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Objective and Subjective Speech Quality
Assessment of Amplification Devices for

Patients With Parkinson’s Disease
Amr Gaballah , Student Member, IEEE, Vijay Parsa, Member, IEEE, Monika Andreetta, and Scott Adams

Abstract— This paper investigated subjective and objec-
tive assessment of Parkinsonian speech quality. Speech
stimuli were recorded from 11 Parkinsonian and 10 age-
matched normal control participants under different ampli-
fication and environmental conditions. Quality ratings of the
recorded stimuli were obtained from naïve listeners. For
objective assessment, feature vectors were derived from
the speech recordings based on temporal, spectral, and/or
cepstral parametrization. These feature vectors were sub-
sequently mapped to the predicted quality scores through
several regression methods, including support vector
regression, Gaussian process regression, and deep learn-
ing. Analyses of subjective speech quality ratings showed
that Parkinsonian speech quality was significantly poorer
than control subjects’ speech quality, and that the ampli-
fication devices differentially affected perceived quality of
Parkinsonian speech. Objective analyses revealed disparity
in performance among feature vectors and mappers, with
some feature vector and mapper combinations exhibiting
statistically similar correlations with subjective ratings.
A set consisting of cepstral, spectral, and modulation
domain speech features when combined with Gaussian
process regression or deep learning resulted in the highest
correlation of 0.85 with the subjective data.

Index Terms— Parkinson disease, speech quality, speech
amplifiers, speech analysis, machine learning.

I. INTRODUCTION

PARKINSON’S disease (PD) is the second most common
neurodegenerative disease (the first being Alzheimer’s

disease), with an estimated prevalence of between 1 and 3 per
100 for people ages 65 years and older [1]. Worldwide, studies
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have shown that among a group of 100, 000 persons from all
ages, 10 to 20 cases are diagnosed with PD every year, and
this number increase in the 65 − 85 year old age group to
around 150 − 300 persons [2]. There is therefore a significant
research and clinical interest in effective diagnosis, treatment,
and rehabilitation options for PD [1].

Statistics show that nearly 90% of people impaired with PD
develop voice and speech disorders during the course of their
disease [2]. PD speech is often characterized with reduced
voice volume (hypophonia); harsh voice quality (dysphonia);
imprecise consonant and vowel articulation due to the reduced
range of articulatory movements (hypokinetic articulation);
and a tendency of these movements to decay and/or accelerate
towards the end of a sentence [2]. Hypophonia is considered
the most frequent speech symptom in PD [3]. It is hypoth-
esized that hypophonia may be attributed to a sensorimotor
deficit in the self-perceived loudness of the individual’s own
speech [4]. Hypophonia can make it very challenging for
listeners to understand individuals with PD, particularly
in conditions with background noise. Previous studies
have demonstrated abnormally reduced Speech-to-Noise
Ratios (SNR) and reduced intelligibility when individuals with
PD are conversing in moderate levels (65-70 dB SPL) of multi-
talker noise [5], [6]. Furthermore, imprecise articulation and
abnormal speech rate lead to a blurring of speech components,
which also impact the understanding of PD speech [7]. While
speech intelligibility is an indicator of how well the message
carried by the speech stimulus was understood (e.g., how
many words in a sentence were correctly interpreted), speech
quality is a multi-dimensional perceptual phenomenon that
encompasses attributes such as clarity, pleasantness, natural-
ness, etc. PD speech, even when intelligible, may be perceived
as abnormal given its harsh and breathy qualities [7].

There are many ways to treat speech impairments
in PD; of these techniques three methods receive the most
attention: the use of perceptually-based behavioral speech
therapy, instrumentally-based biofeedback therapy, and pros-
thetic or assistive speech devices [8]. These treatment pro-
cedures aim to increase the speech intensity, improve the
speech prosody, reduce rapid speech, and increase articulatory
mobility and precision [8]. Although the first two methods
have proved to be effective in the treatment of PD speech
impairments, they lack the ability to transfer the treatment
outside the clinical environment [9]. In other words, people
impaired by PD show negligible improvements when they
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leave the clinical treatment [9]. This raises the need for a
solution that can be easily transferred outside the clinic, such
that people with PD continue to benefit from the treatment
in their daily life. The third approach comprising of assis-
tive amplification devices provides such a solution to people
impaired by PD.

Amplification devices for PD subjects are catego-
rized among the augmentative and alternative communica-
tion (AAC) devices, which are used to compensate for
impairment and disability patterns [8]. Amplification devices
are used primarily to increase voice intensity and loudness,
which leads to an improvement in the perceived speech
intelligibility [3]. Moreover, when individuals with PD use
an amplification device they may expend less vocal effort
and experience more successful communication with fewer
requests to repeat their messages [3]. Several amplification
devices are commercially available for this purpose. The
electroacoustic performance of these amplifiers is typically
characterized using measures of frequency response, sensitiv-
ity, distortion etc., which are found in the device specification
sheets. While these parameters are useful in basic performance
characterization and quality control, they do not capture the
effects of amplification on perceived intelligibility and quality.
Consequently, there is a need to benchmark the amplification
devices in a perceptually relevant manner when they are used
by people impaired by PD [3].

Andreetta et al. [3] evaluated the performance of seven
amplification devices with PD subjects. Isolated sentences and
unscripted conversation from PD subjects and age-matched
normal controls were recorded in the presence and absence of
background noise, and with and without the use of amplifi-
cation devices. These recordings were later played back to
normal hearing listeners, and their perceived intelligibility
ratings for the recorded stimuli on a scale of 0 - 100 were
collected. Results showed that while all amplifiers enhanced
the perceived intelligibility of PD speech, there was a dif-
ferential effect in that the intelligibility rating for the best
performing amplification device was approximately 30 basis
points higher than the score associated with the lowest ranked
amplifier. Although Andreetta et al.’s study [3] does not report
the perceived quality of amplified PD speech, it does highlight
the need for assessing the amplifier performance in a manner
that relates to speech perception.

While subjective assessment of amplifier sound quality has
high face validity and can be considered as the gold standard,
it is not efficient in terms of time and resources. This weighs in
favor of objective, instrumental assessment of speech quality,
where computational algorithms are used to quantify the
speech quality without requiring the involvement of human
subjects [10]. While such objective metrics are routinely
used for evaluating telecommunication and assistive hearing
devices [10], few studies have applied them to Parkinsonian
speech quality assessment. In the PD research context, a sub-
stantial number of acoustic analysis studies have focused
on the classification of Parkinsonian speech from normal
speech. For example, Al Mamun et al. [11] extracted features
such as shimmer, jitter, and harmonic to noise ratio (HNR)

and trained a deep neural network (DNN) to classify Parkin-
sonian speech based on these features with an accuracy of
97%. Similarly, Benba et al. [12] computed mel-frequency
cepstral coefficients (MFCCs) from the speech waveforms
and employed the support vector machines (SVMs) for dis-
criminating between Parkinsonian and normal speech, with an
accuracy of 90%. The few studies investigating the acoustic
correlates of Parkinsonian speech quality have reported low
correspondence with subjective scores. For example, Jannetts
and Lowit [13] collected recordings of sustained vowel /a/ and
continuous speech from 43 speakers with PD and 10 partici-
pants with ataxia. These recordings were perceptually rated on
grade, roughness, breathiness, and asthenia dimensions by a
trained listener. Acoustic measures extracted from recordings
included Cepstral Peak Prominence (CPP), HNR, and jitter
and shimmer – related measures. The CPP correlated best
with the subjective ratings; however, the absolute correlation
with ratings of more ecologically valid continuous speech
was significantly lower than correlation with sustained vowel
ratings (0.54 vs. 0.86 for the grade or overall quality rating
respectively).

In summary, quality assessment of Parkinsonian speech
is important in evaluating the effectiveness of the clinical
treatment of PD speech impairments, and in characterizing
the impact of assistive amplification devices on Parkinsonian
speech. Existing objective methods of Parkinsonian speech
quality assessment correlate poorly with subjective judge-
ments. This paper investigates several alternative objective
quality metrics and reports new results that show enhanced
prediction of perceived Parkinsonian speech quality. The rest
of the paper is organized as follows: Section. II provides the
methodological details of speech recordings and their subjec-
tive quality evaluation, feature extraction, and mapping of the
computed features to the predicted quality score. Results from
subjective and objective analyses are presented in Section. III.
Finally, Section. IV draws conclusions from this research and
discusses future work.

II. METHODS

A. Speech Recordings and Subjective Evaluation

Subjective data collection procedures outlined in this paper
received ethics approval from Western University’s health
sciences research ethics board.

This study included 11 individuals with mild to moder-
ate hypophonia and mild to moderate idiopathic PD (aged
58-80 years; M = 70.9 years; 10 men, 1 woman). The average
number of years since diagnosis of PD was 6.7 years (range =
1-16 years). Participants with PD were tested approximately
1 hr after their regularly scheduled anti-Parkinson medica-
tion. Two of the participants with PD were not on anti-
Parkinson medications, whereas all other participants were
on levodopa-carbidopa medication. None of the participants
with PD had been previously prescribed a speech amplifica-
tion device. The participants had no prior history of speech,
language, or hearing problems. The Mini Mental State Exam-
ination [14] was used to exclude participants with dementia
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(cutoff score = 26/30). All participants with PD passed a
bilateral 30 dB HL hearing screening at 500, 1000, and
2000 Hz. None of the participants with PD had received
surgical treatment for their PD (i.e. deep brain stimulation).

Speech recordings were collected from eleven PD subjects
and ten age-matched normal controls in different environmen-
tal and amplification conditions [3], [8]. The control group
had an age range of 59 − 86 years (mean = 71.4 years).
Both PD and control speakers were seated in a sound-treated
booth and completed two speech tasks in two environmental
conditions: unscripted conversation in quiet and in the pres-
ence of background noise, and reciting a given sentence in
quiet and noisy environments. For the sentence recordings, the
subjects repeated a sentence consisting of 5 to 15 words, which
was selected randomly from a database that contains 1100
sentences [15]. For speech recordings in noisy environment,
multi-talker babble was generated from two loudspeakers that
were placed at a constant distance from the subject. The
background noise level was calibrated to 65 dB SPL at
the recording microphone, which was placed 4 m from the
subject. The examiner was at a fixed interlocuter distance of
1.5 meters throughout the experiment. The participants
received no feedback about their speech during the experiment.
All speech recordings were sampled at 16 kHz and quantized
at 16 bits/sample.

The aforementioned speech recordings were obtained with
no amplification, and with the aid of seven different amplifi-
cation devices: Addvox (Addvox, Waltham, MA), Boomvox
(Griffin Laboratories, Temecula, CA), Chatterbox (Connec-
tions Unlimited, Nashville, TN), Oticon Amigo (Oticon,
Smørum, Denmark), Sonivox (Griffin Laboratories, Temecula,
CA), Spokeman (KEC Innovations, Singapore), and Voicette
(Luminaud Inc., Mentor, OH) [8]. Thus, a database of
21(11 PD + 10 control speakers) ×2 (conversation and
sentence speech tasks) ×2 (quiet and noisy environments) ×8
(amplification options) = 672 speech recordings was created
for this study.

Ten normal hearing naive listeners with an age range of
21 − 25 (mean = 22.7 years) evaluated the quality of each
of the 672 recordings. For the conversation samples, a single
5 to 15 word sentence was extracted for the speech quality
rating. Listeners were asked to rate the perceived quality of the
recording on a visual analogue scale, with 0 and 100 represent-
ing the lowest and highest sound quality scores, respectively.
For reliability purposes, 20% of the sentences were re-rated
by the listeners. Intra-rater and inter-rater reliability, based on
correlations (ICC), was found to be 0.90 and 0.97 respectively.

B. Features & Their Computation

As the focus is on objective estimation of continuous speech
quality, traditional measures such as jitter, shimmer, and HNR
were not considered. The CPP measure was included in this
investigation as it showed promise in earlier studies with
Parkinsonian speech [13]. In particular, the smoothed CPP
value was computed from each speech recording following
the algorithm given in [16]. In addition to the CPP, speech

signal parametrization through filterbank analyses, modulation
domain analyses, and Linear Prediction (LP) analyses was
also explored, computational details of which are given in the
following subsections.

1) Filterbank-Based Features: The MFCCs are popularly
used as features in speech recognition systems [17], and have
been shown to perform well in objective speech quality predic-
tion [18]. The computation of MFCCs followed the procedure
used in automatic speech recognition (ASR) research [17]. The
speech signal was segmented into frames of 256 samples, with
a frame overlap of 100 samples. The power spectrum of each
frame was then obtained after multiplying with a Hamming
window. The triangular mel filterbank was applied to the
frame power spectra. In this paper, 40 filters constituted the
mel filterbank, where the first 13 filters were linearly spaced
and the last 27 filters were logarithmically spaced [17]. The
log filterbank energies were decorrelated using the discrete
cosine transform (DCT) and the lower 13 coefficients were
retained [12], [17]. The frame-averaged MFCCs and their first-
order time differences (“delta” values) comprised the final
MFCC feature set.

In addition to the MFCCs, cepstral coefficients extracted
using the Gammatone filterbank were also utilized as a sepa-
rate feature set. The Gammatone filterbank better approximates
the auditory filterbank in comparsion to the mel filterbank.
As such, the cepstral coefficients extracted using the Gam-
matone filterbank have been shown to produce better speech
recognition performance than MFCCs [19]. The computa-
tion of Gammatone frequency cepstral coefficients (GFCCs)
followed the same steps as that of MFCC, except the mel
filterbank was replaced by the Gammatone filterbank, which
was generated using Malcolm Slaney’s auditory toolbox [20].
Following Shao et al.’s [19] ASR research, 30 of the frame –
averaged lower GFCCs and their first-order time differences
were included in the GFCC feature set.

2) Modulation-Based Features: The speech-to-reverberation
masking ration (SRMR) is an objective technique that was
developed by Falk et al. [21] to measure the intelligibility of
reverberant speech. The authors assume that the change of
slow temporal envelope modulations provides a useful objec-
tive estimation of speech quality and intelligibility. It is known
that clean speech has temporal envelopes with frequencies
ranging from 2 − 20 Hz, with peaks at around 4 Hz which
represent the syllabic rate of natural speech [21].

In this method [21], the speech signal is applied to a
23-channel Gammatone filterbank with center frequencies
ranging from 125 Hz to half the sampling rate. Hilbert
transform is then applied to the filterbank outputs, to extract
the temporal envelope in each channel. These envelopes have
frequencies that range between 0 to 128 Hz. At this point,
each envelope is filtered into eight overlapping modulation
bands, with center frequencies ranging from 4-128 Hz. Finally,
SRMR is computed as a ratio between the energy stored
in the first four filters, which contain most of the speech
energy, and the last four filters, which contain the background
noise [21].
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Another measure based on modulation-domain analysis
is Modulation Area (ModA) parameter. There are some
similarities between ModA and SRMR [10]. While SRMR
depends on calculating the ratio between the energy in the
lowest temporal bands and the highest temporal bands, ModA
accommodates the reality that reverberation smears the speech
signal envelope, which will lead to a decrease in the modu-
lation area. Unlike SRMR, the speech signal is decomposed
into only 4 filters, and then Hilbert transform is applied to
derive the band-specific temporal envelope. Each envelope
is subsequently down sampled to 20 Hz, then processed
through a 1/3 octave filterbank with center frequencies ranging
between 0.5 – 8 Hz. The filterbank output energies were then
used to derive the area under each acoustic band, and then
those areas are averaged to produce the ModA metric [22].

3) Linear Prediction – Based Features: We followed
the LP-based feature extraction methodology in Low
Complexity Quality Assessment (LCQA) proposed by
Grancharov et al. [23]. Each speech recording was segmented
into 20 ms non-overlapping frames, and an 18th order LP
model was computed for each frame. The LP model parame-
ters were then used to calculate the frame-wise spectral flat-
ness, the excitation variance, the signal variance, the spectral
centroid, and the spectral dynamics (see Grancharov et al. [23]
for computational formulae). These five quantities together
with their first order differences constituted the 10-dimensional
parameter vector per frame [23], [24]. The statistical properties
of these parameters across the entire sentence (viz. mean,
variance, skewness, and kurtosis) resulted in the final 40 × 1
LCQA feature vector for each speech recording [24].

C. Feature Mapping

While SRMR, ModA, and CPP are single numbers that
represent the predicted speech quality, the MFCC, GFCC,
and LCQA are multi-dimensional feature vectors. Mapping
algorithms aim to generate a function that assimilates the
multi-dimensional feature vectors to match the subjective
scores. To express this mathematically, we have [25]:

y = f (θ, X) + b, (1)

where θ represents the parameters and functions associated
with the feature mapper, X is the feature matrix that has size
m × n, m is the number of training samples, n is the size of
the feature vector, y are the subjective scores corresponding to
the training samples, and b is the prediction error. Commonly
used feature mappers include linear regression (LR), the sup-
port vector regression (SVR) [26], and the Gaussian Process
Regression (GPR) [27].

Recent developments in machine learning for classification
and regression have focused on deep learning. In deep learn-
ing [28], the learning process is divided into multiple layers
where features are extracted from each layer. Deep learning
then uses the back propagation method to train these multilayer
architectures and adapt them to extract new features to mini-
mize the error function. One of the key characteristics of deep
learning is that there is no need for a human intervention to

design these layers of neurons, since they are learned from the
input data alone. Deep neural networks (DNNs) have proved
to be a state-of-the art tool in speech recognition, and hence,
they have been investigated in this research. In this research,
adaptive moment estimation (ADAM) optimizer was used in
the learning stage; more details about ADAM optimizer can
be found in [29], [30]. The DNN structure used in this paper
had four layers: (a) the input layer which intook the feature
vectors; (b) two hidden layers where the first hidden layer was
formed of 25 neurons while the second layer contained 12
neurons; and (c) the output layer had 1 neuron which resulted
in the predicted quality of the speech signal under test. It is
pertinent to note that the number of hidden layers and neurons
per layer were kept small to avoid overfitting of the model.

The features extracted from the 672 speech recordings and
their corresponding subjective quality scores were divided into
two sets, with 80% of the speech stimuli comprising the
training dataset and the remaining 20% comprising the test
dataset. This partitioning was done randomly, and the test
dataset was isolated from the training dataset to ensure the
generalization of the machine learning algorithm. Five-fold
cross-validation was performed within the training dataset for
finetuning the parameters and hyperparameters of the feature
mapper.

D. Feature Selection and Reduction

A higher dimensionality of the feature vector may cause
overfitting. In such situations, the feature dimensionality of
the training set must be reduced before applying the machine
learning algorithm to avoid overfitting. To accomplish this
goal, the correlation coefficient between each feature in the
training set and the subjective scores was obtained, and then
the features were rearranged according to their correlation val-
ues from the highest to the lowest. A ten-fold cross validation
procedure was then followed, wherein the training dataset was
randomly split into a training subset and a validation subset for
each fold. The minimum mean square error (MSE) post-fitting
for both the training and validation subsets across the ten
folds was logged as the number of features were varied. The
feature subset that resulted in the lowest difference between
the training and the validation MSE values was chosen as the
reduced model feature set.

III. RESULTS

A. Subjective Results

Fig. 1 displays the averaged speech quality scores for speech
samples collected from control and Parkinson’s subjects in the
four experimental scenarios. The following key observations
can be deduced from Fig. 1: (i) speech from subjects with
Parkinson’s disease received lower quality ratings in compari-
son to control subjects’ speech, (ii) speech quality ratings were
lower in the presence of background noise, and (iii) speech
quality ratings were impacted by the amplification device.
Repeated measures ANOVA was performed on the subjective
speech quality data to assess the statistical significance of
the results, with the speech task (sentences vs. conversation),
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Fig. 1. Averaged subjective speech quality ratings for control and
Parkinsonian speech samples, with the error bars denoting one standard
deviation.

background noise (no noise vs. 65 dB SPL multi-talker
babble), and speech amplification device as the within-group
variables, and the speaker type (control vs. Parkinson’s) as the
between-groups variable [8]. Greenhouse-Geisser corrections
were applied when the sphericity condition, as assessed by
Mauchly’s test, was violated.

ANOVA results showed that there were significant main
effects of the speaker group (F(1, 18) = 25.26, p < 0.001,
η2

p = 0.584), background noise (F(1, 18) = 227.75, p <

0.001, η2
p = 0.927), and device type (F(7, 126) = 37.16, p <

0.001, η2
p = 0.674). There was no significant main effect

of speech task (F(1, 18) = 1.55, p = 0.229, η2
p = 0.079),

indicating that the raters were consistent in judging the talker
speech quality whether it was an isolated sentence or a
sentence extracted from the conversation. There were no
significant two-way interactions between speaker group by
noise (F(1, 18) = 0.002, p = 0.964, η2

p = 0.00), speaker
group by speech task (F(1, 18) = 0.878, p = 0.361, η2

p =
0.046), and speaker group by device (F(7, 126) = 1.30, p =
0.254, η2

p = 0.068), indicating that none of these variables
differentially affected the perceived quality of speech from
control and Parkinsonian subjects. There was a significant
two-way interaction between the device type and noise vari-
ables (F(3.90, 70.21) = 7.80, p < 0.001, η2

p = 0.302).
This interaction stemmed from the differential quality ratings
associated with the ChatterVox device. As can be seen from
Fig. 1, the ChatterVox device received lower quality ratings
than no amplification in quiet conditions (Fig. 1a & Fig. 1b),
but higher ratings in conditions involving background noise
(Fig. 1c & Fig. 1d). Finally, no significant three-way or four-
way interactions were found.

Fig. 2. Spectrograms of selected speech recordings from a Parkinson’s
subject in quiet condition. Panel (a) represents the spectrogram for
“He told the patient to be careful”, and panel (b) represents the spec-
trogram for “Stroll along the banks, look for clues”.

Post-hoc analyses with Bonferroni corrections revealed that
the BoomVox received significantly higher speech quality
rating than other devices, and that there were no statistically
significant differences among the devices with the three lowest
quality scores [8].

B. Objective Results

Fig. 2 displays sample spectrograms associated with speech
samples collected from a subject with Parkinson’s disease
in quiet condition. Fig. 2a displays the spectrogram of an
isolated sentence produced by the subject while utilizing the
BoomVox amplifier. Fig. 2b displays the spectrogram of a
different isolated sentence produced by the same talker, but
with the Spokeman amplifier, which received a poorer speech
quality rating. Visual inspection of these spectrograms reveals
broadband background noise with the Spokeman amplifier.

The subjective scores of speech recordings served as a
reference for benchmarking the objective metrics in this
research. Two figures of merit were used: (a) the Pearson
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correlation coefficient between the true and predicted sub-
jective scores, and (b) standard deviation of prediction
error (SDPE) given by SDP E = σ̂s

√
1 − ρ2, where σ̂s is the

standard deviation of the subjective speech quality scores, and
ρ is the correlation coefficient between the true and predicted
quality scores [31].

1) Unmapped Objective Metrics: As indicated earlier SRMR,
ModA, and CPP report a single number predictive of the
subjective speech quality. As such, no mapping algorithm was
applied to these metrics. Analyses showed that the correlation
coefficient between the SRMR scores and the subjective scores
was only 0.5. However, when averaging the scores per device
and the background noise conditions, the correlation increased
to 0.89. As for the ModA technique, the overall correlation
with the subjective metrics was 0.64, but it reached 0.88
when the scores where averaged per device and background
noise conditions. In the case of CPP, the correlation between
the objective scores and subjective scores was 0.35, and it
reached 0.59 when the scores were conditionally averaged.
Fig. 3 shows the scatter plots between the SRMR and ModA
scores against the subjective scores for the entire database.
The greater dispersion in the scatter plot and the estimator
bias for the poorer quality subjective scores are evident in this
figure.

2) Objective Metrics With Multiple Features: Multiple fea-
tures objective metrics are those metrics in which each has
a group of features to represent the quality of Parkinsonian
speech. As such, a machine learning algorithm has to be
applied to map the feature vector extracted from each speech
recording to the corresponding subjective scores. The feature
vector dimensions for LCQA, MFCC, and GFCC were 40, 26,
and 60 respectively, which were mapped separately using four
learning algorithms viz. LR, SVR, GPR, and DNN.

Table I shows the correlation coefficients between the true
subjective scores and predicted subjective scores through fea-
ture mapping for all feature vector - feature mapping combina-
tions and for both training and test datasets. The corresponding
SDPE values were also included in this table. It can be seen
that the LR method has high overfitting for all the non-reduced
objective metrics because of the gap between the correlation
values associated with the training dataset and the test dataset.
Similar phenomenon can be noted with the MFCC-GPR and
MFCC-DNN conditions. As expected, the SDPE values are
substantially higher for the test dataset in overfitting cases
(e.g., MFCC-DNN).

A number of feature vector-feature mapping combinations
have resulted in similar correlation values for the test dataset.
The Steiger’s Z test [32] was therefore employed to assess
the statistical significance of differences between different
correlation coefficients. Results from this analyses showed that
MFCC-GPR, GFCC-GPR, ad GFCC-DNN performed statisti-
cally similar in predicting subjective scores. Of these, GFCC-
DNN had the lowest difference in the correlation coefficient
between training and test datasets.

3) Reduced Multiple Features Objective Metrics: By applying
the feature selection and reduction method mentioned in
subsection. II-D, the number of features for LCQA, MFCC,
and GFCC were reduced to 7, 16, and 11 respectively. Fig. 4

Fig. 3. Scatter plot between the objective and subjective scores for all the
speech recordings in the database. Data was plotted for the four condi-
tions, viz isolated sentences in quiet and in 65 dB SPL background noise
(labeled SQT (no noise) and SQT (noise) respectively), and sentences
extracted from conversation in quiet and in 65 dB SPL background noise.
(a) SRMR. (b) ModA.

Fig. 4. The normalized mean square error (MSE) between actual and
predicted speech quality scores as a function of the number of GFCC
features. The MSE data for training and validation datasets are shown
separately, and greater separation between these two lines is a potential
indicator of overfitting.

displays the mean square error (MSE) between the true and
predicted subjective speech quality scores for both the training
and the test databases when plotted against the number of
selected features from the GFCC feature vector. As expected,
the MSE for the training dataset continues to decrease, while
the test dataset error decreases until the number of selected
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TABLE I
CORRELATION COEFFICIENTS AND SDPE VALUES BETWEEN OBJECTIVE AND SUBJECTIVE DATA. BOLD CORRELATION COEFFICIENTS

REPRESENT FEATURE VECTOR AND MAPPER COMBINATIONS THAT PERFORMED STATISTICALLY SIMILAR WITH THE TEST DATASET

Fig. 5. Scatter plot between the objective and subjective data using deep learning for the test dataset. The data is plotted for both unreduced and
reduced GFCC and MFCC feature vectors. yf is the vector of obtained scores from the linear regression for the non reduced model, while yr is the
vector of obtained scores from the linear regression of the reduced model. (a) GFCC. (b) MFCC.

TABLE II
CORRELATION VALUES OF THE COMBINED FEATURES METRIC

features become 11. After this point, the test dataset MSE
increases, which means that increasing the number of features
beyond this point will yield to an increased chances of
overfitting. This implied that the selected 11 features will avert
overfitting and potentially lead to better results.

The last four columns in Table I show the correlation values
resulting from feature set reduction for different combina-
tions of feature vectors and mappers and for both training
and test datasets. It can be observed that using the feature
selection and reduction enhanced the performance LR-based
metrics significantly. For example, GFCC test correlation was
increased from 0.70 to 0.78, while the overfitting between the

training and the test datasets was reduced from 0.16 to 0.02.
This was also the case for MFCC and LCQA where their test
correlation values increased from 0.66 and 0.73 to 0.75 and
0.75 respectively. It is noted that the performance of metrics
utilizing SVR and DNN mappers was not affected significantly
when applying feature reduction. The performance of GFCC
remained at 0.80 correlation for both the reduced and non
reduced versions. Feature selection and reduction improved the
performance of the metrics using GPR in terms of overfitting
reduction. The overfitting between the training and the test
dataset was reduced from around 0.1 to 0.03 only in the case
of GFCC, overfitting was reduced from 0.12 to 0.07 in the
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Fig. 6. Subjective scores against objective scores for the combined
metric using GPR. (a) Training dataset. (b) Test dataset. (c) Full dataset.
(d) Test dataset after noise training.

case of MFCC, and it was reduced from 0.08 to 0.01 in the
case of LCQA.

Statistical analyses using Steiger’s Z test showed that
more feature vector and feature mapper combinations resulted
in statistically similar performances with reduced feature
sets. Once again, GFCC-DNN had the lowest difference in
correlation coefficients between training and test datasets,
as well as a lower SDPE value. This finding is consis-
tent with speech quality and automatic speech recognition
research [10], [17], in that the GFCCs appear to capture
perceptually salient features perhaps due to their better approx-
imation of the auditory filterbank characteristics. Fig. 5 shows
GFCC-DNN and MFCC-DNN scores against the subjective
quality scores with and without the feature reduction, for the
test dataset. It is evident that the feature reduction led to a
reduction in the data spread and variability for both MFCC-
DNN and GFCC-DNN.

4) A Composite Objective Speech Quality Estimator: In this
section, a metric was derived by augmenting the GFCC feature
vector with CPP, LCQA, SRMR, and ModA parameters and
applying the feature mapping procedure. The combined feature
set, which included 103 features, was first subject to feature
reduction in a similar manner as described in the previous
section. The number of features was reduced from 103 to 22
features through feature reduction, which included 7 features
from GFCC, 12 features from LCQA, and the CPP and ModA
values. Table II shows the correlation coefficient and SDPE
values between the scores obtained by this composite objective
metric and subjective scores for both the training and the test
datasets. It is noted that this model has a higher test correlation

value of this dataset more than any other metric mentioned in
the previous sections, which was statistically significant. Fig. 6
shows the plot of the subjective scores on the x axis against
the composite objective scores for the y axis for each of the
training, the test, and the full datasets when GPR was utilized
as the feature mapper.

It can be observed from the scatter plots between the
objective and subjective data that there sometimes is a bias in
estimating the poorer quality Parkinsonian speech, especially
for those which have subjective quality value less than 0.2.
This effect can be observed clearly in Fig. 6, where there are
no speech recordings that have an objective (i.e. predicted)
score less than 0.2. After investigation, it was discovered
that this was related to the characteristics of the background
noise in which the speech recordings were obtained. The noise
used while collecting the speech recordings was non-stationary
multi-talker babble with overlapping temporal modulation and
spectral properties with natural speech. As such, the model
was unable to predict low subjective speech quality scores
associated with environmental conditions where SNR was
0 dB or less. In other words, the recording dominated by
the multi-talker babble had similar modulation and spectral
features as natural speech. In order to overcome this effect,
a synthetic collection of 430 records that contained only multi-
talker babble was added to the training dataset with given
subjective scores of 0. It is noted that training the new database
led to an enhancement of the prediction capabilities of the
model towards speech recordings that have less than 0.20
subjective quality scores. Fig. 6d shows the scatter plot of
the test dataset against the subjective scores after including
the multi-talker babble in training. It is noted that the bias
at the low quality records is reduced with the new training
dataset, and the correlation value improved to 0.86. This point
highlights the need for proper training database in order to
effectively predict the perceived speech quality across the
entire rating scale.

IV. DISCUSSION & CONCLUSION

Speech amplifiers are typically employed by people with
Parkinson’s disease to overcome hypophonia. In this study,
the perceived quality of Parkinson’s speech before and after
amplification was assessed in a number of different test
conditions. Speech samples from 11 Parkinson’s patients
and 10 age-matched healthy controls were recorded in quiet
and noisy environments, with and without the aid of seven
commercially available voice amplifiers. Naive listeners rated
the perceived quality of these recordings. Statistical analyses
of the quality rating data revealed that the quality ratings
for Parkinsonian speech were significantly lower than speech
quality ratings for age-matched controls. In general, the voice
amplifiers enhanced the quality of Parkinsonian speech, but
there were significant differences in the ratings associated
with different devices. This study therefore highlights the need
for benchmarking voice amplifiers in a perceptually relevant
manner.

While subjective assessment of voice amplifier per-
formance has high face validity, it is also time- and
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resource-intensive. As such, this study investigated the applica-
bility of objective, instrumental predictors of perceived quality.
Among these the CPP, SRMR, and ModA metrics are sin-
gle feature objective metrics that did not require a feature
mapping algorithm, which displayed modest performance in
estimating the perceived quality of the amplification devices.
On the other hand, LCQA, MFCC, and GFCC procedures
resulted in multi-dimensional feature vectors that needed a
feature mapping algorithm. In addition to these objective
metrics, a composite objective metric was developed by gath-
ering and combining a subset of the feature sets describe
above.

The LR, GPR, SVR, and DNN algorithms were utilized
as the feature mappers. For the non reduced multiple features
objective metrics category, it was noted that applying the deep
learning algorithm on the GFCC features yielded to the best
performance of this category with a correlation value of 0.83
for the training set and 0.80 for the test set. The difference
between the training and the test correlation values was the
minimum which implied that it was the most generalized
model and the least prone to overfitting effect. As such, this
metric would be more preferred than a metric applying GPR
to MFCC features which resulted in 0.81 correlation value
for the test dataset but had higher difference between the
training and the test correlation values, which again is an
indication of overfitting. For the reduced feature objective
metrics, the metric obtained from applying the deep learning
algorithm to the GFCC features was selected to be the best
metric to estimate the Pakinsonian speech quality because it
was least prone to overfitting.

It is noted that the reduction of features contributed to the
enhancement of the correlation values obtained from applying
SVR to all LCQA, MFCC, and GFCC with significant statis-
tical difference. In the case of applying feature reduction to
the metrics using GPR, the enhancement in the test dataset
correlation values was statistically similar, however there was
an enhancement in the overfitting effect by reducing the differ-
ence between the training and the test datasets. The composite
metric had a statistically superior performance when compared
to all the other measures explored in this study.

In order to further probe the robustness of the presented
models, an additional experiment was conducted by sepa-
rating the training and the test datasets such that the test
set included all the data points from 4 randomly chosen
subjects. This was performed to address the concern that the
learning model may be influenced by the data/scores from a
few subjects. This analysis was performed with the GFCC
and MFCC feature sets using the GPR machine learning
algorithm, in a similar manner as before. The new GFCC-
GPR metric resulted in correlation values of 0.85 and 0.75
for the new training and test datasets, while the corresponding
correlation values for the MFCC-GPR combination were 0.94
and 0.80. The Steiger’s Z analysis revealed that the correlation
coefficients obtained with this new data partitioning were
statistically similar to the corresponding values in Table I.
These results highlight the robustness of the learning model
in predicting the quality of Parkinsonian speech. Showed that

the original and the new objective scores are statistically
similar.

In conclusion, this study showed the differential impact of
speech amplifiers on perceived Parkinsonian speech quality. It
also demonstrated the applicability of instrumental metrics for
benchmarking the speech amplifiers in a perceptually relevant
manner. While the results presented in this paper are promis-
ing, future research involving a larger quality rating dataset of
amplified Parkinsonian speech is warranted for assessing the
robustness and generalizability of objective measures investi-
gated in this research. A larger dataset also facilitates better
training and optimization of the deep learning models, leading
to better speech quality prediction performance.
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