meaning that infection is exclusively through cell-to-cell
transmission, which is the scenario of the work in [3], the basic reproduction number
R0 reduces to R02. This would be the basic reproduction number of the correspond-
ing model that ignores the virus-to-cell infection mode. Similarly, when β2 = 0, R0

reduces to R01, which is exactly the basic reproduction number for the correspond-
ing model that neglects the cell-to-cell transmission mechanism. Therefore, we see
that our model not only reveals that the basic reproduction number of the model
that neglects either the cell-to-cell spread or virus-to-cell infection is underevaluated,
but also tells us precisely by how much it is underevaluated, reflected by the relation
R0 = R01+R02 and the formulas for R01 and R02 in (3.4). This formula also reflects
the impact of the infection age through the distribution function f(s).

Cell-to-cell spread not only facilitates rapid viral dissemination but may also
promote immune invasion and influence disease [23]. Cell-to-cell spread of HIV-1 may
also reduce the effectiveness of neutralizing antibodies and viral inhibitors. However, it
is unclear whether this mode of viral spread is susceptible or resistant to inhibition by
neutralizing antibodies and entry inhibition. There are ongoing controversies in this
field of study [2, 24]. Considering the antiretroviral therapy of reverse transcriptase
(RT) inhibitor and incorporating the efficacy of the RT inhibitor in same way as in
[28] (see (1.2)), our model (1.4) now reads

(6.1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dT (t)
dt = h− dTT (t)− (1− n1)β1V (t)T (t)− (1− n2)β2T (t)T

∗(t),
dT∗(t)

dt =
∫∞
0
f(s)e−μs[(1− n1)β1T (t− s)V (t− s)

+(1− n2)β2T (t− s)T ∗(t− s)] ds− δT ∗(t),
dV (t)
dt = bT ∗(t)− cV (t),

where n1 denotes the efficacy of the RT inhibitor inhibiting the virus-to-cell infection
and n2 represents the efficacy of the RT inhibitor with respect to the cell-to-cell
channel. Comparing (6.1) to (1.4), we see that the basic reproduction number for
(6.1) is

R̂0 =
(1 − n1)β1ηhb

dT δc
+

(1 − n2)β2ηh

dT δ
=: R̂01 + R̂02.

It follows that if the RT inhibitor is very effective for inhibition of virus-to-cell
infection, then large n1 would make R̂01 less than one, meaning that the virus would
be eliminated by the therapy in the absence of cell-to-cell transmission (β2 = 0).
However, if cell-to-cell transmission coexists (β2 > 0) and is less sensitive to the RT
inhibitor, then n2 could be small, such that R̂02 > 1. Thus R̂0 > 1, meaning the virus
would persist. The virus can be cleared if and only if the RT inhibitor is effective for
both modes of infections, such that R̂0 < 1.

In our model, we do not consider multiple infection per cell which may occur
by synaptic transmission. However, the high efficiency of infection by large numbers
of virions is likely to result in a transfer of multiple virions to a target cell [6, 14].
Komarova, Levy, and Wodarz [18] and Komarova and Wodarz [19] considered multiple
infection during the cell-to-cell transmission by mathematical modeling and explored

D
ow

nl
oa

de
d 

09
/0

5/
14

 to
 1

29
.1

00
.1

44
.1

95
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HIV-1 VIRUS DYNAMICS WITH TWO TRANSMISSION MODES 915

the effect of different strategies of the virus (that is, the number of viruses passed
per synapse) on the basic reproductive ratio of the virus. They showed that the
strategy of single virus transmission per synapse maximizes the reproductive ratio if
the synapses can be formed quickly and the process of infection is independent of
the number of resident viruses, while strategies with intermediate numbers of viruses
transferred correspond to the highest values of the basic reproductive number if the
synapse formation is slow or if the multiplicity of infection strongly influences the
kinetics of virus production. Multiple infection of the same cell may waste a large
number of viruses that could otherwise enter uninfected target cells; hence fewer
newly infected cells are generated, and the infection eventually cannot be maintained
for larger numbers of transferred viruses.

Multiple infections may reduce the sensitivity to antiretroviral therapies. Sigal
et al. [38] showed that cell-to-cell spread of HIV-1 is sufficient to reduce the efficacy
of antiretroviral therapy. A possible explanation is that the cell-to-cell transmission
may play a significant role for multiple infections per target cell, which reduced sen-
sitivity to drugs. They found that virus-to-cell infection was efficiently prevented by
tenofovir and efavirenz. In the presence of tenofovir, virus-to-cell infection declined
thirtyfold. But once infection becomes established, cell-to-cell transfer through direct
contact between cells becomes possible (likely dominant), and the infection is much
less affected by the presence of drugs. Sigal et al. [38] attempted to explain why highly
potent regimens that target several different steps in the HIV-1 life cycle cannot shut
down replication, despite reducing HIV-1 replication to very low levels, which could
be due to cell-to-cell transfer of multiple virions and the drugs’ inability to inhibit
replication when virus levels are high.

However, Permanyer et al. [32] argued that the results of Sigal et al. depend on
their particular experimental conditions and that the results therefore might not be
correct. Permanyer et al. also pointed out that the conclusion of drug resistance
of cell-to-cell transfer by Sigal et al. was obtained under the incorrect assumption
that each virus transferred will lead to a productive infection. They found that
antiretroviral drugs, such as the RT inhibitors zidovudine and tenofovir, and the
attachment inhibitor IgGb120, are able to block virus replication with similar efficacy
to cell-free virus infections. That indicates that cell-to-cell transmission may not allow
for ongoing virus replication in the presence of antiretroviral therapy.

Komarova, Levy, and Wodarz [20] explored the role of synaptic transmission in
susceptibility of HIV-1 infection to antiretroviral drugs using a virus infection dynam-
ical model with multiple infections. They found that multiple infections via synapses
do not simply reduce susceptibility to treatment, which depends on the relative prob-
ability of individual virions to infect a cell during cell-free virus and cell-to-cell virus
transmission. If this probability is higher for cell-free virus transmission, then suscep-
tibility to antiretroviral drugs is lowest when a single virus is transferred per synapse,
which maximizes the release of free virus. On the other hand, if the infection prob-
ability is higher for synaptic transmission, then they found that the susceptibility to
antiretroviral drugs is minimized for an intermediate number of virions transferred
per synapse. Further experimental investigations are needed to determine whether
the virus persists by synaptic transmission during antiretroviral therapy.

HIV-1 infection can be very effectively suppressed with antiretroviral therapy,
a combination of drugs that block various steps in the HIV-1 lifecycle such as the
ability of the virus to reversely transcribe its RNA genome to DNA (RT inhibitor),
integrate DNA into the cell genome, or make viable new virions by the cleavage of
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viral protein precursors (protease inhibitor). However, these antiretroviral therapies
cannot completely eliminate HIV-1 infection, and the infection can re-establish itself
within weeks after therapy interruption. The main reason is the existence of a reservoir
of infected cells that are insensitive to drugs, which could be latently infected cells
consisting of those that are quiescent in the genomically integrated form, long-lived
infected cells, or those on ongoing transmission cycles called ongoing replication. It
is believed that the reservoir of infected cells is enough to cause a huge rebound in
viral load within weeks after stopping an antiretroviral treatment. Considering an
antiretroviral therapy in the presence of both cell-free and cell-to-cell transmissions
seems to be an interesting yet worthy project.

In our model (1.4), we have assumed that target cells T (t) are produced at a
constant rate h and have a constant death rate dT . It would be more reasonable to
consider the density dependent production rate. One possibility is to assume a logistic
growth for the healthy cells in the absence of infection, as in [4]. We leave this as a
future project.

Acknowledgment. The authors are grateful to the two anonymous referees for
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