
Assessment of Amplified Parkinsonian Speech
Quality Using Deep Learning
Amr Gaballah, Vijay Parsa, Monika Andreetta, and Scott Adams

Western University, London, Ontario, Canada
Emails: {agaballa, vparsa, mschel, sadams}@uwo.ca

Abstract—In this paper, deep neural networks (DNNs) are
applied to features extracted from Parkinsonian speech record-
ings to predict their perceived quality. This procedure was also
used to benchmark the electroacoustic characteristics of speech
amplifiers used by people afflicted with Parkinson Disease (PD).
Speech recordings were obtained from 11 PD subjects and 10
normal controls, with and without the assistance of 7 different
speech amplifiers, and their quality was assessed subjectively
by normal hearing listeners. Mel-frequency and Gammatone
frequency cepstral coefficients (MFCCs and GFCCs respectively)
and their first order derivatives were extracted as features,
and given as input to the DNN. Two optimizers were used to
train the neural network, namely stochastic gradient descent
(SGD) and Adam optimizers. The paper also shows the effect of
feature reduction in enhancing the performance of the objective
predictors. Experimental results showed that a trained DNN
with reduced set of GFCC features outperforms other objective
metrics in terms of correlation with the subjective measures.

I. INTRODUCTION

The worldwide rise in the mean population age has led
to an increase in the prevalence of neurological disorders
such as the Parkinson’s Disease (PD) [1]. PD causes the
production rate of dopmaine, which is a chemical substance
responsible for the control of the human motor system, to
drop down [1]. As a result of that, symptoms such as rigidity,
slowness of movement, difficulty with walking, and speech
impairments begin to appear [1]. PD speech is commonly
characterized by monotonous pitch and loudness, short rushes
of speech, imprecise articulation, overall increased speech rate,
and lowered overall loudness [2]. Reduced speech intensity,
termed hypophonia, is a result of lessened respiratory support
caused by increased rigidity of the chest wall and abdomen [3].
Hypophonia reduces the clarity and the intelligibility of PD
speech, especially in noisy environments with inferior Signal-
to-Noise Ratios (SNRs) [3], [4].

Amplification devices are typically used to increase the
voice intensity and loudness with concomitant improvement in
PD speech intelligibility. Moreover, amplification devices de-
crease vocal effort by PD speakers and enhance self-perception
and correction of their speech [4]. SNR, frequency response,
Total Harmonic Distortion (THD), etc. are all parameters that
quantify the performance of the amplifiers, but they do not
provide information on the perceived intelligibility and quality
of the amplified PD speech. Thus, systematic benchmarking
of these devices in a perceptually relevant manner is important
from both device development and clinical viewpoints [4].

The focus of this paper is on the assessment of the impact
of amplification devices on perceived PD speech quality.

In general, speech quality is assessed subjectively, wherein
a group of people listen to the speech recordings and evaluate
each recording on a rating scale. The so-called Mean Opinion
Score (MOS) is the average of these ratings that designates the
perceived quality of the recording [5]. While the subjective
ratings have high face validity and can be considered the
gold standard, they are also time- and resource-intensive
[5]. Thus objective, instrumental metrics that estimate the
perceived quality without the need for a human intervention
are attractive [5]. Such objective indices are routinely used
in telecommunications and audio engineering fields, but are
sparsely used in disordered speech quality estimation. In
particular, the application of objective speech quality metrics
in predicting the perceived quality of amplified PD speech has
not been investigated before. As objective metrics commonly
embody many features, a need for a regression technique
that transforms these many features into a single numerical
predicted quality score is needed. In this paper deep learning
is used for such purpose.

In the recent years, deep neural networks (DNNs) have
received a significant attention as an authoritative supervised
machine learning techniques for regression and classification.
As a machine learning algorithm, it is widely used in sev-
eral applications such as image classification and processing,
natural language processing (NLP), and speech recognition
[6]. This paper exploits the recent advances in deep learning
regression techniques wherein a set of features extracted from
PD speech recordings are mapped to their perceived subjective
quality scores using two different optimizers. The paper is
organized as follows, in Section II, a brief description of
the objective evaluation procedure is given, then Section III
gives a summarized introduction of deep learning and some
of its optimization techniques that are used in this paper.
Afterwards, the methodology followed throughout this work
is presented in Section IV. The obtained results are discussed
in Section V. Finally, Section VI concludes this paper, with a
brief description of future work.

II. OBJECTIVE EVALUATION

Objective evaluation methods can be broadly classified into
two categories, intrusive and non-intrusive methods. Intrusive
techniques need a clean reference signal to compare with
the measured signal in order to calculate the metric. In the
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context of PD speech evaluation however, a clean reference
signal is unavailable. As such, objective estimates of PD
speech intelligibility, quality, and loudness must rely on “non-
intrusive” techniques [5]. A typical non-intrusive metric ex-
tracts a number of features from the speech recording, and the
subsequent features vector is mapped to a predicted quality
score using a features’ mapping technique. The following
subsections present a brief description of two of commonly
used feature sets, while the next section describes the deep
learning-based feature mapping in greater detail.

A. Mel Frequency Cepstrum Coefficients (MFCC)

MFCCs are derived by transforming the short-term speech
spectra into the nonlinear mel scale. The input speech signal
is framed where each frame is 256 samples each, then each
frame is windowed by a Hamming window and transformed to
the frequency domain using the Fast Fourier Transform (FFT).
The narrowband spectra are processed by the triangular mel-
scale filterbank which can be expressed as [7]:

𝐻𝑚(𝑘) =

⎧⎨
⎩

0 𝑓𝑘 < 𝑓(𝑚− 1)
𝑓𝑘−𝑓(𝑚−1)

𝑓(𝑚)−𝑓(𝑚−1) 𝑓(𝑚− 1) ≤ 𝑓𝑘 ≤ 𝑓(𝑚)
𝑓(𝑚+1)−𝑓𝑘

𝑓(𝑚+1)−𝑓(𝑚) 𝑓(𝑚) < 𝑓𝑘 ≤ 𝑓(𝑚+ 1)

, (1)

where 𝑓 (⋅) is the list of mel linearly spaced frequencies, 𝑚 is
the filter number, 𝑓𝑘 is the frequency at FFT bin 𝑘. The mel
filterbank is constructed such that there are 13 linearly spaced
and 27 logarithmically spaced filters spanning the 13−6854 Hz
frequency range [8]. MFCCs are then derived by computing
the log of the mel-filtered spectrum and applying the discrete
cosine transform (DCT).

B. Gammatone Frequency Cepstrum Coefficients (GFCC)

The Gammatone filterbank has a better performance in
modeling the auditory filterbank than the mel filterbank; hence,
cepstral coefficients extracted using the Gammatone filter bank
have a better speech recognition performance than MFCCs [9].
In GFCC, the equivalent rectangular bandwidth (ERB) scale is
used. The impulse response of the Gammatone filter is given
by,

𝑔(𝑡) =
𝑎𝑡𝑛−1 cos (2𝜋𝑓𝑐𝑡+ 𝜑)

𝑒2𝜋𝑏𝑡
, (2)

where 𝑓𝑐 is the filter center frequency, 𝜑 is the phase of the
carrier, 𝑎 is the amplitude, 𝑛 is the filter order, 𝑏 is the filter
bandwidth, and t is the time in seconds. The value of the
filter order and carrier phase are set to be 𝑛 = 4, 𝑏 = 1.019
ERB, 𝜑 = 0. Laplace transform and the impulse invariance
method are applied to transform the impulse response of
the Gammatone filter into a discrete time equivalent filter.
Extracted digital filters are applied to the framed speech to
extract the energies of the filter banks [8]. GFCCs are then
computed by applying DCT to the log of Gammatone filtered
spectra.

III. DEEP LEARNING

In deep learning [10], the learning process is divided into
multiple layers where features are extracted from each layer.
Deep learning then uses back propagation method to train
these multilayer architectures and adapt them to extract new
features to minimize the error function. One of the key
characteristics of deep learning is that there is no need of
a human intervention to design these layers of neurons, since
they are learned from the input data solely.

DNN extracts hidden layers based on input samples applied
to the mapper. The output of each neuron in every hidden layer
is applied to an activation function to reduce the summation
effect of the neurons’ values. In this paper, the 𝑅𝑒𝑙𝑢 function
is applied to all the neurons outputs in the hidden layers, while
the 𝑡𝑎𝑛ℎ function is applied to the last output layer. Assuming
that the input features are 𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛 , 𝑋 is 𝑛×𝑚 features
matrix, where 𝑛 is the number of features and 𝑚 is the number
of training samples, 𝑊 1, 𝑊 [2], ⋅ ⋅ ⋅ , 𝑊 [𝑙] are the weights of
the hidden layers, and 𝑏1, 𝑏[2], ⋅ ⋅ ⋅ , 𝑏[𝑙] are the bias correcting
vectors, the corresponding values are calculated as follows [6]

𝑍 [𝑖] =𝑊 [𝑖]𝐴[𝑖−1] + 𝑏[𝑖] (3)

𝐴[𝑖] = 𝑔
(
𝑍 [𝑖]

)
, (4)

where 𝑖 is the layer number that ranges from 1 to 𝑙, and
𝑔 (⋅) is the activation function. The value of 𝐴[0] equals to
the input features matrix 𝑋 , while the value of 𝐴[𝑙] equals
to the objective scores vector 𝑦. In this paper, the least mean
square error (LMSE) is calculated as [6]:

𝐽 =
1

2𝑚

∑
(𝑦 − 𝑦)2, (5)

where 𝐽 is the mean square error through 𝑚 number of
samples, 𝑦 is the subjective score or label vector, and 𝑦
is the neural network output or the objective score vector.
After calculating the error function, backward propagation is
applied through the neural network from the output layer to
the input layer to modify the network weights, which is called
optimization, and this process is iterated to reduce the cost
function in Eq. (5). The stochastic gradient descent backward
propagation can be expressed as:

𝑊 [𝑖] =𝑊 [𝑖] − 𝛼
𝛿𝐽

𝛿𝑊 [𝑖]
, (6)

where 𝑖 is the layer number. After modifying the weights, the
forward and backward propagations are iterated to minimize
the cost function. The learning rate 𝛼 must be chosen carefully
so that the output of the cost function does not overshoot its
global minimum.

The Adaptive Momentum Estimation (Adam) modifies the
weights using the first and second moment of gradients and
can be expressed as,

𝑊 [𝑖] = 𝑊 [𝑖] − 𝛼
𝑉

[𝑖]
𝛿𝑊√

𝑆
[𝑖]
𝛿𝑊 + 𝜖

, (7)
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where 𝑉
[𝑖]
𝛿𝑊 is the first gradient moment, 𝑆[𝑖]

𝛿𝑊 is the second
gradient moment, and 𝜖 is a correction factor [11].

IV. METHODOLOGY

A. Subjective Database

Subjective data were collected in the Speech Movement Dis-
orders Laboratory at the University of Western Ontario after
obtaining ethics approval from the University’s health sciences
research ethics board [12]. Eleven PD subjects with an age
range of 58 to 80 years participated in the study. Moreover,
recordings from 10 normal subjects were collected as control
data. Each subject gave recordings with the presence of 4
acoustic scenarios, two of these scenarios incudes repeating
a sentence with and without the presence of 65 dB SPL noise,
while the other two are to perform a natural conversation with
the same noise codtions [12]. Since the goal of the study
was to assess the performance of speech amplifiers, the above
four speech tasks were carried out with no amplification, and
with seven amplification devices: Addvox (Addvox, Waltham,
MA), Boomvox (Griffin Laboratories, Temecula, CA), Chat-
terbox (Connections Unlimited, Nashville, TN), Oticon Amigo
(Oticon, Smørum, Denmark), Sonivox (Griffin Laboratories,
Temecula, CA), Spokeman (KEC Innovations, Singapore),
and Voicette (Luminaud Inc., Mentor, OH) [4]. The speech
recordings were played back to 10 normal hearing listener,
and a quality rating between 0 and 1 was obtained. The quality
ratings served as labels for the dataset which was separated
randomly into two groups. The first group contained 80% of
the data and served as a training dataset, while the remaining
20% of the database were used to test the performance of the
obtained neural network.

B. Feature selection and reduction

A higher dimensionality of the feature vector may cause
overfitting . In such situations, extracted number of features
for each metric must be reduced before applying to the neural
network to avoid overfitting. To accomplish this goal, the
correlation between each feature group and the subjective
scores is obtained, and then, the features are rearranged
according to their correlation values. Subsequently, a Monte
Carlo algorithm is applied to extract the minimum number
of features that minimizes the cost function for each of the
training and the test datasets. This algorithm takes the the
rearranged features’ matrix and the subjective scores vector
as two inputs. Afterwards, the data is split into two groups,
training and test data set, where they are selected randomly.
The training dataset contains 80% of the data, and the test
dataset contains 20%. The algorithm applies linear regression
to a subset of the datasets to find which subset achieves the
minimum square error (MSE) with the subjective scores.

C. Deep neural network (DNN)

A unified structure of DNN is used for each of GFCC and
MFCC regression. The first layer was the input layer which
consisted of 11 features. Next to that, 2 hidden layers are
deployed, where the first hidden layer is formed of 25 neurons

while the second layer contains 12 neurons. Finally, the output
layer has 1 neuron which represents the objective quality of
the speech signal. It is noticed that in hidden layers, a small
number of neurons were used to avoid overfitting of the model.

V. RESULTS

By applying the feature selection and reduction method
mentioned in Subsection IV-B, it was found that MFCC
features can be reduced from 26 features to 11 features only,
and GFCC features are cut from 60 features to 11 features.
Fig. 1 shows that a subset of GFCC 11 features of achieves
the minimum MSE for the test dataset.
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Fig. 1. Mean square error for GFCC training and test datasets

Table. I presents the correlation values between the sub-
jective scores and objective scores for each DNN regression
algorithm. It can be noticed that the Adam optimizer has
a much higher performance than SGD with both MFCC
and GFCC feature sets. The second observation comes from
the fact that GFCC neural networks have higher correlation
results with the subjective scores more than MFCC networks.
Moreover, GFCC networks are prone to less overfitting than
MFCCs. The better performance of GFCC feature set is in
line with ASR research. GFCCs appear to capture perceptually
salient features perhaps due to their better approximation of
the auditory filterbank characteristics. To reduce overfitting
and to enhance correlation with subjective measures, MFCCs
may require a greater number of training samples. Finally,
it is noticed that reducing the number of features enhanced
the correlation results of MFCC when the optimizer used was
SGD, however, it did the opposite when the feature reduction
was applied on networks with Adam optimizer. On the other
hand, GFCC correlation values did not change significantly
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TABLE I
CORRELATION VALUES OF OBJECTIVE METRICS.

Metric
Correlation Correlation

(Training Dataset) (Test Dataset)
MFCC-SGD 0.52 0.52

GFCC-SGD 0.70 0.70

MFCC(Red)-SGD 0.67 0.67
GFCC(Red)-SGD 0.80 0.78

MFCC-Adam 0.95 0.75
GFCC-Adam 0.83 0.80

MFCC(Red)-Adam 0.98 0.63
GFCC(Red)-Adam 0.81 0.81

TABLE II
AVERAGED SUBJECTIVE AND OBJECTIVE SCORES PER DEVICE

Metric
Averaged subjective Averaged objective

score score
ADDvox 0.45 0.41

BoomVox 0.60 0.60

ChatterVox 0.47 0.40
No device 0.40 0.34

Oticon 0.52 0.53
SoniVox 0.45 0.44

Spokeman 0.39 0.42
Voicette 0.49 0.50

when feature reduction was applied to its neural networks,
indicating more robustness.

Fig. 2 shows the plot of the subjective against the objective
scores that were obtained when applying the Adam optimizer.
The DNN with reduced GFCC feature set resulted in the
highest correlation and less dispersion with the subjective
scores.

Table. II shows the averaged values for all the test dataset
quality scores for subjective and reduced GFCC neural net-
work metric per device. There is a high similarity between
objective metric and subjective metric scores. As such, it is this
objective metric is a promising candidate for benchmarking
speech amplifiers intended for use with PD patients.

VI. DISCUSSION & CONCLUSIONS

MFCC and GFCC objective metrics were applied to deter-
mine the quality scores of recordings from 11 PD subjects and
10 normal people. It was shown that using Adam optimizer
for regression is more efficient than using SGD optimizer.
The results showed that GFCC has a better performance in
evaluating the quality of Parkinsonian speech than MFCC met-
ric. There is scope for improvement, however, as the highest
correlation obtained for the test dataset was 0.81. Perhaps this
can be achieved by increasing the size of the training dataset.
As collecting more recordings from PD subjects may not be
feasible, a potential alternative is transfer learning wherein a
pre-trained neural network that has been derived for speech
recognition applications is incrementally adapted to predict
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Fig. 2. Objective scores obtained by Adam optimizer.

amplified speech quality. This idea will be investigated as an
extension to this work in future research.
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