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Flooding MapRemote sensing  ImageUrban flood Disaster Response 

• A growing number of flooding events 

with the increased intensity of climate 

change (Armenakis et al., 2017; Feng 

et al., 2015). 

• More earth observation data available 

from various remotely sensed 

platforms (Ghaffarian et al., 2018).

• Floodwater mapping based on aerial 

imagery can offer timely information

for emergency response and rescue 

operations in urban areas (Shen et 

al., 2019). 

1. Background
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➢ Spectral index methods

• Floodwater mapping methods

𝐹𝑊𝐼 =
𝐵𝑟 − 𝐵𝑏 + 𝐵𝑟 − 𝐵𝑔

100

Advantage

Simple and fast deployment

Disadvantage

(1) Need more processing steps, such as image 

segmentation, spectral analysis

(2) Cannot extract the visible floodwater covered by 

shadows, which underestimates the flooding 

outcome in dense urban areas

Images

Extraction results

w/o considering

shadowed floodwater

Extraction results

w/ considering

shadowed floodwater

Spectral index methods

AI techniques

e.g., floodwater index (FWI) (Zhang & Crawford, 2020).

Traditional machine learning 

Deep learning

1. Background
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➢ Deep learning

➢ Traditional machine learning

e.g., support vector machine, random forest, etc.

Advantage

(1) Only requiring a small number of training samples

(2) Higher accuracy than spectral index method

Disadvantage

(1) Relying on manually designed features (e.g., spectrum,

texture, and shape, etc.) with expert knowledge

(2) Performance does not increase with training data size

(3) Hard to design proper features to extract the floodwater

in shadows

e.g., convolutional neural networks (CNNs), etc.

Advantage

(1) Automatic feature extraction

(2) The more training data, the better performance

Disadvantage

(1) Requiring huge computing resources

(2) Requiring a large amount of labeled training data

1. Background
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(1) Spectral index and traditional machine learning methods cannot efficiently detect visible

floodwater in shadows.

(2) Deep learning methods perform better than traditional methods. However, It is time-

consuming to create a mass of labels for model building.

• Research question?
How can we extract the floodwater (including shadowed and non-shadowed) from the

aerial imagery base on deep learning algorithm with a limited number of labeled samples?

• Existing issues

2. Research question
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• Semi-supervised learning
Incorporating a small number of labeled data and a large 

amounts of unlabeled data to determine a better decision 

boundary.

➢ Consistency regularization encourages the model to give 

consistent predictions for unlabeled inputs perturbed in 

different ways .

➢ Loss function:
ℒ = ℒ𝑠 + ℒ𝐶𝑜𝑛𝑠

ℒ𝑠 denotes the supervised loss.

ℒ𝐶𝑜𝑛𝑠 denotes the consistency loss.

➢ Why works?

The use of large amounts of unlabeled data can enlarge the 

training data distribution and help learn more hidden features 

to improve the model generalizability.

➢ Advantages

A large number of unlabeled data can be utilized to  improve 

the model performance when there are very few labels.

3. Methodology
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3. Methodology

Y. He, J. Wang, Y. Zhang, and C. Liao, “Enhancement of Urban Floodwater Mapping From Aerial Imagery With Dense Shadows via Semisupervised Learning,” IEEE 

Journal of Selected Topics in Applied Earth Observations and Remote Sensing, pp. 9086-9101, 2022, doi: 10.1109/JSTARS.2022.3215730.

• 𝑥𝐿, 𝑥𝑈 denote the labeled and unlabeled image,

respectively, while 𝑌∗ denotes the ground truth label;

• 𝑓𝜃1 and 𝑓𝜃2 are two identical sub-models with different

initialization parameters 𝜃1 and 𝜃2;
• 𝑓𝜃1(𝑥

𝐿) means the probability map of inputting image 

𝑥𝐿 to the model 𝑓𝜃1;

• 𝑌1(𝑥1
𝑈) means the binarization map of inputting image

𝑥1
𝑈 to the model 𝑓𝜃1 , with a threshold of 0.5 (if

probability >= 0.5, value = 1 → floodwater; otherwise,

value = 0 → non-floodwater);

• 𝑥
~

is the mixed image based on the mask 𝑀 generated

based on CutMix or ClassMix strategy, while 𝑌1
~

, 𝑌2
~

denote the mixed binarization maps using two

unlabeled images and the same mask 𝑀;

• “//” signifies the stop-gradient.

• Proposed semi-supervised framework
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• Study area

➢ In June 2013, a major flooding hit the

Calgary city, Canada.

➢ The optical aerial imagery (0.2-m

spatial resolution) was captured in

the early morning (8:00-9:30 a.m.) on

June 22, 2013, by the City of Calgary.

➢ Issue: There are many shadows in

the aerial imagery, leading to a large

underestimation of extraction results.

Alberta

Calgary

Canada

Study Area

4. Experiments and results
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➢ The top left figure is the split grids. The whole

area was split into 2048 × 2048-pixel small

patches for collaborative labeling.

➢ The top right figure is the final labeling results

used as the ground truth data in the study.

➢ Removing some invalid patches, we finally

obtained 182 labeled patches without overlap.

Ground truthSplit grids for labeling

4. Experiments and results

• Data labeling
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• Influence of shadows

4. Experiments and results
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As shown in the right image:

▪ The training samples are chosen from two representative sites A, and B.

▪ In training stage, total eight 2048×2048-pixel patches are used for training (patch

id:13, 39, 102, 124) and validation (patch id: 14, 27, 125, 127).

▪ In evaluation stage, the remaining 174 patches are used to evaluate the model

performance.

▪ The training samples used in training stage only account for 4.47% of the total

data, the corresponding floodwater pixels account for 8.85% of the total floodwater.

➢ Two representative sites

➢ Training data split

Training Stage Evaluation Stage

Training Validation Testing

Number of image patches 4 4 174

Patch size 2048×2048 2048×2048 2048×2048

Site 
Area 

(km²) 
Land Use Main Landscape 

A 2.711 Central commercial area Downtown center with high-rise buildings

B 2.681 Matured residential land 
Matured residential area with single houses 

and trees

• Training sample selection

4. Experiments and results
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Floodwater index (FWI)

(Zhang & Crawford, 2020)
Image Supervised learning (SL) Semi-supervised learning (SSL)

• Qualitative comparison

• Quantitative comparison

FP is the incorrectly classified floodwater pixels TP is the correctly classified floodwater pixels FN is the missing floodwater pixels

Method Precision Recall F1 IoU

FWI 90.63% 68.37% 77.94% 63.86%

Deep learning SL 94.47% 92.99% 93.72% 88.19%

SSL 97.38% 95.31% 96.34% 92.93%

4. Experiments and results
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• Enlarged examples

TP FN FP

Image              FWI                 SL                SSL 

4. Experiments and results
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In this study:
• Shadow’s influence cannot be ignored in floodwater detection from dense urban areas.

• Deep learning methods can achieve much better results than traditional spectral index method

due to considering the floodwater in shadows, despite much more training samples are required.

• Semi-supervised learning method can yield a remarkable performance (over 96% F1-score) only

using a limited number of labeled samples (4.47% of the total data).

Future work:
• Investigating the performance of proposed method on multi-source and multi-modal remote

sensing data.

• Exploring how to reduce the training cost facing a large amount of unlabeled data.

5. Conclusions
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