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Abstract 

Earthquake occurrence modeling of large subduction events involves significant uncertainty, stemming from the scar-
city of geological data and inaccuracy of dating techniques. The previous research on statistical modeling of full-mar-
gin ruptures of the Cascadia subduction zone attempted to address these issues. However, the adopted resampling 
method to account for the uncertain marine turbidite age data from the Cascadia subduction zone was not sufficient 
in the sample size. This study presents a statistical approach based on the Gaussian mixture model applied to sig-
nificantly larger resampled Cascadia age data. The results suggest that the 3-component Gaussian mixture model 
outperforms the 2-component Gaussian mixture model and the 1-component renewal models by capturing the long 
gap and short-term clustering. The developed Gaussian mixture model is well suited to apply to probabilistic seismic 
and tsunami hazard analysis and the calculation of long-term probability of the future full-margin Cascadia events 
by considering the elapsed time since the last event.
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Introduction
Earthquake occurrence modeling of large magnitude 
events from major subduction zones and faults is a criti-
cal element in probabilistic seismic and tsunami hazard 
analysis, but involves significant uncertainty (Davies 
et  al. 2018; Baker et  al. 2021; Behrens et  al. 2021; Mori 
et  al. 2022). The main challenges of this modeling stem 
from the scarcity and the uncertainty/ambiguity of the 
data (Rhoades et  al. 1994; Headquarters for Earthquake 
Research Promotion 2019). For the former, despite vari-
ous efforts for identifying large paleo-seismic events from 

geological data in major subduction zones (Philibosian 
and Meltzner 2020), the number of large earthquakes is 
rather small compared to the number of small-to-mod-
erate earthquakes. For the latter, event times are often 
estimated based on radiocarbon dating of sediment sam-
ples and geological cores, and estimated event times are 
uncertain with a possible margin of error of several dec-
ades to a few hundred years.

By recognizing non-Poissonian and quasi-periodic 
recurrence characteristics of major subduction zones and 
matured faults, various earthquake occurrence models 
have been proposed in the literature (e.g., Ogata 1999; 
Sykes and Menke 2006). Both physics-inspired occur-
rence models (e.g., Shimazaki and Nakata 1980; Console 
et  al. 2008) and statistical renewal models (e.g., Cornell 
and Winterstein 1988; Matthews et  al. 2002; Abaimov 
et  al. 2008) have been adopted in seismic and tsunami 
hazard assessments. A renewal process can characterize 
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the evolution of occurrence probability with time by 
specifying an inter-arrival time (IAT) distribution of 
earthquakes. Popular IAT distributions include the log-
normal distribution, Brownian Passage Time distribu-
tion (Matthews et  al. 2002), and Weibull distribution 
(Abaimov et  al. 2008), noting that the homogeneous 
Poisson model corresponds to the exponential distri-
bution. Typically, the IAT distribution is characterized 
by three parameters: mean recurrence time, coefficient 
of variation (CoV), and elapsed time since the previous 
event. Although the concept of renewal-type earthquake 
occurrence models is appealing, when the number of 
earthquake occurrence time data is small, the superiority 
of the time-dependent renewal model to the time-inde-
pendent Poisson model is not always obvious (Williams 
et al. 2019; Griffin et al. 2020).

The Cascadia subduction zone (CSZ) is located at the 
convergent boundary where the oceanic Juan de Fuca 
Plate, Gorda Plate, and Explorer Plate and the conti-
nental North American Plate interact (Fig. 1). The CSZ 
extends 1100  km from British Columbia to Northern 
California and has a convergence rate of 30 to 45 mm/
year (DeMets et al. 2010). In the past, the CSZ ruptured 
in full-margin earthquakes of moment magnitude (Mw) 
greater than 8.5 with an average recurrence period of 
530 years (Goldfinger et al. 2012) and the last event in 
1700 (Satake et  al. 2003). The sedimentary records of 
the CSZ events can be observed in the form of marine 
turbidite deposits (Goldfinger et  al. 2012) and buried 

soil/marsh data (Atwater et  al. 2015). Using the Cas-
cadia turbidite records produced by Goldfinger et  al. 
(2012), Kulkarni et  al. (2013) carried out statistical 
modeling and seismic gap analysis of full-margin CSZ 
ruptures, whose magnitude ranges were between 8.49 
and 9.13, by using a hierarchical clustering method. 
They pointed out that there may be a relationship 
between the earthquake size and the inter-arrival time, 
noting that the earthquake size can be correlated with 
the fault rupture length and the thickness of the tur-
bidite layers or turbidite volumes. Recognizing the sig-
nificant uncertainty associated with the radiocarbon 
dating of deep-sea geological cores and synchronous 
turbidite event analysis, Monte Carlo resampling of the 
CSZ age data was conducted; however, the size of the 
resampled CSZ age data was small (20 simulated cata-
logs; each contains 18 events). They proposed that the 
Cascadia full-rupture records can be divided into sev-
eral clusters, punctuated by longer gaps. Their inves-
tigation was motivated to present statistical evidence 
of clustering and seismic gap as plausible earthquake 
occurrence patterns in the CSZ.

This study conducts statistical modeling of full-rupture 
CSZ recurrence using event time resampling and Gauss-
ian mixture method. The same information of the past 
CSZ age data suggested by Goldfinger et  al. (2012) is 
used, and the same resampling approach as in Kulkarni 
et  al. (2013) is adopted to dealing with the uncertainty 
of the CSZ age data. Each event can be represented by 
multiple possible CSZ age data, and the uncertainty of 
each age data, associated with radiocarbon dating, can be 
approximated by a triangular distribution based on the 
best, lower, and upper estimates. The statistical modeling 
carried out in this study differs from that of Kulkarni 
et  al. (2013) in two major ways. Firstly, the size of the 
resampled CSZ age data is significantly larger (5000 vs. 
20 simulated catalogs). By treating the simulated cata-
logs as possible realizations of the underlying original 
age data, more stable characteristics of the CSZ age data 
can be examined. Secondly, the Gaussian mixture model 
is fitted to the IAT distribution based on the simulated 
CSZ age data, which exhibit multi-component features. 
A major advantage of the proposed method is that when 
the elapsed time since the last event is considered in 
probabilistic seismic and tsunami hazard analysis, the 
mixing proportions of the multiple normal distributions 
can be updated with this information. The important 
contributions of this research include the development of 
a viable statistical method for the full-margin CSZ rup-
tures by capturing the multi-component characteristics 
of the IAT data and the implementation of the developed 
method in the context of probabilistic seismic and tsu-
nami hazard analysis.

Fig. 1  Tectonic plates surrounding the Cascadia subduction zone. 
The relative plate motions between the Juan de Fuca, Gorda, 
and Explorer Plates and the North American Plate are based 
on DeMets et al. (2010)
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Data
Event times of full‑margin ruptures in the Cascadia 
subduction zone
The CSZ extends from Vancouver Island to Cape Men-
docino (Fig. 1), and multiple submarine channel-canyon 
systems are distributed along the continental margin of 
the CSZ. During major storms, earthquakes, and tsuna-
mis, turbidity currents can be triggered by river-carried 
sandy and silty sediments, sliding down the continen-
tal shelf. From branching tributaries, turbidity currents 
merge into the main channel and form a large turbidite. 
By contrast, small-to-moderate storms and far-field tsu-
namis are unlikely to induce synchronized turbidity cur-
rents along the entire continental margin of the CSZ.

To develop a catalog of megathrust subduction earth-
quakes in the CSZ, Goldfinger et  al. (2012) carried out 
extensive coring surveys spanning the entire margin of 
the CSZ and analyzed collected samples using marine 
radiocarbon dating and stratigraphic correlation tech-
niques. Due to the synchronous occurrence of turbid-
ite currents along the 500-km coast, the northern CSZ 
events are best explained by the paleo-seismic events 
that can trigger a CSZ-wide event. For the southern CSZ, 
most of the turbidite samples are well-corresponded 
and correlated with the spatial extent of onshore paleo-
seismic records, while there are uncorrelated turbidites 
that were likely to be depositional products after smaller 
earthquakes, local storms, or far-field tsunamis. The 
northern portion of the CSZ ruptured less frequently 
with mean recurrence periods of 500 to 530  years and 
has a strong spatial correlation with the southern half, 
thus leading to a synchronized full or near-full rupture 
which could result in Mw9-class megathrust events. 
The southern portion of the CSZ, in addition to the 
whole-region ruptures, experienced additional smaller 
earthquakes (Mw8-class events) according to the tur-
bidite records with mean recurrence periods of 240 to 
320 years. According to Goldfinger et al. (2012), 19 well-
dated turbidites that ruptured the northern CSZ were 
identified and denoted by T1 to T18, noting that there 
is T17a which was considered as a separate full-margin 
rupture from T17. T1 corresponds to the most recent 
1700 event, whereas T18 corresponds to the oldest event 

in 9795 calibrated years before the present. Among the 
19 turbidite events, T2 was eventually excluded from 
the list of full-margin events because this event was not 
consistently recorded on buried soil/marsh data on land, 
implying that T2 might have been caused by non-seismic 
sources.

Kulkarni et al. (2013) adopted the full-margin rupture 
data by Goldfinger et al. (2012) to develop an earthquake 
clustering model for the CSZ (see Table  1 of Kulkarni 
et  al. (2013)). The data consist of 83 turbidite ages for 
the 19 events (i.e., T1 to T18, including T2 and T17a); 
different events have different numbers of age data (for 
instance, T3 has 8 age data). Each of the turbidite data 
comes with three age estimates, i.e., best, + 2 sigma 
bound, and − 2 sigma bound. Kulkarni et al. (2013) con-
sidered that the probability distribution of the individual 
age data can be represented by the triangular distribution 
with the best estimate as the mode and the two-sigma 
bounds as the upper and lower limits. The same interpre-
tations of the turbidite data are adopted in this study. The 
data used by Kulkarni et al. (2013) are shown in Fig. 2a. 
Kulkarni et  al. (2013) observed several long gaps after 
large-magnitude events that produced large turbidite 
masses (see Fig. 2 of Kulkarni et al. (2013)) and hypoth-
esized that a large earthquake magnitude is associated 
with a longer inter-arrival time. They were motivated 
to develop an earthquake occurrence model that distin-
guishes inter-cluster data and gap data using a hierar-
chical clustering method. After excluding T2 from the 
dataset, they obtained the 17 IAT data from the 18 age 
data. They indicated that a renewal model with the nor-
mal IAT distribution performs well with the central por-
tion of the IAT data but is not suitable for characterizing 
the lower and upper tails. This can be seen in Fig.  2b. 
More details of the seismic gap analysis for the CSZ can 
be found in Kulkarni et al. (2013).

Monte Carlo resampling of the Cascadia age data
Due to nonnegligible uncertainty of the CSZ age data 
from Goldfinger et al. (2012), Kulkarni et al. (2013) con-
ducted 20 Monte Carlo resampling of the CSZ age data 
and used for their hierarchical clustering analysis. The 
procedure of the resampling is summarized as:

Table 1  Parameters of the fitted Gaussian mixture models

Number of components AIC Component 1
[Proportion, mean, standard 
deviation]

Component 2
[Proportion, mean, standard 
deviation]

Component 3
[Proportion, mean, 
standard deviation]

1 1,194,100 [1.0, 561.6, 271.8] – –

2 1,186,767 [0.880, 493.6, 204.6] [0.120, 1059.3, 162.5] –

3 1,185,057 [0.646, 503.5, 139.2] [0.240, 905.6, 223.8] [0.114, 166.8, 95.0]
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1.	 Set the number of Monte Carlo resampling.
2.	 For each turbidite event, choose one of the data ran-

domly with equal chance (i.e., all listed data in Table 1 
of Kulkarni et al. (2013) are regarded as equally reli-
able).

3.	 Sample the age of the turbidite data chosen in Step 
2 from the triangle distribution, which is determined 
by the best and + / − 2 sigma bounds.

4.	 Repeat Steps 2 and 3 for all turbidite data. The IAT 
data can be obtained for each catalog.

5.	 Repeat Steps 2 to 4 for the resampling number speci-
fied in Step 1.

Because the radiocarbon dated ages involve large 
uncertainty and some of the adjacent turbidite events are 
only separated by a few hundred years, the above-men-
tioned resampling procedure can result in the reversed 
order of the simulated events. In this study, when the 
simulated CSZ age catalog has negative IAT data (i.e., 
reversed order), the simulated trial is discarded; the 
rejection rate is approximately 20%. Note that Kulkarni 
et  al. (2013) considered the simulated CSZ age catalogs 
that have IAT data longer than 100  years only because 
the shortest IAT in the original CSZ age catalog was 
about 100 years. This resampling method results in a high 
rejection rate of the simulated catalogs (approximately, 
62% of the simulated catalogs are abandoned). Since the 
threshold of 100 years is arbitrary and this high rejection 
rate could cause bias in statistical modeling, all IAT data 
are required to be positive (i.e., data do not have to be 

greater than 100 years). It is noteworthy that the analyses 
are also carried out by allowing negative IAT data (i.e., no 
rejection); the results are not significantly different from 
the baseline results. Although the simulation procedure 
adopted in this study is the same as Kulkarni et al. (2013), 
considering a larger resampling size and adopting a less 
subjective rejection criterion of the simulated turbidite 
age data will lead to robust characteristics of the simu-
lated CSZ event time data.

Figure  3 shows a histogram of the Cascadia IAT data 
distribution from 5000 resampling simulations. Each 
simulated catalog consists of 18 events and 17 IAT data 
can be calculated (note: all IAT data are positive). There-
fore, the histogram is based on 85,000 IAT data. The 
simulated IAT data are right skewed and exhibit heavy 
tails on both upper and lower sides, compared with the 
normal distribution (see Fig. 2b). The longer IAT data are 
associated with long gaps, whereas the shorter IAT data 
are related to short-time clustering. The mean and stand-
ard deviation of the simulated IAT data are 561 years and 
272 years, respectively, and thus the CoV is calculated as 
0.485.

Methods
A Gaussian mixture model comprised multiple Gauss-
ian components, each captures clustering in the data. For 
one-dimensional data, such as the IAT data for the full-
margin Cascadia rupture case, the model for K compo-
nents can be expressed by:

Fig. 2  a Cascadia subduction zone age data by Goldfinger et al. (2012). b Normal probability plot of the inter-arrival time data; the dataset excludes 
T2 shown in a, following the same approach taken by Kulkarni et al. (2013)
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where πk is the mixing proportion of the kth component 
and its summation over all K components equals 1, and 
µk and σk are the mean and standard deviation of the kth 
component, respectively. The kth mixing proportions 
represents the probability of observing data that come 
from the kth Gaussian component. With the increase 
of K, the number of model parameters increases; for 
instance, for K = 1, 2, and 3, the number of parameters is 
2, 5, and 8, respectively.

The model parameters of the Gaussian mixture model 
can be estimated using the Expectation–Maximization 
(EM) algorithm (McLachlan and Peel 2000). The algo-
rithm attempts to maximize the log likelihood function 
of the Gaussian mixture model for given data in two steps 
iteratively. For the specified value of K, initial values for 
component means, covariance matrices, and mixing 
proportions are generated through a k-means +  + tech-
nique. In the Expectation step, the algorithm computes 
posterior probabilities of component memberships for 
each data point. Subsequently, in the Maximization step, 
with the component membership posterior probabilities, 
component means, covariance matrices, and mixing pro-
portions are estimated based on the maximum likelihood 
method. The EM steps are iterated until the convergence 

(1)f (x) =
∑K

i=1
πkN (x|µk , σk) =

∑K

i=1

πk√
2πσk

exp

(

−
(x − µk)

2

2σ 2
k

)

,

is achieved or the iteration number reaches the speci-
fied trial value. Since the success of the EM algorithm 
depends on the data complexity and initial values and the 
solution may converge to a local minimum, multiple runs 
of the EM algorithm are made. The results with the high-
est log likelihood value is adopted as the final estimate. In 
this study, the parameter estimation is performed using 
the fitgmdist function in MATLAB, and the number of 
EM initializations is set to 50.

The Gaussian mixture model is fitted to the simulated 
IAT data by considering K = 1, 2, and 3. The inspection of 
the histogram shown in Fig. 3 indicates that the central, 
lower, and upper portions of the IAT data can be repre-
sented by different components. When K = 1, the Gauss-
ian mixture model is equivalent to a renewal model with 
the normal IAT distribution. In this sense, the goodness-
of-fit of renewal models with other IAT distributions 
(e.g., lognormal and Weibull) can be compared with the 
1-component Gaussian mixture model. To facilitate the 
comparison of the Gaussian mixture models with differ-
ent numbers of model parameters, the Akaike Informa-
tion Criterion (AIC) can be used:

where Np is the number of model parameters and lnL is 
the log likelihood value of the model. For the same data, 
a model with a smaller AIC value is superior. The AIC 
values shall be used as model performance indicator in a 
relative sense. Therefore, the difference of the AIC values 
for the two competing models (e.g., 2-component ver-
sus 3-component Gaussian mixture models) should be 
evaluated. Burnham and Anderson (2004) suggest that a 
model with the AIC value difference greater than 2 with 
respect to the competing model is considered to have 
weak support.

Results and discussion
Model performances of the Gaussian mixture models
To begin with the performance evaluations of differ-
ent statistical models for the simulated IAT data of the 
full-margin CSZ ruptures, the 1-component Gauss-
ian mixture model (i.e., renewal model with the normal 
IAT distribution) and other renewal models are consid-
ered. The AIC values with the Gaussian, exponential, 
gamma, lognormal, extreme value, Weibull, Rayleigh, 
and Brownian Passage Time distributions are obtained 
as 1,194,100, 1,246,239, 1,197,931, 1,222,593, 1,220,980, 
1,190,912, 1,191,436, and 1,271,206, respectively. The 

(2)AIC = 2Np − 2lnL,

Fig. 3  Histogram of the inter-arrival time data from 5000 simulations 
and comparison with the 1-component Weibull-based renewal 
model. The simulated earthquake catalogs that contain negative 
inter-arrival times are excluded
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Weibull distribution (i.e., AIC = 1,190,912) is superior 
to other models, including the Gaussian model (i.e., 
AIC = 1,194,100). The fitted 1-component model based 
on the Weibull distribution is also shown in Fig.  3. 
Although the Weibull distribution captures the unsym-
metrical feature of the simulated IAT data (i.e., longer 
upper tail), the fitted model reveals significant mis-
matches on both sides of the dominant mode of the sim-
ulated data. To improve the fit, more complex statistical 
models can be considered.

Next, the 2-component and 3-component Gaussian 
mixture models are used to characterize the simulated 
data. The results of the model fit are shown in Table  1 
and Fig.  4. The visual inspection and AIC values of the 
fitted Gaussian mixture models indicate that the multi-
component Gaussian models outperform all single-com-
ponent models that are examined previously and that 
the 3-component Gaussian mixture model is superior to 
the 2-component Gaussian model (AIC = 1,185,057 ver-
sus 1,186,767). When the 3-component model is imple-
mented, three components correspond to clusters with 
mean recurrence periods of 503, 905, and 167 years; the 
second component corresponds to the long gaps with 
the mixing proportion of 0.240, whereas the third com-
ponent corresponds to the short-term clustering with the 
mixing proportion of 0.114. When the number of com-
ponents is restricted to K = 2, the long-gap component is 
retained in the model, while the less obvious short-term 
clustering component is merged with the most dominant 
central component. In short, the data-driven statistical 

investigations carried out in this section indicate strong 
support for the 3-component cluster model for the full-
margin CSZ ruptures, outperforming the 1- and 2-com-
ponent clustering models.

Simulations of earthquake event times by considering 
the elapsed time
The fitted 3-component Gaussian mixture model can be 
used in probabilistic seismic and tsunami hazard analysis 
for the CSZ by considering the current elapsed time since 
the last 1700 event, i.e., TE = 323  years. The adjustment 
to the 3-component Gaussian mixture model (Fig. 4b) is 
straightforward by modifying the mixing proportions of 
the 3 components. First, for each component, calculate 
the probability that the IAT is longer than TE, and then 
multiply this probability by the original mixing propor-
tion of the component. Once the same calculations are 
performed for all three components, these quantities are 

Fig. 4  Comparison of a the 2-component Gaussian mixture model and b the 3-component Gaussian mixture model. The proportions of the mixed 
components are indicated in the brackets

Table 2  Calculations of modified proportions for the elapsed 
time with TE = 323 years

Component
(µ, σ)

Original 
mixing 
proportion

Probability 
of IAT > TE

Column 
(2) × Column 
(3)

Modified 
mixing 
proportion

1 (503.5, 
139.2)

0.646 0.903 0.5833 0.705

2 (905.6, 
223.8)

0.240 0.995 0.2387 0.288

3 (166.8, 95.0) 0.114 0.050 0.0057 0.007
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normalized to 1.0, and can be used as the updated mix-
ing proportions. This calculation step is demonstrated in 
Table 2.

The simulation steps of stochastic event catalogs for 
non-zero elapsed times are as follows:

1.	 Considering the fitted 3-component Gaussian mix-
ture model and the elapsed time TE, calculate the 
modified mixing proportions for all components 
(Table 2).

2.	 Set the number of stochastic event catalogs to be 
simulated. Set the duration for the hazard analysis 
TD.

3.	 For simulating the occurrence time of the first event 
in the catalog, TE must be considered. Simulate a 
uniform random number between 0 and 1 to select 
a suitable mixture component by using the modi-
fied mixing proportions. Subsequently, simulate tIAT 
from the conditional probability distribution of the 
selected component.

4.	 If tIAT is less than TD, the simulated event should be 
registered as t1 = tIAT in a stochastic event catalog and 
proceed to the second event; otherwise, the simula-
tion process for this catalog realization is stopped 
(i.e., no event occurs over a period of TD).

5.	 For the second event, TE is reset to 0 and generate 
tIAT using the original proportions for the Gaussian 
mixture model (similar to Step 3). When t2 = t1 + tIAT 
is less than TD, the second event is registered in the 
stochastic event catalog; otherwise, the simulation 
for this catalog realization is stopped.

6.	 Continue Step 5 until the updated time of the most 
recent event exceeds TD.

7.	 Repeat Steps 3 to 6 as many times as required to gen-
erate stochastic event sets that reflect the multi-com-
ponent earthquake occurrence characteristics and 
the data uncertainty of the full-margin CSZ ruptures.

The above-mentioned simulation procedure is imple-
mented to develop a histogram of the 3-component 
Gaussian mixture model conditioned on the elapsed time 
of 323 years (Fig. 5). When the elapsed time is 323 years, 
the modified proportion for the short-term clustering 
is significantly decreased from 0.114 to 0.007. Conse-
quently, the proportions for the dominant central com-
ponent and the long-gap component are increased. The 
probability density function shown in Fig. 5 is renormal-
ized (or conditioned) by considering no occurrence of the 
full-margin CSZ event in the last 323 years. Therefore, its 
height is taller than the probability distribution shown in 
Fig. 4b. It is noted that the long-term probability of the 
future full-margin CSZ events can be computed using 

the results shown in Fig. 5. For instance, by considering 
TD = 50 years, the probability can be calculated as 6.6%.

Magnitude distribution of the Cascadia full‑margin 
ruptures
The magnitude frequency distribution is an important 
element for the earthquake occurrence modeling. In 
many cases, the temporal earthquake occurrence pro-
cess and the earthquake size distribution are related. 
For this reason, it is useful to mention how the magni-
tude distribution of the full-margin CSZ ruptures can 
be characterized. Goldfinger et al. (2012) estimated the 
earthquake magnitudes of the full-margin CSZ events 
(see Table  8 of Goldfinger et  al. (2012)). A direct 
approach is to adopt this empirical magnitude distribu-
tion. Alternatively, other magnitude distributions can 
be adopted. For instance, the (characteristic) uniform 
distribution may be used by specifying the lower and 
upper magnitude limits of the full-margin rupture sce-
narios. A truncated normal distribution with the lower 
and upper magnitude limits can also be adopted by 
specifying the mean and standard deviation based on 
the empirical magnitude data. The above-mentioned 
approaches essentially decouple the temporal occur-
rence model and the magnitude frequency model. If a 
coupled characterization of the temporal occurrence 
and earthquake size is desirable, a stronger hypothesis, 
such as a hierarchical earthquake occurrence model by 

Fig. 5  3-component Gaussian mixture model conditioned 
on the elapsed time of 323 years. The proportions of the mixed 
components are indicated in the brackets, which are adjusted based 
on the elapsed time considered (Table 2)
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Kulkarni et al. (2013), which can capture the depend-
ency between the waiting time and the earthquake 
magnitude, could be adopted in probabilistic seismic 
and tsunami hazard analyses. A discussion as to which 
of the hypothesized models is more suitable is beyond 
the scope of this study.

Conclusions
The earthquake occurrence modeling for major subduc-
tion events involves significant data uncertainty due to 
the scarcity of available geological data and the adopted 
dating techniques. Due to the complex nature of major 
subduction zones, the data may exhibit the clustering 
characteristics, separated by long gaps. The marine tur-
bidite age data for the full-margin CSZ ruptures, which 
were compiled by Goldfinger et  al. (2012), revealed 
such data features. Building upon the previous work 
by Kulkarni et  al. (2013) which attempted to character-
ize such clustering behavior of the Cascadia full-margin 
events using a hierarchical clustering analysis, this study 
adopted the Gaussian mixture model as an alternative 
method. To fully capture the uncertainty of the under-
lying marine turbidite-based Cascadia age data, the 
number of Monte Carlo resampling was increased sub-
stantially (from 20 to 5000).

The statistical modeling results clearly showed that the 
3-component Gaussian mixture model outperforms the 
2-component Gaussian mixture model and the 1-compo-
nent renewal models. In addition to the most dominant 
central component with the mean recurrence period of 
500  years, the long-gap component, and the short-term 
clustering component were identified. The developed 
Gaussian mixture model can be used to generate sto-
chastic event sets for probabilistic seismic and tsunami 
hazard analysis and to evaluate the long-term probability 
of the future full-margin CSZ events. The computer algo-
rithm and code are provided to promote the use of the 
proposed Gaussian mixture method.

As a final remark, it is important to mention the limita-
tions of the results presented in this study. Although the 
marine turbidite age data for the full-margin CSZ rup-
tures by Goldfinger et al. (2012) and Kulkarni et al. (2013) 
were taken as a valid dataset for statistical modeling of 
the full-rupture CSZ recurrence, a subset of the identified 
full-margin CSZ ruptures can be adopted by considering 
the age data to certain calibrated years before the pre-
sent. For instance, onshore-based paleo-tsunami records 
are generally shorter than offshore-based paleo-tsunami 
records. The reduced data size will result in different 
recurrence models for the full-margin CSZ ruptures. To 
reflect epistemic uncertainty associated with the data 
selection of the earthquake occurrence modeling, such 

different models can be implemented in a logic tree for 
probabilistic seismic and tsunami hazard analysis.
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