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GLOBAL ATTRACTIVITY IN DELAYED HOPFIELD NEURAL
NETWORK MODELS*

P. VAN DEN DRIESSCHE! AND XINGFU zOU'

Abstract. Two different approaches are employed to investigate the global attractivity of
delayed Hopfield neural network models. Without assuming the monotonicity and differentiability
of the activation functions, Liapunov functionals and functions (combined with the Razumikhin
technique) are constructed and employed to establish sufficient conditions for global asymptotic
stability independent of the delays. In the case of monotone and smooth activation functions, the
theory of monotone dynamical systems is applied to obtain criteria for global attractivity of the
delayed model. Such criteria depend on the magnitude of delays and show that self-inhibitory
connections can contribute to the global convergence.
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1. Introduction. There has recently been increasing interest in the potential
applications of the dynamics of artificial neural networks in signal and image process-
ing. Among the most popular models in the literature of artificial neural networks
is the following continuous time model described by a system of ordinary differential
equations for u;(t), the voltage on the input of neuron ¢ at time ¢:

dui(t) ’U,Z(t) - .
(1.1) Ci i TR +Z Tijgi(u;(t)) +1;, i=1,2,...,n.

j=1

Here n > 2 is the number of neurons in the network. For neuron ¢, C; > 0 and
R; > 0 are the neuron amplifier input capacitance and resistance, respectively, and I;
is the constant input from outside the system. The n x n matrix T' = (Tj;) represents
the connection strengths between neurons, and if the output from neuron j excites
(resp., inhibits) neuron 4, then Tj; > 0 (resp., < 0). The matrix T is assumed to
be irreducible, i.e., the network is strongly connected. The functions g; are neuron
activation functions. This model for n neurons was proposed by Hopfield [13] with
an electrical circuit implementation and is thereafter referred to in the literature as
a Hopfield-type neural network. In Hopfield’s analysis [13], 7" is assumed symmetric,
and functions g; are assumed to be C'°° sigmoid functions.

Hopfield [13] realized that in hardware implementation, time delays occur due to
finite switching speeds of the amplifiers. A single time delay 7 > 0 was first introduced
into (1.1) by Marcus and Westervelt [19]. They considered the following system of
differential equations with delay:

du;(t)
12 o™

u; (t n '
:7%) +ZTijgj(Uj(t*T))+Ii, i=1,2,...,n.
j=1
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System (1.2) has much more complicated dynamics than (1.1) due to the incorporation
of delay. For results on this system, see, for example, Bélair, Campbell, and van den
Driessche [3], Marcus and Westervelt [19], Wu [26], and Wu and Zou [27].

Systems (1.1) and (1.2) can be rewritten for u = (uy,u,... ,u,)7 as
(1.3) dl;(tt) — _Bu(t) + Ag(u(t)) + J
and
(1.4) dl;(tt) = —Bu(t) + Ag(u(t — 1)) + J,
respectively, where B = diag(b, b, ...,b,) with b; = 1/(R;C;), the n x n irreducible
connection matrix A = (a;;) with a;; = T;;/Ci, g(u) = (g1(u1), 92 (u2), - .., gn(un))?

and J = (Jy, Ja, ..., J,)T with J; = I,/C; for i,5 = 1,2,... ,n.

Gopalsamy and He [10] recently considered a modification of (1.4) by incorpo-
rating different delays 7;; > 0 in different communication channels (from neuron j to
neuron %), namely,

du;(t)
dt

(15) :7biui(t)+z aijgj(uj((tfnj))-k.]i 1=1,2,...,n.
j=1

Clearly (1.3) and (1.4) are special cases of (1.5). The initial conditions associated
with (1.5) are of the form
ui(s) = ¢i(s) for s € [-7,0], where 7= max T,
1<i,j<n
where it is usually assumed that ¢; € C([-7,0], R), i=1,2,...,n.

Hopfield-type neural networks (1.3) and (1.4) and their various generalizations
have attracted the attention of the scientific community (e.g., mathematicians, physi-
cists, and computer scientists), due to their promising potential for the tasks of clas-
sification, associative memory, and parallel computation and their ability to solve
difficult optimization problems. When a neural circuit is employed as an associative
memory, the existence of many equilibrium points is a necessary feature. However, in
applications to parallel computation and signal processing involving the solution of
optimization problems, it is required that there be a well-defined computable solution
for all possible initial states. From a mathematical viewpoint, this means that the
network should have a unique equilibrium point that is globally attractive. Indeed,
earlier applications to optimization problems have suffered from the existence of a
complicated set of equilibria (see Tank and Hopfield [25]). Thus, the global attrac-
tivity of systems is of great importance for both practical and theoretical purposes
and has been the major concern of most authors dealing with (1.3) and (1.4) and
their generalizations (e.g., (1.5)). See, for example, Bélair [2], Cao and Wu [5], Cohen
and Grossberg [6], Forti [8], Forti, Manetti, and Marini [9], Gopalsamy and He [10],
Hirsch [12], Kelly [15], Li, Michel, and Porod [17], Michel, Farrell, and Porod [18],
and Matsuoka [20].

To the best of the authors’ knowledge, existing results on (1.3) and (1.4) and their
generalizations have been obtained under the assumption that the nonlinear neuron
activation functions are sigmoid, that is,

(H;) For each j € {1,2,...,n}, g; € CY(R), g5(x) >0 for z € R, and
g3(0) = sup,cp gj(z) > 0.
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(Hs) Foreach je{1,2,...,n}, ¢;(0)=0 and g;(x) saturates at +1,i.e.,
lim, 100 gj(z) = £1.
Hence g;’s have always been assumed to be continuously differentiable and monoton-
ically increasing with |g;(z)| < 1.

Recently, Morita [21], and Yoshizawa, Morita, and Amari [28] have shown that
the absolute capacity of an associative memory model can be remarkably improved by
replacing the usual sigmoid activation functions with nonmonotonic activation func-
tions. Therefore, it seems that for some purposes, nonmonotonic (and not necessarily
smooth) functions might be better candidates for neuron activation in designing and
implementing an artificial neural network. In many electronic circuits, amplifiers that
have neither monotonically increasing nor continuously differentiable input-output
functions are frequently adopted. For example, in designing an optimization network
for matrix inversion, Jang, Lee, and Shin [14] used cubic-like input-output functions
(nonmonotone) in implementation, while Tank and Hopfield [25] designed a linear
programming network that is also of the form (1.1) with all g; equal and piecewise
linear (nonsmooth). This is practical motivation for relaxing conditions (Hy), (Hs)
to (A1), (Az) below.

In their proofs of the global stability results, previous authors almost all made
use of the monotonicity and/or smoothness of the activation functions to construct
Liapunov functions or functionals and to estimate their derivatives along the solu-
tions. Therefore, some of their arguments may not be valid without the monotonicity
and/or smoothness condition(s). As an example of this aspect, let us consider (1.3)
with B equal to the identity matrix and A skew symmetric (i.e., AT = —A). With
these assumptions, it has been shown (see Forti [8, Corollary 3], or Matsuoka [20, p.
497]) that if g;, j =1,2,...,n, are continuously differentiable, bounded, and strictly
increasing, then for every J € R™, system (1.3) has a unique equilibrium that is
globally asymptotically stable. However, consider the following specific system

du(t) 10 0 k sin wq (¢
(16) dt :_<o 1)“““(—1: 0>(sianEt;>’
where k£ > 0. It is easily verified that all the assumptions as stated above are satisfied
except for the monotonicity condition on the activation functions g;(u;) = sinu;, j =
1,2. When k > 0 is sufficiently large (e.g., k > 3F), system (1.6) has a nonzero
equilibrium in addition to the zero equilibrium, and hence the above result about the
global convergence fails to be valid for system (1.6) for such k.

The purpose of this paper is to establish some criteria for the global attractivity
of (1.4) and (1.5). In section 2, such global conditions are obtained by constructing
Liapunov functions and functionals without assuming monotonicity or smoothness of
the activation functions g;, j = 1,...,n. Instead of (H;) and (Hj), we assume the
following;:

(Ay) For each j € {1,2,...,n}, g; : R — R is globally Lipschitz with Lipschitz
constant Lj, i.e., |g;(u;) — gj(vj)| < Ljlu; — vj;| for all u;, v; € R.
(Az) Foreach j € {1,2,...,n}, |gj(z)] < M;, = € R for some constant M; > 0.

Assumptions (A;) and (Ag) are clearly weaker than (H;) and (Hj), and the crite-
ria found are independent of the magnitude of the delay(s). In section 3, we employ
the theory of monotone dynamical systems to derive sufficient conditions under the
hypotheses of monotonicity and differentiability of the activation functions. We prove
that for excitatory connections (a;; > 0, for j # i), if system (1.3) is globally attrac-
tive, then system (1.5) is also globally attractive provided that the diagonal delays 7;;
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corresponding to negative a;; are sufficiently small. This conclusion is also true for
some networks with inhibitory connections.

2. Criteria independent of the magnitude of delays. Gopalsamy and He
[10] also assumed (H;) and (Hz) in the proof of their principal result, but a slight
modification shows that their stability criterion remains valid for (1.5) with only
assumptions (Aq) and (As).

THEOREM 2.1. Suppose (A1) and (Az) hold and 7;; >0, 4, j=1,...,n. If

1 = . 1,
(2.1) a= 1I£1Ja<xn{ Z|aJ|} <

then, for every input J, systern (1.5) has a unique equilibrium u* that is globally
asymptotically stable, independent of the delays.

The proof follows by using a fixed point argument and the same Liapunov func-
tional as used by Gopalsamy and He [10], but with the neuron gains replaced by the
Lipschitz constants L;, namely,

n

Vi) =3 | ut fu*|+2\aw|L / s (5) — w5 |ds

i=1 t—"Tij

By constructing a different Liapunov functional, we can obtain a new criterion
that is, in general, independent of Theorem 2.1. Recall that the spectral norm of
matrix Z is defined as

| Z]]2 = (max {\: A is an eigenvalue of ZTZ})l/Z.

THEOREM 2.2. Suppose (A1) and (Az) hold and ;5 > 0, i, j=1,2,... ,n. If

n
2 laig]
(2.2) e max E Jaij] ¢ + max. {Lj 21: b, } <2

then, for every input J, system (1.5) has a unique equilibrium that is globally asymp-
totically stable, independent of the delays.
Proof. For every fixed input J, let ¥ : R™ — R™ be defined by

U(u) = B *Ag(u) + B, u € R".

Then u* is an equilibrium of (1.5) if and only if u* is a fixed point of ¥. From (A;)
and (Az), we know that ¥ is continuous and

1) = B71I]|, = [|B Ag(w)]

<I1B7 All2 llg(u)]2

" 1/2
— A — n
< |B1Als (}jMf) 2 M|B Al ue R

i=1
Thus, ¥ maps the closed ball
Q={ueR": |lu—B 'J|, < M|B 'Al>}
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into itself. By Brouwer’s fixed point theorem, ¥ has a fixed point u* in € that is an
equilibrium of (1.5).

We next prove the global asymptotic stability of u*. Let 2(t) = u(t) — u*. Then
(1.5) becomes

(2.3) d:lzgt) = —bixi(t) + Y aifi(@i(t—75)), i=1,2,...,n,

filzy) = gj(z; +u;‘) —gj(u;), ji=1,2,...,n.

Clearly, u* is globally asymptotically stable for (1.5) if and only if the trivial solution
of (2.3) is globally asymptotically stable.
Let

(2.4) Z

We calculate and estimate the derivative of V(x)(¢) along (2.3) as follows:

20+ 339 [ P )

i=1 j=1 Z t—Tij

c~‘,_.

dV(x)(t)
dt
n n n a
=2 fo(t) +2 Zzi?x@(t)fj(xj(t Tij))
i=1 i=1j=1 '
a; n n ag;
+ZZ' il il 2t 7,)
i=1j=1 i=1j=1 "
2250 ZZ|(;J‘ {23(t) + f3(z;(t —7i5))}
i=1j=1 "
a; n n ag;
+ZZ| J| ZZ*'bé|ff(xj(t—Tij))
i=1 j=1 i=1j=1 "
2Zx +2 > e
i=1j=1
+ZZ |aw|L2 2
i=1 j=1
n n |a | n
< |- — 2 v 2
2 ) g, 2l +m{LZ b } 2 i)
A n
=—(2-8) ) (1)
i=1

Now, by a standard Liapunov-type theorem in functional differential equations (see,
e.g., Kuang [16, Chapter 2, Corollary 5.2]), for 5 < 2 the trivial solution of (2.3) is
globally asymptotically stable, and therefore, u* is global asymptotically stable for
(1.5). O



GLOBAL ATTRACTIVITY IN DELAYED NEURAL NETWORKS 1883

Conditions (2.1) and (2.2) are explicit from (1.5) and hence are convenient to
verify in practice. But both of them have the disadvantage of neglecting the signs
of entries in the connection matrix A, and thus, differences between excitatory and
inhibitory effects might be ignored. In general, this is overly restrictive. In the case
of no delay (i.e., 7;; =0, 4,7 =1,2,... ,n)and b; =1, i =1,2,... ,n, Atiya [1] and
Hirsch [12] obtained conditions with this same disadvantage. Forti [8] and Matsuoka
[20] recently attempted to overcome this disadvantage for networks without delay. The
Liapunov functions in Forti [8] and Matsuoka [20] depend strongly on the monotonicity
of the activation functions and the hypothesis 7;; = 0, ¢,7 = 1,2,... ,n, and hence
fail to work for (1.5) assuming only (A;) and (As).

When A is symmetric and functions g;(u;) are all equal and sigmoid, Bélair [2]
established a criterion for global attractivity of (1.4) with all b; = 1 and input J = 0.
We next extend this result (Bélair [2, Theorem 3.2]) to the general case of (1.4)
with delay 7 with only assumptions (A;) and (Ay). To this end, we introduce the
Liapunov—Razumikhin technique developed by Haddock and Terjéki [11]. See Bélair
[2] for a simplified version.

Consider the functional differential equation

dx(t)

(2.5) o

:f(ﬂbt),

where f : C — R"™, with C 2 C([-7,0], R™), and x4 € C is defined by z4(s) = z(t+s)
for s € [-7,0]. Let V : R™ — R be a Liapunov function, which we define as a C!
function. The (upper right-hand) derivative of V' along a solution z(¢, ¢) of (2.6) is
defined by

(26)  V(¢) =Tmy o

V($(0) + hf(¢)) — V((0 "~ OV (¢(0
[V(¢(0) (h)) (())]:Z é())fi(¢>’
i=1 L
where f; denotes the ith component of f.
THEOREM 2.3 (see Bélair [2, Theorem 3.1]). Suppose that f is continuous and
maps bounded sets in C into bounded sets in R"™, and f(0) = 0. Assume that there

exists a Liapunov function V(x) and a constant N such that
(2.7) V(0)=0, V(z) >0 forall 0#|z|<N, V(0)=0

and

V() <0 forall 0#| ¢l <N suchthat max V(p(s)) =V (4(0)).

—7<s<0

Then, the solution © = 0 of (2.5) is asymptotically stable. In addition, for each
solution x(¢)(-) such that ||z ()| < N for allt >0, 24(p) — 0 in C as t — oo.
Now we use the above to establish the following result in terms of the spectral
norm.
THEOREM 2.4. Suppose (A1) and (Az) hold and T > 0. If

(1>

(2.9) v

L
—||All2 < 1
Al < 1,

where L = maxj<;<n L; and b = mini<;<,, b;, then, for any input J, system (1.4) has
a unique equilibrium that is globally asymptotically stable, independent of the delay.
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Proof. For every input J, the same argument as in the proof of Theorem 2.2
shows that (1.4) has an equilibrium u*. Set z(t) = u(t) — u*. Then, u(t) is a solution
of (1.4) if and only if z(t) solves

(2.10) dfif) — Ba(t) + AF (),
where F(z;) = (fi(z¢), -, fu(2¢))T is defined by
(2.11) fi(we) = g5 (t = 7) + uj) — g;(u).

As in the proof of Theorem 2.2, we only need to prove that the trivial solution of (2.10)
is globally asymptotically stable. Now, consider the Liapunov function V' (z) = %HT”%
Then along (2.10)

V(z) = —2T(t)Bx(t) + 2T (t) AF ()

(2.12)

IN

—aT(t)Ba(t) + [[o(t)llz - [|AF (21)]|2

IN

—2T () Ba(t) + [o(®)ll2 - |All2 - [|F(2)]l2-

From (2.11) and (A1), we obtain
(2.13) 1E()ll3 =) f7 () < ZL (t—7) < L2t — 7)|]3-
j=1

Thus, if (2.9) holds, then for those ¢ satisfying

2(t) #0 and max [lz(t+s)ll> = [2()],

we have
V(z) < —z"(t)Ba(t) + LI|All2 - = (t)[l3
(2.14) = Z (LIIAllz = b:) 23 (1)

< (LA —5) 3 #2(t) < 0.
i=1

By Theorem 3.1, it follows that the trivial solution of (2.10) is globally asymptotically
stable, and therefore, u* is globally asymptotically stable for (1.4). a
REMARK 2.1. When A is normal (i.e., AAT = ATA), then

lA]l2 = max{|A| : A is an eigenvalue of A}.

So, Theorem 3.2 in Bélair [2] is a special case of the above theorem with A symmetric
(hence normal), b; = 1 and g;(-) = g(-), where g(-) is sigmoid and L; = ¢'(0). Cao
and Wu [5, p. 1534] and Kelly [15, p. 239] also obtained similar conditions to (2.9) for
Hopfield-type models with delays and without delay, respectively, but they also assumed
differentiability and monotonicity of the activation functions.
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REMARK 2.2. If all b; = 1, and A is doubly stochastic (i.e., A is nonnegative
with all row sums and column sums equal to 1), then ||All2 = 1. This follows from
Perron—Frobenius theory since ATA(1,1,... ,1)T = (1,1,... ,1)T (see, e.g., Berman
and Plemmons [4, p. 27]). Then, (2.1), (2.2), and (2.9) all reduce to maxi<j<n L; <
1.

ExAMPLE 2.1. Consider the all-excitatory doubly stochastic connection matriz
studied in Marcus and Westervelt [19] and Wu [26], i.e., A with a;; =0, a;; =
fori#j. Then, (2.1) becomes

A Lj

(2.15) a = max — < 1.
1<j<n 0;

If we assume that for j =1,2,... ,n, bj =1 and gj(u) = g(u) is increasingly sigmoid
with neuron gain g'(0) = sup,cp ¢'(z) > 0, then, (2.15) further reduces to

(2.16) g'(0) < 1.

1t has been proved by Wu [26] that (2.16) is a sufficient and necessary condition for
such a network (1.4) to have a unique equilibrium that is a global attractor. Note that
in this case, (2.2) and (2.9) also reduces to (2.16) as pointed out in Remark 2.2.

We next give examples to show that (2.1), (2.2), and (2.9) are independent, in
the sense that for each of them there exists a system (1.4) for which one of Theorems
2.1, 2.2, or 2.3 applies but the other two fail.

EXAMPLE 2.2. Consider a doubly stochastic connection matriz A, and let b; <
1/2 fori=1,2,... ,n. If we choose L; such that 0 < L; < b; fori=1,2,... ,n, and
maxj<i<p L; > minj<;<, b;, then, (2.1) is satisfied but both (2.2) and (2.9) fail.

EXAMPLE 2.3. Consider the connection matriz

(1)

and let L1 =1, Ly = 2 and % < by < by <2. Then, (2.2) is satisfied but (2.1) and
(2.9) fail.
EXAMPLE 2.4. Consider an exzample of network (1.4) with T > 0 described by

dut) (1 0 —3 \ [ sin(Z5ma(t—7) < Ji )
@17 =g = ( 0 1 )“(t” < 1 ) ( sin(Zus(t—7) )\ )
Functions g;(v) = sin(%) satisfy (A1) and (Az) with L; = % for j = 1,2. Then,

a = % > 1 and 8 =1+ 5 > 2. Thus, neither (2.1) nor (2.2) is satisfied. But

|All2 = %, and thus (2.9) gives v = \/g < 1. Therefore, by Theorem 2.4, system
(2.17) has a globally asymptotically stable equilibrium.

NN

[T ST
o g
w w

3. Criteria depending on delays. The conditions obtained in the previous
section are all independent of delay. In this section, we establish some criteria for the
global attractivity that depend on the magnitude of the delay(s).

As mentioned previously, there has been a lot of work on the global convergence
of Hopfield-type models without delay (see, for example, Atiya [1], Forti [8], Hirsch
[12], Kelly [15], Michel, Farrell, and Porod [18], and Matsuoka [20]). Since global

attractivity implies the existence of a unique equilibrium, and the incorporation of the
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delay into the model does not change the structure of equilibria, sufficient conditions
for the global attractivity of (1.3) established in the above-mentioned works guarantee
the existence of a unique equilibrium for the delayed model (1.4) as well as (1.5). In the
remainder of this section, we will employ the theory of monotone dynamical systems
to prove that under some additional conditions, all solutions of (1.5) converge to this
equilibrium provided that some delays are sufficiently small.

Since the above mentioned work on the model without delay have all assumed
differentiability and monotonicity of the activation functions, the discussion of this
section will be under (A3) and the following hypothesis

(H}) For each j € {1,2,... ,n}, g; € C'(R) and 0 < gj(x) < supyergj(zx) < +oo
for z € R.
Note that (H;) and (A3) are similar to (H;) and (Hs), respectively, but (H;) does
not require gj(z) to attain its supremum at 0, and (A2) means that g;(x) saturates,
but not necessarily at £1.

For convenience of statement, we let 3; = sup,cp gi(v), W = (w;;), and Q =
(gij), where
Bi

wij = a,-j and qij = aijF
i

Bi
\/bib;
for i, 7 = 1,2,... ,n. Then, we have the following results (see Matsuoka [20, (17),
(20), (8)]), in terms of matrix measures (see, e.g., Coppel [7, p. 41]).

THEOREM 3.1. Assume (H}) and (Ag) hold. If one of the following conditions
is satisfied, then for every J, system (1.3) has a unique equilibrium that is globally

asymptotically stable:
w+wT
)\mam {_;} < 17

1>

(@) p2(W)

w+wT " wij + wii
w0 *“(2 )éf?-aé‘ wor Y Pl ) <o
SN
T J#i

n
A
(i5i) w(Q)= max | dii + ; lg5il | <1
JF

The outline of the proof of the above theorem is as follows. First, by the same
argument as in the proof of Theorem 2.2, we know that for every input J, (1.3) has an
equilibrium »*. Then, by using a Liapunov function similar to that used in Matsuoka
[20, (16)], namely,

Vi) =30 [ lolot u) - u(u)] s,

where © = (z1,22,...,7,)7 and 2 = u — u*, we can arrive at the conclusion of
Theorem 3.1 (i). Theorem 3.1 (ii) is just a corollary of Theorem 3.1 (i) because every
eigenvalue of a symmetric matrix is not greater than any measure of the matrix.
Theorem 3.1 (iii) can be proved by employing another Liapunov function, namely,

V(@) =Y el

i=1
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where z is as above.

The above conditions in Theorem 3.1 (ii) and (iii) are easily computable, and they
have the merit that negative diagonal entries of the connection matrix A contribute
to the global convergence of the system (1.3) through the w;; and g;; terms.

From now on, we will consider (1.5) with 7 = max;<; j<, 7;;. In order to apply
the theory of monotone dynamical systems, we need some definitions. Let the partial
order < on R™ be the usual componentwise ordering. The partial order < on C' =
C(]—m,0], R™) will mean that ¢(0) < ¥(0) for § € [-7,0]. The inequality z <y (z <
y) between two vectors in R™ will mean that z <y and z; < y; for some (all) i. The
inequality ¢ < ¥ for functions in C' will mean that ¢ < ¢ and ¢ # ¥ while ¢ < ¢
will mean that ¢(0) < 1(6) for all § € [—7,0]. The ordering assigned to C' as above
is called the standard ordering for C.

Now, when we come to the delayed system (1.5), the negativity of diagonal entries
and 7;; > 0 would make (1.5) fail to be monotone in the sense of Smith [23] under
the standard ordering in C'. Motivated by Smith and Thieme [24], we equip C with
another nonstandard ordering in C' and find conditions under which the semiflows
generated by the solutions of (1.5) are strongly order preserving in terms of this
nonstandard ordering in C.

Let D be an n X n essentially nonnegative matrix, that is, D + A is entrywise
nonnegative for all sufficiently large A. Define

KD:{zZ)ECm/}zO and eftDz/J(t)zestw(s), —rgsgtgo}.

It is easy to see that Kp is a cone in the space C, that is, Kp is closed in C,
closed under addition and under scalar multiplication by nonnegative scalars and
Kp((—Kp) = 0. Moreover, Kp is a normal cone, which means that every order
interval is a bounded set in C. Now as a cone in C';, Kp induces a partial order on
C, denoted by <p, in the usual way, namely, ¢ <p 9 if and only if » — p € Kp. We
write ¢ <p 9 to indicate that ¢ <p 1 and ¢ # 1.

The following theorem is from Smith and Thieme [24, Theorem 3.5 and Lemma
3.7].

THEOREM 3.2. Consider the functional differential equation

dzx(t)

(3.1) o

Zf(ﬂUt),

where f € CY(C, R™). Assume that the following conditions hold:
(SM') For every ¢ € C and every v € Kp with 1) >> 0,

df (¢) — D(0) > 0.

(I'p) If p € C, ¥ € Kp and P is a (nonempty) proper subset of {1,2, ... ,n}
such that 1, > 0 forp € P and ;(0) =0 for j & P, then for some k ¢ P

(df (¢)¢)x > 0.

Then, the semiflow ® generated by the solutions of (3.1) is strongly order preserving
on C in terms of the ordering <p.
Now, we take D = diag(ds,... ,d,) with

di:—bi—ri, i=1,2,...,n,
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where r; > 0, ¢ = 1,2,...,n are constants to be determined later. Then, D is
essentially nonnegative. Recall that for (1.5), we have

(3.2) fi(@) = —bii(0) + Zaijgj(éﬁj(*ﬂ'j)) +Ji, i=1,2,...,n.

j=1
Let ¢ € C'and ¢ € Kp. Then
(df (@)¥): — (DY(0)):

= —bii(0) + Y aij g (d5(—7ij)) i (—7i5) + (bi + 7:)bi (0)

j=1
= rit0i(0) + augy (b (—7ia) )i (—7i) + Y @i (5 (—7ij))bs (—7i5)-
J#i
But ¢ € Kp implies that 1(0) > e *P(s) for all s € [-7,0], and hence
$i(0) > €Ty (—7y5) = €T g (— 7).
Therefore, for ¢ € C and ¢ € Kp we have
(df (9)¥): — (D(0))s

> (We*m(b”r”) + angé(ﬁﬁz‘(*m))) Vil=mia) + Y aiig5(65(=7i) v (= ij)-
J#i
Since A is irreducible, it follows that (SM,) holds for f given by (3.2) provided a;; > 0
for i # j and

(3.3) e T (0t > lai;|B; for all ¢ with a; <O.
But (3.3) is satisfied if and only if

In G
(34) T < ————= for all i with a; <O0.

bi + Ti
Now, if we take r; = e|a;;|5;, then (3.4) becomes

1 . .

(3.5) Tii S m for all 7 with Az < 0.

Hence, (SM,) holds provided a;; > 0 for i # j, and those 7;; corresponding to negative
a;; are sufficiently small (e.g., as estimated by (3.5)).

We next verify that (I,) also holds for f given by (3.2). To this end, let ¢ €
C, ¢ € Kp, and P be a proper subset of {1,2,... ,n} such that ¢, > 0 for p € P and
¥;(0) = 0 for i ¢ P. Then, for each i & P, ¢;(—7;;) = 0, since ¢;(—73;) < e%iTiiah;(0).
Since A is irreducible, there is some 7 ¢ P such that

(df (9)¥)i = —bihi(0) + Z aij 95 (D5 (=Tij) i (—Tij)
j=1
= aijgj(¢;(—7ij) i (=75)
i
=3 aig (65 (— 7)) (—7i5)

jeP
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is positive provided a;; > 0 for j # i. Thus (I,) is also satisfied if a;; > 0 for i # j.

Combining the above arguments with 3.2 gives the following.

PROPOSITION 3.3. Assume that a;; > 0 for i # j and that (3.5) is satisfied.
Then, the semiflow ® generated by the solutions of (1.5) is strongly order preserving
on C in terms of the ordering <p.

Now we are in the position to state and prove our theorem for the global conver-
gence of model (1.5) with A irreducible.

THEOREM 3.4. Assume that a;; > 0 for i # j, and the diagonal delays T cor-
responding to negative a;; are sufficiently small (say, satisfy (3.5)). Then, under the
conditions of Theorem 3.1, system (1.5) has a unique, globally attractive equilibrium
for every J.

Proof. As mentioned at the beginning of this section, under the conditions of
Theorem 3.1, system (1.5) has a unique equilibrium u*. It is easy to see that solutions
of (1.5) are bounded due to (Az). Combining the above facts with Proposition 3.3
and the global convergence theorem in Smith [23, p. 18, Theorem 3.1], we know that
u* is globally attractive. a

The above result shows that the off-diagonal delays 7;; have no effect on the order
preserving property of the semiflow generated by the solutions of (1.5), provided that
the off-diagonal connection weights are positive. Furthermore, from the argument
before (3.3), we can see that if a;; is nonnegative, then the corresponding delay 7;; of
any magnitude is also “harmless” for this purpose. For negative a;;, (3.5) gives an
estimate for the “smallness” of the corresponding 7;.

REMARK 3.1. If every cycle of length > 2 in the digraph corresponding to matriz
A is positive, then there ezists a signature matriz S so that SAS has all off-diagonal
entries > 0 (see, e.g., Bélair, Campbell, and van den Driessche [3]), and thus Theorem
3.4 is applicable by the transformation w — Su to (1.5).

The following example illustrates Theorem 3.3.

ExaMPLE 3.1. Consider an example of network (1.4) described by

du(t) 1 0 -z 3 tanh 2us (t — 7)
dt:_(o 1>U<t>+< )

i 3 tanh 2us(t — 1)

Then none of (2.1), (2.2), (2.9) is satisfied, but all the conditions in Theorem 3.1 are
satisfied. Thus, by Theorem 3.4, u* = 0 is globally attractive for 0 < 1T < ﬁle Linear
stability analysis (see, e.g., Bélair, Campbell, and van den Driessche [3, Section 2])
shows that u* = 0 is locally stable for this range of 7. Thus, u* =0 is in fact globally
asymptotically stable for 0 < T < ﬁ

In conclusion, we note that the theory of monotone dynamical systems was also
used by Olien and Bélair [22, section 4] in a two-neuron Hopfield network with specific
activation functions that satisfy hypotheses (H;) and (Hz). For this two-neuron model
with a;; > 0, assuming that aj2a2; > 0, the system is cooperative and irreducible; thus
there is generic convergence to a stable equilibrium (Olien and Bélair [22, Theorem
1 and Corollary 4]). Our Theorem 3.4 is for global convergence and gives additional
conditions on the matrix A for the unique equilibrium to be globally attractive (for
all delays if a;; > 0, and for small 7;; if ay; < 0).

Acknowledgments. We thank the referees for their suggestions that led to an
improvement of some results.
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