
1.  Introduction
Flooding, as the most common natural hazard in the world (Kundzewicz et al., 2014), has affected more than 
two billion people and caused approximately USD 656 billion of damage between 1998 and 2017 (AghaKouchak 
et  al.,  2020; Wallemacq,  2018). From 1980 to 2019, flood events have accounted for 41% of all the 17,300 
weather-related events, 28% of 890,000 lives lost, 27% of USD 4,000 billion economic losses, and 10% of USD 
1,300 billion insured losses worldwide (Golnaraghi et al., 2020). The frequency of flood events has been increas-
ing from 1960 to 2013, globally (Tanoue et al., 2016). Similarly, the magnitude of flooding shows increases in 
some regions around the world (Do et al., 2020). Around 0.8–1.1 million people experience flooding and its 
devastating socioeconomic consequences each year (Muis et al., 2016), especially the coastal communities. The 
population of the low-lying coastal areas was approximately 625 million in 2000, which is anticipated to reach 
949 million by the 2030s and 1.4 billion by 2060s (Neumann et al., 2015), indicating larger exposure to different 

Abstract  Compound flooding, caused by the simultaneous or successive occurrence of two or more flood 
mechanisms, is mainly associated with extreme precipitation, river overflows, and storm tides across coastal 
areas. The interdependencies between these components can increase the risks of flood impacts, threatening 
coastal communities and infrastructure systems. This study quantifies the corresponding multivariate hazard 
over Canada's coastal areas by characterizing the dependencies between multiple drivers of flooding based on 
the C-vine copula statistical approach. The joint return periods of compound flooding considering the AND, 
OR, and Kendall scenarios are estimated and the corresponding failure probabilities are assessed. Further, 
the compound hazard ratio (CHR) index is applied to quantify possible under- or overestimations of the flood 
hazards when individual drivers are assessed independently. Analyses are performed at 41 locations across the 
Atlantic, Pacific, and the Great Lakes coasts, and the uncertainties are quantified based on the Bayes theorem. 
Results show that at approximately 50% of locations (mostly at the Great Lakes), the flood hazard associated 
with the AND scenario increases considerably when the dependencies are characterized compared to the 
(unrealistic) independence scenario, indicating the potential for compound flooding in these regions. Besides, at 
more than half of the studied locations, the CHR index exceeds one highlighting the interrelationships between 
drivers of flooding. The results of this study provide a deeper understanding of the flood mechanisms and their 
interdependencies across Canada's coasts, which support the development of resilient structures and improved 
coastal flood management.

Plain Language Summary  Approximately half of the global population lives within 200 km of 
coastlines. The communities and infrastructure systems in the coastal environments are at risk of flooding 
caused by one or multiple mechanisms. Understanding the compounding effects of the drivers of flooding 
and quantifying the corresponding uncertainties are critical for flood risk analysis and the development of 
effective resilience strategies. To address this objective, we investigate compound flood events considering 
terrestrial (both precipitation, and streamflow which reflects the effects of snow/ice melt in addition to rainfall) 
and coastal mechanisms across Canada's Atlantic, Pacific and Great Lakes' coasts, with distinct hydroclimate 
characteristics, based on a state-of-the-art statistical approach. The proposed design flood estimation method 
addresses the limitations in traditional approaches that neglect the interdependencies between two or multiple 
drivers of flooding. Further, the proposed approach identifies areas that are at high risk of compound flooding 
and identifies the main contributing factors. The results suggest that the risk of flooding can increase up to 
50% if flood mechanisms are analyzed holistically and the interrelationships are accounted for, compared 
to estimates from the traditional approach. Precipitation and sea levels are the major factors that contribute 
to  compound flooding, in particular at the Atlantic coast.
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types of flood hazards in these regions in the future. Therefore, it is critical to understand and predict the mech-
anisms that drive flooding, including intense rainfall, high seawater levels, and river overflows, as well as their 
interactions, and interrelationships to develop effective flood mitigation and adaptation strategies.

Conventional approaches to flood hazard assessment are based on the assumption that the drivers of flooding are 
independent of one another. However, recent studies show strong evidence for the interactions between drivers 
of floods, especially in coastal areas around the world (Eilander et al., 2020; Hendry et al., 2019; Moftakhari 
et al., 2017; Nasr et al., 2021; Robins et al., 2021; Wahl et al., 2015; Ward et al., 2018). Different mechanisms 
can trigger flood events simultaneously or successively, leading to an extreme impact even if the contributing 
drivers are not extreme (Masson-Delmotte et al., 2021). The physical and socioeconomic consequences of such 
compound events can be much more drastic compared to the ones associated with the individual drivers (Ward 
et  al.,  2018; Zscheischler et  al.,  2018). Therefore, analyzing different flood types (e.g., fluvial, pluvial, and 
coastal) in isolation can result in an underestimation of flood risks.

In coastal areas, compound flooding can be associated with low-pressure systems like tropical cyclones that 
generate strong winds and subsequently storm surges and high waves, along with heavy rainfall and possible 
river overflows (Couasnon et al., 2019; Paprotny et al., 2018; Svensson & Jones, 2002). Examples of such events 
include Hurricane Katrina (2005) affecting south Florida (Johnson, 2006), Hurricane Harvey (2017) in south-
east Texas (Frame et al., 2020), both with at least $125 billion in damage, and recent hurricanes of Elsa, and 
Henri (Eckstein et al., 2021) with $1.2 billion and $550 million in damage respectively. Previous studies have 
analyzed compound flood events at global (Eilander et  al., 2020; Ward et  al., 2018), continental (Ganguli & 
Merz, 2019; Paprotny et al., 2020), national (Ghanbari et al., 2021; Jalili Pirani & Najafi, 2020), and regional 
scales (Valle-Levinson et al., 2020; van Berchum et al., 2020) using statistical and process-based approaches 
(Hao et  al.,  2018). These analyses include characterizing the statistical interrelationships between drivers of 
flooding based on Bayesian networks (Couasnon et al., 2018; Sebastian et al., 2017), copula theory (Bevacqua 
et al., 2017; Gori et al., 2020; Moftakhari et al., 2017; Paprotny et al., 2018; Xu et al., 2014), bivariate extreme 
value distributions (Zheng et al., 2014), correlation and linear regression (Robins et al., 2021), bivariate logistic 
threshold-excess model (Zheng et al., 2013) among others. Besides, recent studies have assessed the compound 
flood impacts and risks through process-based modeling and hybrid statistical-dynamical framework (Ganguli 
et al., 2020; Ganguli & Merz, 2019; Najafi et al., 2021; Wang et al., 2021; Zhang & Najafi, 2020).

The theory of copula, introduced to the hydrologic community by De Michele and Salvadori (2003), is commonly 
applied for the multivariate analysis of flood events as it can represent a wide range of dependence structures 
between hydroclimatic variables (Singh et al., 2021, 2022). It is a flexible approach for the frequency analysis of 
compound events that allows for characterizing the individual drivers with the most appropriate distribution func-
tions. The corresponding hazards can be assessed under different scenarios according to the geographic location 
or the criteria considered for the design, planning, and management of infrastructure systems or coastal commu-
nities (a) either of the flood mechanisms is extreme and can affect the study region, for example, the occurrence 
of an intense rainfall event or storm surge (OR scenario), (b) all the drivers are extremes (AND scenario), and 
(c) the joint exceedance probability of the drivers is above a certain threshold (Kendall scenario). Using copula 
models, Ward et al. (2018) studied the global dependencies between high river discharge rates and sea levels, 
and showed their significant role in the estimated design levels. Bevacqua, Vousdoukas, Zappa, et  al.  (2020) 
and Bevacqua, Vousdoukas, Shepherd, et al. (2020) reported an overall 30% increase in the joint probability of 
extreme meteorological tides and inland precipitation under a high emission scenario along the global coasts 
by 2100 compared to the present conditions. Ganguli and Merz (2019) showed that for half of the studied loca-
tions in northwestern Europe the river discharge rates conditioned on extreme total water levels are higher than 
the unconditioned rates. Further, Paprotny et al.  (2020) found strong dependencies in surge–precipitation and 
surge–discharge pairs along the northwestern coasts of Europe. Similar analyses have been conducted on the 
joint occurrence of storm surge and precipitation across coastal zones of China (Fang et al., 2020), Australia (Wu 
et al., 2018), storm surge, and river discharge in Britain (Robins et al., 2021), storm surge/sea levels and river 
discharge over the US coasts (Welch, 2020), among others.

Many studies on compound flooding have been focused on the bivariate structure of the driving mechanisms, 
however, the range of dependencies between multiple factors that can contribute to regional/global flooding is 
less understood. Liu et al. (2018) investigated the joint occurrence of precipitation and surface runoff in Texas, 
with the El Nino-Southern Oscillation and rising temperatures as the underlying conditions using vine copula 
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(also known as pair-copula). Santos et al. (2020) conducted bivariate and trivariate extreme analyses to study the 
return periods (RPs) of inland water levels as a function of storm surge, tide, and precipitation in the Netherland. 
Jane et al. (2020) characterized the dependencies between rainfall, sea level, and groundwater level for coastal 
areas of Miami-Dade County in southeastern Florida. They found that vine copulas could better represent the 
dependencies between the drivers compared to the symmetric high-dimensional copulas, which consider homo-
geneity in the type of dependence between each pair of variables and do not account for the conditional depend-
ence between the variables (Aas & Berg, 2009). Vine copula constructs the multidimensional copula without 
assuming conditional independence (Aas et al., 2009).

Communities and infrastructure systems in Canada's coastal areas, across the Atlantic, Pacific, and the Great 
Lakes, are at risk of flooding caused by extreme precipitation, river overflows, storm surges, and tides (Bush 
& Lemmen, 2019; Mahmoudi et al., 2021). Some examples include Hurricane Juan which hit eastern Canada 
and Nova Scotia resulting in an economic loss of $200 million in September 2003, Hurricane Dorian in eastern 
Canada (September 2019) with $78.9 million in damage, and Hurricane Teddy affecting Nova Scotia in Septem-
ber 2020. Most previous analyses have been focused on the bivariate structure of compound flooding events (e.g., 
sea level and streamflow or sea level and precipitation). In this study, we analyze multiple drivers of flooding (sea 
level, precipitation, and streamflow) their interdependencies, and the corresponding joint and conditional return 
periods across Canada's coasts, for the first time, based on vine copulas. Instead of relying on a limited number 
of Archimedean (asymmetric) or elliptical (symmetric) copula functions (Beersma & Buishand,  2004; Rana 
et al., 2017; Shiau, 2006), we consider a comprehensive set of copulas to better represent the extreme dependen-
cies. Bayes theorem is applied to estimate the parameters of the marginal distributions and the copula functions 
and characterize the uncertainties associated with different hazard scenarios, including AND, OR, and Kendall 
(dos Santos Silva & Lopes,  2008; Min & Czado,  2011; Pitt et  al.,  2006; Sarhadi et  al.,  2016; Smith,  2011). 
Further, we assess the return levels of flow discharge rates conditioned on precipitation and downstream seawater 
levels and compare them with the unconditional scenario. We also estimate the failure probabilities (FPs), that 
is, the possibility of a flood event occurring at least once in a given project's lifetime (Xu, Wang, et al., 2019), 
corresponding to different hazard scenarios. Besides, for the first time, we provide the trivariate Kendall RP/FP 
analysis through a sampling technique. Finally, we suggest the optimum design levels of the three drivers consid-
ering the corresponding interdependencies.

The remainder of this article is as follows. Section 2 describes the study area and data. The copula and Bayes 
approaches are presented in Section 3 followed by the discussion of results in Section 4 and the concluding 
remarks in Section 5.

2.  Study Area and Data
Canada has the longest coastline (approximately 230,000 km) worldwide settling over seven million people. We 
assess compound flooding across its three main domains of the Pacific, Atlantic, and the Great Lakes coasts 
(Figure 1) by investigating the interactions between Precipitation (Pr; daily time scale), Streamflow (Q; daily), 
and Total Water Level at the coastal zones (TWL; hourly). The corresponding data at each location are selected 
for 1960 to 2015 according to the following criteria: each year having more than 20% missing data is removed for 
each tidal gauge, followed by removing gauges with more than 20% missing data over the entire period. Precipi-
tation and streamflow gauges that lie within a radius of 0.5° (almost 55 km) from each tidal gauge are identified 
followed by the application of the first two selection steps. In addition to the physical distance of streamflow 
gauges, flow routes are tracked to make sure they are directed toward the oceans/lakes (Ward et al., 2018). At all 
locations, extreme sea levels are represented by the maximum hourly TWL at each 24-hr interval.

In cases where several precipitation or streamflow gauges exist within the specified radius, the closest and most 
downstream ones are selected, respectively. If no hydroclimatic gauges exist within this distance, the radius 
is increased to a maximum of 100  km to identify at least one precipitation and one streamflow gauge (Wu 
et al., 2018). The choice of the distance is to ensure that gauge data are representative of the homogeneous hydro-
climatic conditions of their locations (Ward et al., 2018). The average distance between the paired streamflow/tide 
gauges is 59.2 km with a 95% range of 16.8–94.7 km. The corresponding values for the paired precipitation/tide 
gauges, and streamflow/precipitation gauges are 34.1 km (4.5–97.6 km) and 65.3 km (14.5–93.3 km), respec-
tively. Forty-one locations having more than 80% overlap between TWL, precipitation, and streamflow data 
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records are retained. The names of these locations are provided in Table S3 in Supporting Information S1. Further 
information is provided in Jalili Pirani and Najafi (2020).

3.  Methodology
The simultaneous occurrence of multiple drivers of flooding, including extreme Pr, TWL, and/or Q, is relatively 
rare, however, the corresponding impacts can be catastrophic (Fang et al., 2020; Wahl et al., 2015). Such disasters 
can be associated with hurricanes striking coastal areas, especially in small, impervious, round-shape watersheds 
with a rapid hydrologic response. Besides, coastal flooding due to extreme waves and storm surges superim-
posed on high tides can be exacerbated by moderate or even low rainfall events. Furthermore, above normal sea 
levels can block the river system drainage, which combined with high precipitation rates can lead to severe flood 
impacts in coastal zones. Similarly, simultaneous extreme discharge rates and low/moderate Pr and TWLs can 
lead to compound flood events threatening coastal communities and infrastructure.

In this study, we analyze compound flooding caused by extreme precipitation events and maximum TWL and Q 
within ±1 day of the corresponding event. Extreme events are commonly identified based on the annual maxima 
of the data records or exceedances above high thresholds (Bezak et al., 2014; Dodangeh et al., 2019; Villarini 
et al., 2011). We consider the peaks over threshold (POT) approach such that the (Pre_0.95, TWL1, Q1) scenario 
represents the joint occurrence of extreme precipitation events exceeding the 95th percentile, and TWL1/Q1 

Figure 1.  The study area and the locations of precipitation, streamflow, and tidal gauges across the Atlantic, Pacific, and the Great Lakes coasts. Circles show examples 
of three gauges that are grouped together for multivariate analysis.
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which represents the maximum total water levels and flow discharge rates within a 1-day window of precipitation 
extreme events, respectively. To remove temporal dependencies in extreme precipitation events, only the peaks 
of 3-day intervals are retained.

The overall procedure for compound flood analysis is summarized in a flowchart (Figure 2) and illustrated in the 
following sections.

3.1.  Copula

The joint variability of the three drivers of flooding across Canada's coasts is characterized based on copula 
(Joe, 1997; Nelson, 1998). Copula functions (Sklar, 1959) can represent the multivariate behavior of random 
variables and characterize the corresponding dependence structure (linear, non-linear, tail dependence) (Genest 
& Favre, 2007). According to Sklar's theorem, if X1, X2, …, Xn are n continuous random variables, there exists 
a unique copula C on (0,1) d that can describe the corresponding joint cumulative distribution function (CDF):

�(�1, . . . , ��) = �(�1(�1|�1) , �2(�2|�2) , . . . , ��(��|��) |��)� (1)

where d is the dimension, � (�1, ..., ��) is the joint CDF of X1, X2, … Xn, 𝐴𝐴 𝐴𝐴 is the copula function with the 
dependence parameter 𝐴𝐴 𝐴𝐴𝑐𝑐 , �1(�1|�1) , �2(�2|�2) , … ��(��|��) are the marginal distributions with parameters 𝐴𝐴 𝐴𝐴1 
to 𝐴𝐴 𝐴𝐴𝑛𝑛 , respectively. The practical implication of Sklar's theorem is that modeling the marginal distributions can 
be conveniently separated from the dependence modeling using copula (Brechmann & Schepsmeier, 2013). The 
corresponding joint probability density function is:

�(�1, . . . , ��) =
(

∏�

�=1
�� (��)) × �(�1 (�1|�1) , �2(�2|�2) , . . . , ��(��|��) |��

)

� (2)

where c is the copula density function.

Initial analysis of the dependencies is performed using the nonparametric Kendall's Tau correlation metric, which 
measures the degree of association between two variables (Text S1 in Supporting Information S1).

•	 �Vine Copula

We consider the vine copula, introduced by Joe (1996) and further developed by Bedford and Cooke (2001, 2002), 
for the multivariate analysis of compound flooding. Vine copula can determine the different dependence structures 

Figure 2.  Statistical analysis of compound flooding; Pr, TWL, and Q denote precipitation, total water level, and streamflow, respectively.
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between multiple variables and is not bound by parameter restrictions when 
the number of variables increases (Aas & Berg, 2009; Jane et al., 2020; Liu 
et al., 2018).

Vine copula creates n-dimensional multivariate distributions using a cascade 
of n(n − 1)/2 bivariate or conditional bivariate copulas that are independent 
of each other. The so-called pair-copulas are flexible in characterizing the 
dependence structure of multiple variables including the tail dependencies and 
asymmetries. Bedford and Cooke (2001, 2002) proposed a systemized proce-
dure called regular vine, with two special subclasses of the canonical (C-vine) 
and drawable vines (D-vine), to decompose a multivariate probability in s the 
form of a nested set of trees (Text S2 and Figure S1 in Supporting Informa-

tion S1). Considering the three drivers of TWL, Pr, and Q, first, the pair-copulas (TWL, Pr) and (Pr, Q) are created 
at tree 1 and then the conditional copula (TWL, Q| Pr) is determined at tree 2, according to C-vine (Figure 3).

The n-dimensional density function of the C-vine copula is expressed as follows (Brechmann & Schepsmeier, 2013; 
Czado, 2010):

�(�1, . . . , ��) =
∏�

�=1
��(��) ×

∏�−1

�=1

∏�−�

�=1
��,�+�|1∶(�−1) (�(��|�1, . . . , ��−1) , �(��+�|�1, . . . , ��−1))� (3)

where 𝐴𝐴 𝐴𝐴 (𝑋𝑋1, . . . , 𝑋𝑋𝑛𝑛) is the joint probability density function of n random variables, 𝐴𝐴 𝐴𝐴 (𝑋𝑋𝑘𝑘) , 𝐴𝐴 𝐴𝐴 = 1, . . . , 𝑛𝑛𝑛 denotes 
the marginal probability densities, and 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖𝑖+𝑗𝑗|1∶(𝑖𝑖−1) represents the bivariate copula densities with parameter(s) 

𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖𝑖+𝑗𝑗|1∶(𝑖𝑖−1) . According to Equation 3, the three-dimensional probability density of the C-vine copula model is 
expressed as:

� (��,TWL, �) = � (��) × � (TWL) × � (�) (marginals)

× ���,TWL (� (��), � (TWL)|��(��,TWL)) × ���,�(� (��), � (�)|��(��,�)) (unconditional pairs )

× �TWL,�|�� (� (TWL|��), � (�|��)|��(���,�)) (conditional pair)

� (4)

where 𝐴𝐴 𝐴𝐴 (𝑃𝑃𝑃𝑃𝑃TWL, 𝑄𝑄) is the joint probability density of Pr, TWL, and Q; 𝐴𝐴 𝐴𝐴 (𝑃𝑃𝑃𝑃), 𝑓𝑓 (TWL), 𝑓𝑓 (𝑄𝑄) are the corre-
sponding marginal distributions; 𝐴𝐴 𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃 , 𝐴𝐴 𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and 𝐴𝐴 𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|𝑃𝑃𝑃𝑃 are the copula functions that characterize the depend-
encies between Pr and TWL, Pr and Q, and TWL and Q conditioned on Pr, respectively. 𝐴𝐴 𝐴𝐴𝑐𝑐(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) , 𝐴𝐴 𝐴𝐴𝑐𝑐(𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 𝑎𝑎𝑎𝑎𝑎𝑎 

𝐴𝐴 𝐴𝐴𝑐𝑐(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) are the corresponding copula parameters associated with (Pr, TWL), (Pr, Q), and (TWL, Q), respec-
tively. The parameters of the marginal distributions 𝐴𝐴 𝐴𝐴𝑚𝑚 are estimated using the maximum likelihood method. The 
best-fitted distributions of Q and TWL are selected among normal, lognormal, gamma, Gumbel, exponential, 
generalized extreme value (GEV), generalized pareto distribution (GPD), Weibull, logistic, and Cauchy distribu-
tions (Table S1 in Supporting Information S1) based on the Akaike Information Criterion (AIC) (Akaike, 1974). 
AIC is defined as:

AIC = 2𝑘𝑘 − 2ln(𝐿𝐿)� (5)

where 𝐴𝐴 𝐴𝐴 is the number of parameters and 𝐴𝐴 𝐴𝐴 represents the maximum value of the likelihood function for the 
model. The Kolmogorov-Smirnov (KS) goodness-of-fit test is also applied to verify the best-fitted distribution 
considering a significance level of 0.05 (Chakravarty et al., 1967). Extreme precipitation events are represented 
by the GPD with parameters 𝐴𝐴 𝐴𝐴𝑚𝑚 = (𝜇𝜇𝜇 𝜇𝜇𝜇 𝜇𝜇) .

The (un)conditional one- or two-parameter (𝐴𝐴 𝐴𝐴𝑐𝑐 ) copulas (Schepsmeier et al., 2015) are selected from 41 functions 
including Gaussian, Student t, Frank, Joe, Clayton, Gumbel, BB1, BB6, BB7, BB8, Tawn type 1, and Tawn type 
2 along with their rotational variants (90, 180, and 360°) (Table S2 in Supporting Information S1). The best-fitted 
copula function is selected based on AIC. Besides, a goodness-of-fit test proposed by Genest et al.  (2006) is 
applied to evaluate the selected model, considering that AIC would select one model with the best relative score 
even if all models are “wrong” (Burnham et al., 2010; Singh et al., 2020) (Text S3 in Supporting Information S1). 
The parameters of the marginal distributions and the copula functions, corresponding to (Pr, TWL), (Pr, Q), and 
(Q, TWL|Pr), is inferred based on the Bayesian approach, and the uncertainties in return periods (RPs) and return 
levels are quantified (Text S4 in Supporting Information S1).

Figure 3.  Three-dimensional C-vine copula considering three drivers of 
flooding (TWL, Pr, and Q).
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3.2.  Hazard Analysis

•	 �Estimating the joint return period (JRP)

Assessing the hazard associated with individual and compound flood events is critical for water resources plan-
ning and management. We estimate the JRPs of multiple flood drivers considering OR (at least one driver exceeds 
a threshold), AND (all drivers are above specific thresholds), and Kendall (the joint probabilities exceed defined 
thresholds) scenarios (G Salvadori & De Michele, 2004; Salvadori et al., 2007; Shiau, 2006). Considering pr, q, 
and twl as levels beyond which pluvial, fluvial, or coastal flooding can occur, respectively, the exceedance prob-
ability and the corresponding return period of the OR scenario are estimated by:

��� = � ((�� > ��) ∪ (� > �) ∪ (��� > ���)) = 1 − �(���(��|���) , ��(�|���) , ����(���|�����) |��)� (6)

JRP𝑂𝑂𝑂𝑂 =
𝜇𝜇

𝑃𝑃𝑂𝑂𝑂𝑂

� (7)

where 𝐴𝐴 𝐴𝐴𝑂𝑂𝑂𝑂 is the probability that at least one of the drivers exceeds the specified threshold (either pr, q, or twl). 
𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 , 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚 and 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are the set of parameters corresponding to the marginal distributions of Pr, Q, and TWL, respec-

tively. C is the joint cumulative probability of the three drivers of flooding obtained by integrating Equation 4. 
𝐴𝐴 𝐴𝐴𝑐𝑐 is the set of parameters corresponding to the pair-copulas 𝐴𝐴 𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃(𝐹𝐹 (𝑃𝑃𝑃𝑃), 𝐹𝐹 (𝑇𝑇𝑇𝑇𝑇𝑇 )) , 𝐴𝐴 𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐹𝐹 (𝑃𝑃𝑃𝑃), 𝐹𝐹 (𝑄𝑄)) , or 
𝐴𝐴 𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|𝑃𝑃𝑃𝑃(𝐹𝐹 (𝑇𝑇𝑇𝑇 𝑇𝑇|𝑃𝑃𝑃𝑃), 𝐹𝐹 (𝑄𝑄|𝑃𝑃𝑃𝑃)) , and 𝐴𝐴 𝐴𝐴 is the average interarrival time between the flood events (in an annual 

time scale), which is obtained through summing the sequential time intervals between the events divided by 
365*(n − 1) and n is the number of events.

The worst-case scenario constitutes the simultaneous occurrence of multiple extreme events (i.e., joint occur-
rence of heavy precipitation, high river flows, and high water levels) that can lead to more severe hazard condi-
tions. This joint probability (AND) and the corresponding JRP are obtained by:

���� = � ((�� > ��) ∩ (� > �) ∩ (TWL > ���)) = 1 − ���(��|���) − ��(�|���) − �TWL(���|�����)

+ ���,TWL (� (��), � (TWL)|��(��,���)) + ���,� (� (��), � (�)|��(��,�))

+ �TWL,�|�� (� (TWL|��), � (�|��)|��(���,�)) − � (��� (��|���) , �� (�|���) , �TWL (���|�����) |��)
� (8)

JRP𝐴𝐴𝐴𝐴𝐴𝐴 =
𝜇𝜇

𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴

� (9)

where 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is the AND probability of the three drivers exceeding their corresponding thresholds (pr, q, or twl). 
𝐴𝐴 𝐴𝐴𝑃𝑃𝑃𝑃 (𝑝𝑝𝑝𝑝|𝜃𝜃𝑚𝑚𝑚𝑚) , 𝐴𝐴 𝐴𝐴𝑄𝑄 (𝑞𝑞|𝜃𝜃𝑚𝑚𝑚𝑚) , and 𝐴𝐴 𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇 (𝑡𝑡𝑡𝑡𝑡𝑡|𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) are the marginal probabilities of Pr, Q, and TWL given their set 

of parameters 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 , 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚 , and 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , respectively. 𝐴𝐴 𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃 (𝐹𝐹 (𝑃𝑃𝑃𝑃), 𝐹𝐹 (𝑇𝑇𝑇𝑇𝑇𝑇 )|𝜃𝜃𝑐𝑐(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)) , 𝐴𝐴 𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝐹𝐹 (𝑃𝑃𝑃𝑃), 𝐹𝐹 (𝑄𝑄)|𝜃𝜃𝑐𝑐(𝑓𝑓𝑓𝑓𝑓)) , 
and 𝐴𝐴 𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|𝑃𝑃𝑃𝑃 (𝐹𝐹 (𝑇𝑇𝑇𝑇 𝑇𝑇|𝑃𝑃𝑃𝑃), 𝐹𝐹 (𝑄𝑄|𝑃𝑃𝑃𝑃)|𝜃𝜃𝑐𝑐(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)) are the bivariate unconditional or conditional copula functions 
given the corresponding set of parameters 𝐴𝐴 𝐴𝐴𝑐𝑐 . In this study, the JRPs of both scenarios (AND, OR) are estimated 
at all locations considering an exceedance probability of 0.01 and compared with the ones associated with the 
traditional approach (i.e., assuming independence between the drivers of flooding) and with the univariate RP of 
the individual drivers.

Previous studies (e.g., Salvadori et al., 2011, 2016 and Xu, Wang, et al., 2019) suggest that the OR and AND 
scenarios might not identify all the dangerous regions in the probability space that can result in under- or 
over-estimations of the engineering designs. Salvadori and De Michele (2010) proposed Kendall's approach, 
which is based on the Kendall distribution function. However, the Kendall scenario does not have a direct 
physical/structural interpretation and can be used for preliminary hazard assessments (Salvadori et al., 2016). 
Accordingly, the probability space is divided into three zones, a critical probability layer p (a line in the 2D 
and a surface in the 3D probability space), a dangerous region denoted as 𝐴𝐴 𝐴𝐴

𝑑𝑑

𝑝𝑝  (d denotes dangerous region) 
that includes all the events with the joint probabilities more than p, a safe region denoted as 𝐴𝐴 𝐴𝐴

𝑠𝑠

𝑝𝑝 (s denotes safe 
region) including the events with joint probabilities less than p (Salvadori et al., 2016). The JRP of the danger-
ous region is defined as

JRPKendall =
�

�
[

� (���(��|���) , ��(�|���) , ����(���|�����) |��) > �
] =

�
1 −��(�)� (10)
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where ��(�) = �
[

�(��� (��|���) , ��(�|���) , ����(���|�����) |��) ≤ �
]

 . Estimation of 𝐴𝐴 𝐴𝐴𝑐𝑐(𝑝𝑝) for trivariate anal-
ysis of compound flood drivers can be complex. In this study, we resample Pr, Q, and TWL n times using the 
generated joint probability distribution and assess the corresponding joint probabilities. And the critical layer is 
obtained considering the 0.01 exceedances for marginals. And the number of events out of n with probabilities 
lower than the critical layer is divided by the sample size (n) to derive 𝐴𝐴 𝐴𝐴𝑐𝑐(𝑝𝑝) .

•	 �Compound hazard ratio (CHR)

Ganguli and Merz (2019) proposed the CHR index to characterize the interactions between different drivers and 
their effects on the return level estimates of compound events. This index is the ratio between the conditional 
T-year flow discharge rate considering the annual maximum TWL as the covariate and the unconditional T-year 
discharge. In other words, the index is calculated by dividing the return level of streamflow conditional on annual 
max TWL by its univariate (unconditional) return level. We extend this index for trivariate analysis of compound 
flooding and estimate the ratio of conditional and unconditional streamflow. The probability of T-year Q given 
Pr and TWL, denoted as 𝐴𝐴 𝐴𝐴

′
𝑇𝑇
 , is obtained according to Gonzalez-Lopez et al. (2019):

� (� ≤ �|�� ≤ ��, ��� ≤ ���) =
� (� ≤ �, � � ≤ ��, ��� ≤ ���)

� (�� ≤ ��, ��� ≤ ���)

=
�(��(�|���) , ���(��|����) , ����(���|�����) |��)

�(���(��|���) , ����(���|�����) |��)

� (11)

The CHR index is:

CHR =
�′

�

��
=

�−1
�|(��=��,�� �=���)

[

1 − �
��|(��, �� �)(�|��,���)

]

� −1
�

[

1 − �
��(�)

]� (12)

 𝐴𝐴 𝐴𝐴
′
𝑇𝑇
 and 𝐴𝐴 𝐴𝐴𝑇𝑇  are the conditional and unconditional return levels of Q. In this study, the levels of p for the three driv-

ers correspond to a return period of 100 years 𝐴𝐴 𝐴𝐴
−1

𝑄𝑄|(𝑃𝑃𝑃𝑃=𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝=𝑡𝑡𝑡𝑡𝑡𝑡)
 and 𝐴𝐴 𝐴𝐴

−1
𝑄𝑄

 are the inverse quantile transformations 
of copula-based and marginal distributions, respectively. 𝐴𝐴 𝐴𝐴𝑄𝑄(𝑞𝑞) is the T-year unconditional RP of streamflow 

𝐴𝐴 𝐴𝐴𝑄𝑄(𝑞𝑞) =
𝜇𝜇

1−𝐹𝐹𝑄𝑄(𝑞𝑞|𝜃𝜃𝑚𝑚𝑚𝑚)
 , and the conditional RP of streamflow 𝐴𝐴 𝐴𝐴𝑄𝑄|(𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃 𝑃𝑃)(𝑞𝑞|𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝) is calculated as:

��|(��, ���)(�|��, ���) =
�

1 − � (� ≤ �|�� ≤ ��, ��� ≤ ���)� (13)

•	 �Failure probability

The hydrologic risk is assessed based on the failure probability (FP), which refers to the probability of a flood 
event that occurs at least once during a given project lifetime (Xu, Wang, et al., 2019). The failure probability is 
obtained from:

�� = 1 −
∏�

�=1
�(���, ��, ����)� (14)

F represents the non-exceedance probability, and N is the number of events during the project lifetime (D) which 
is inversely related to the average interarrival time between the events (µ):

𝑁𝑁 =
𝐷𝐷

𝜇𝜇
� (15)

In this study, we assess FPs corresponding to the AND, OR, Kendall, independence, and univariate scenarios for 
return periods of 100 and 10 years and lifetimes ranging from 1 to 50 years. Further, the trivariate hydrologic risk 
for each driver considering the 100-year RP of the other two drivers was quantified.

According to Equation 14, in the OR scenario:

���� = 1 −
∏�

�=1
�
(

����(��|���) , ���(�|���) , �����(�
�|���
�) |��
)� (16)
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In the AND scenario:

����� = 1 −
�
∏

�=1
(���� (��|���) + ��� (�|���) + ����� (���|�����)

+
��,�� � (� (��), � (TWL)|��(��,���)) − 
��,�(� (��), � (�)|��(��,�)) − 
TWL,�|��(� (TWL|��), � (�|��)|��(���,�))

+
(���(��|����), ��(�|���), �TWL(���|�����)|��))

� (17)

And, in the Kendall scenario:

FPKendall = 1 −
∏�

�=1
��

�(�)� (18)

4.  Results and Discussion
4.1.  Marginal Distributions and Pair-Copula Functions

The best-fitted distribution representing each driver of flooding at each location is selected from 10 parametric 
distributions based on the AIC criterion. Further, the KS goodness of fit test is applied to verify the selected 
distributions, which are shown in Table S3 in Supporting Information S1 along with the corresponding AIC and 
p-values. In most locations, the river discharge rates (Q) are represented by GPD and exponential distributions, 
and the total water levels (TWL) by GPD and Weibull distributions. As discussed in Section 3, extreme precipi-
tation amounts follow GPD at all locations.

The pair-copulas, of the C-vine model, are selected from 41 copula functions based on AIC at each location. 
According to Equation 4, three pair-copulas (two unconditional and one conditional) are determined to assess the 
corresponding compound flood hazards (Table S4 in Supporting Information S1). The results show that overall, 
the majority of the joint variations follow the Frank copula function. The analyses of the bivariate dependencies 
based on Kendall's tau show that the dependencies between (Pr, TWL) are mostly positive and significant across 
all locations, especially the Atlantic and Pacific coasts. Pr and Q show positive dependencies in fewer locations 
compared with (Pr, TWL), especially at the Great Lakes and Pacific regions. Moreover, the joint (Q, TWL) event 
indicates positive dependencies over both coasts and mostly eastern GL. The number of locations out of 41 with 
significant dependencies for (Pr, TWL), (Pr, Q), (Q, TWL) is 31 (7 at the Pacific, 22 at the Great Lakes, and 2 at 
the Atlantic area), 32 (4 at Pacific coast, 27 at Great Lakes, and 1 at Atlantic coast), and 33 (7 at Pacific coast, 24 
at Great Lakes and 2 at Atlantic coast), respectively (Table S5 in Supporting Information S1, Figure 4). Besides, 
there are 13 locations mainly at the Pacific and GL area where the three joints show positive dependencies. 
However, more sites with positive dependencies are found at three regions regarding the bivariate events of (Pr, 
TWL) and (Q, TWL). The dependencies between Pr/TWL are stronger (from 0.4 at the Pacific to 0.02 at the GL) 
than Pr/Q and Q/TWL in the majority of the locations across the three domains (Figure S3 in Supporting Informa-
tion S1). This can be partly associated with the occurrence of seiche events combined with intense rainfall in the 
coastal areas at the GL and the extratropical cyclones striking the coasts, especially the Atlantic. Besides, extreme 
flows depend on several basin characteristics. For example, steep basins with a quick hydrological response, high 
mean elevation, compacted soil, and impermeable bedrocks are found on the west coast (Eaton & Moore, 2010), 
which can lead to a higher compound flooding hazard associated with Q/TWL.

4.2.  Compound Flood Hazard Analysis

•	 �Joint return periods of compound flood drivers

The trivariate JRPs corresponding to the AND, OR, and Kendall scenarios are determined based on the selected 
marginal distributions and pair-copula functions that form the multivariate joint distributions. Results are 
compared with the JRPs estimated assuming that the drivers are independent to investigate the extent of under- or 
over-estimations of the associated hazards. At each location, the trivariate joint distribution is developed consid-
ering both conditional and unconditional pair-copulas. In trivariate analysis, the estimated JRPs are affected by 
the interdependencies between (Pr, Q), (Q, TWL), and (Pr, TWL).

Figure 5 shows the estimated RPs of (Pr, Q, and TWL) for univariate, independent, and OR scenarios at 41 loca-
tions across Canada's coasts considering an exceedance probability of 0.01. The median OR-JRPs and the range 
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Figure 4.  Kendall's Tau and its significance corresponding to (Pr, TWL), (Pr, Q), and (Q, TWL) at 41 locations across Canada.
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of the uncertainties vary from 1.1 to 3.5 years and 0.08–17.5 years, respectively between all the locations. The 
independence OR-JRP varies from 2.8 to 3.2 years, and the univariate RPs range from 5.7 years at the Atlantic 
coast to 6.6 years at the Pacific coast. Overall, the estimated RPs corresponding to the univariate scenario is larger 
than those associated with the OR and independence scenarios. The independence and OR scenarios show larger 
differences at locations 24 to 29, at the Great Lakes region. The slight variations in independence and univariate 
cases at different locations are associated with changes in interarrival times due to different lengths of the time 
series. The lower bounds of the JPRs are lower than the ones based on the independence assumption, across all 
locations.

These differences highlight the importance of assessing multiple drivers of flooding and their interrelationships 
rather than studying each driver in isolation, to avoid underestimation/overestimation of the corresponding flood 
hazards, especially at the Great Lakes and the Atlantic coasts.

The effects of positive interrelationships between the drivers on the AND-JRPs are shown in Figure 6. In assess-
ing this scenario, we focus on the locations where at least two out of three dependencies between the drivers are 
positive because if the overall dependency between the flooding drivers is negative, then, there is a rare chance of 
their joint occurrences. The results are compared with univariate and independent scenarios at 21 locations. JRP 
increase by 2% to over 15% indicating possible overestimations of compound flood hazards associated with the 
three drivers, in the unrealistic independence scenario, when the dependencies are negative.

The median AND-JRPs vary from 16 to 202 years between different locations which in comparison with the inde-
pendence scenario changing from 58,297 to 63,879 years are remarkably lower. The range of uncertainty varies 
from 13 (at the Great Lakes region) to 555 years (Pacific region). The large range of uncertainty for the AND 
scenario is partly associated with sensitivities to the dependencies between multiple variables and the lengths 
of the data records. The lower quantiles in the AND-JRP are associated with higher dependencies between the 
drivers. The AND scenario also indicates that not considering the dependencies between the drivers can lead to 
underestimations of the flooding hazard (Figure 6).

It should also be mentioned that at locations 9, 12, 18 at the GL and 40 at the Atlantic area, the higher quantile 
JRP exceeds the independence JRP because the range of parameters for at least one pair-copula includes both 
negative and positive dependencies.

Figure 5.  The estimated return periods of Pr, Q, and TWL based on univariate, independence, and OR scenarios at 41 locations across Canada's coasts.
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The 100-year return period of Q under the independence condition is compared with its conditional RP consid-
ering the dependencies between the drivers. This RP is more than 100 years for 25 locations. Considering the 
median RP values, the maximum value is 140 years (related to higher dependency between the drivers) at loca-
tion number 4 (Atlantic region) and the lowest is 89 years (related to lower dependency between the drivers) at 
location 24 (GL) (Figure 7). The range of the uncertainty varies from 0.4 years to more than 54 years both at 
the Great Lakes. These results highlight that the univariate analyses, that do not consider the interrelationships 
between the drivers, can lead to either under- or over-estimations of the flood hazards undermining the sustaina-
ble, long-lasting, and cost-effective engineering designs in these areas.

The results of the Kendall JRP are shown in Figure 8, which fall between the OR and AND JRPs consistent with 
previous studies (e.g., Xu, Wang, et al., 2019). The same is almost true for both upper and lower bounds of JRPs. 
Overall, the estimated minimum and maximum values are 7 (at the Great Lakes) and 662 years (Atlantic region), 
respectively, and the uncertainties range from 9 to 502 years across all locations. The overall comparison of the 
three regions shows the JRPs for the Great Lakes are lower than those of the two coastal regions, and for the 
Atlantic region lower than the Pacific region. Similar to the AND scenario, with an increase in the strength of 
the positive dependency between the drivers, the JRP decreases and vice versa. For example, if the joint events 
of (TWL, Pr) and (Pr, Q) show moderate positive dependencies while the (TWL, Q) event has a high negative 
dependency at a location, the AND and Kendall JRPs may increase. This behavior is observed at some locations 
such as 4 and 5 (Pacific coast), 17, 20, 22, and 29 to 38 (Great Lakes), and 41 (at Atlantic coast).

The results of the CHR index for 100-year streamflow events at 41 locations across Canada's coasts are shown in 
Figure 9. At 23 locations, the median index exceeds one which indicates that fluvial flood hazard is amplified by 
other mechanisms such as extreme sea level in the study area. These sites are highlighted in Table S3 in Support-
ing Information S1.

•	 �Failure probability

We estimate the FPs corresponding to 100 and 10-year events for different hazard scenarios including OR, AND, 
and Kendall, and characterize their uncertainties. These FPs are compared with the estimated FPs corresponding 
to the independent, univariate and conditional scenarios. Analyses are conducted at all locations, however, for the 
sake of brevity, we present the results for location 41 at the Atlantic coast. As expected, an increase in the JRP 

Figure 6.  The estimated return periods of Pr, Q, and TWL based on univariate, independence, and AND scenarios at 21 locations across Canada's coasts.
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Figure 7.  The return periods of Q and the corresponding uncertainties conditional on Pr and TWL for different locations 
across the three regions. (a) The Pacific coast (b) the Great Lakes, and (c) the Atlantic coast. The points with RPs of more and 
less than 100 years are shown by circles and triangles, respectively.
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reduces the chances of the concurrent and univariate occurrence of multiple flood events and the corresponding 
FP values (Figure 10). These are true for three OR, AND, and Kendall scenarios, their lower quantile, and upper 
quantile FP values as well. Considering both RPs, the univariate and conditional univariate FP is lower than the 
FP of the trivariate OR scenario. This highlights the importance of analyzing the combination of multiple flood 
hazards at a location to avoid underestimation of the corresponding hazards. This is also evident in the univariate 
analysis as the conditional scenario has higher FP than the univariate scenario. Besides, under the OR scenario, 
the FP can be overestimated based on the independence scenario, which is consistent with studies in other areas 
(Moftakhari et al., 2017; Xu, Wang, et al., 2019). It should also be mentioned that under all scenarios, the FP rises 
with increases in the project lifetime.

The trivariate hydrologic risks (determined based on FPs) of different levels of each driver with a 100-year recur-
rence interval of the other two drivers are obtained for all the locations for project lifetimes of 100, 50, 20, and 
5 years Figure 11 compares different scenarios for location #41 on the Atlantic coast. Accordingly, considering 
the median FP, the trivariate hydrologic risk is constant as long as the design rainfall is less than 80, 100, 115, 

Figure 8.  The estimated Kendall JRP and its uncertainty (lower and higher bounds of JRP) at different locations across three regions.
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and 125 mm, respectively for service times of 5, 20, 50, and 100 years and then it decreases sharply, considering 
100-year Q and TWL. These values are 18, 24, 28, and 31 m 3/s for design Q with 100-year Pr and TWL and 
2.2, 2.4, 2.5, and 2.6 m for design TWL, with 100-year Q and Pr events. Considering the 100-year lifetime, the 
hydrologic risk approaches zero when the precipitation design level exceeds 170 mm and this avoids over-design 
leading to extra expenses. Therefore, the design rainfall in this location should be between 80 and 170 mm consid-
ering the security point of view. These design values should be between 20 and 50 m 3 for Q and between 2.2 
and 2.7 m for TWL. These results are important for the robust management of the coastal areas as they provide 
reliable hazard assessments for the engineers and the policymakers to avoid underestimation (which causes the 
failure of the design) or overestimation (which causes the surplus expenses) of the engineering safety levels in 
these areas.

The obtained results indicate that the conventional approach for flood hazard estimation, as currently adopted 
by most agencies, can lead to an underestimation of the corresponding risks across Canada's coastal areas in 
particular the Atlantic. More robust design levels are obtained by considering all the flooding mechanisms and 
the corresponding interrelationships. The trivariate approach proposed in this study can be applied for such anal-
yses and other interrelated hazards.

5.  Conclusions
This study analyzes the compound flood hazard hazards across Canada's coasts considering the interrelationships 
between three main drivers of flooding including precipitation, total water level, and streamflow. We focus on 
extreme precipitation events and the corresponding high flows and total water levels within a 1-day time lag. 
After preprocessing the data, 41 locations distributed across three regions of the Pacific, Great Lake, and Atlan-
tic coasts are selected for the analysis of compound flooding by developing the corresponding trivariate joint 
distributions.

The best-fitted marginal distribution for each variable at each location is selected from 10 continuous univariate 
distributions. Further, according to the C-vine algorithm, the best-fitted conditional and unconditional bivariate 
copulas among 40 different copula functions are selected using AIC to represent the dependencies between driv-
ers of flooding. All parameters and the corresponding uncertainties are estimated through the Bayesian approach.

Figure 9.  The CHR index and the related uncertainty estimated for Q|TWL, Pr at different locations.
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Further, the joint (OR, AND, Kendall) and conditional RPs and the corresponding uncertainties are quantified 
in this study. The return periods of individual drivers of flooding are compared with those estimated based 
on the joint and conditional scenarios. The results indicate positive interactions between at least two flooding 
drivers at 21 locations across three regions mainly at the Atlantic coast. Besides, the dependency between the 
TWL and Pr is higher than the other two scenarios, especially at the Atlantic coast. Results also highlight the 
underestimations of the corresponding hazards when drivers are investigated in isolation. Overall, 23 loca-
tions, across Canada's coasts, show positive dependencies between different drivers of flooding resulting in 
CHR values above unity.

The univariate analysis underestimates the failure probability of compound flood events. For example, at loca-
tion 41, in the Atlantic, the FP is underestimated by almost 70% when the interrelationships between drivers 
of flooding are not considered considering a design lifetime of 50 years. Besides, the FP corresponding to the 
unrealistic independence scenario results in under- or over-estimations of FP compared to AND/OR scenarios. 
Considering the 100-year project lifetime, the trivariate hydrologic risk decreases sharply when the design Pr is 
larger than 80 mm, and approaches zero with a design level of 170 mm, suggesting a design rainfall magnitude 
of 80–170 mm for this location. The estimated design values of Q and TWL are between 20 and 50 m 3/s and 
between 2.2 and 2.8 m, respectively. The trivariate analysis conducted in the study can lead to more robust assess-

Figure 10.  The failure probability (FP) values corresponding to (a, b) OR, univariate and conditional, (c, d) AND, (e, f) Kendall scenarios for 10 and 100-year events.
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ments of the flooding hazards over the Canadian coastal zones. Further, it provides critical information for the 
sustainable design and planning of communities and infrastructure systems. Similar analyses can be conducted 
over other coastal areas.

Data Availability Statement
The hourly TWL data is available from the tidal gauge records provided by the Fisheries and Oceans Canada 
(https://www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/twl-mne/inventory-inventaire/index-eng.htm). To download 
this data type, select one of the four main regions including Pacific, Central and Arctic, Quebec, and Atlantic 
provided in the link above, and then click on the tidal data corresponding to each gauge which guides you to a 

Figure 11.  The trivariate hydrologic risk under different project lifetimes for each driver considering the 100-year event of 
the other two drivers: (a) Pr, (b) Q, and (c) TWL.
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download link. Afterward, select the start and the end date of the data you want to download and click on the 
“submit” button. If any data is available in this time range, it can be downloaded. The streamflow data can be 
downloaded using the “ECCCDataExplorer” software. You can narrow down your search for the gauges with 
specific characteristics using the options such as station number or station name, Hyd status, etc. When the gauge 
is selected, using the export tab >> Export selected stations, the streamflow time series can be saved. Moreover, 
the software provides the location of all the hydrometric gauges on a map. Daily precipitation can be obtained 
from the Adjusted and Homogenized Canadian Climate Data (AHCCD) (Mekis & Vincent, 2011). The Vine-
Copula package (Schepsmeier et al., 2015) available in R programming software is applied to construct the pair 
copulas.
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