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COASTAL COMPOUND FLOODING

a Multivariate event overview
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COASTAL MANAGED RESERVOIR STUDY

MOTIVATION

Near-flooding event in 2012
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* >60 mm rain accumulated (5 days).
* Soil was already saturated.
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COASTAL MANAGED RESERVOIR STUDY

DATASETS

Regional climate model (RACMO — EC-
EARTH) SMILE
(Single Model Initial Condition Large Ensemble)

16 realizations 1950-2000 (50 years each)
= 800 years

Precipitation, surge, tides
(surge was obtained empirically from wind)

Hydrological model (RTC-Tools)

Inland water level

ORIGINAL DATA
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Environmental Research Letters
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~ Analysis of a compounding surge and precipitation eventin the
Netherlands
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COASTAL MANAGED RESERVOIR STUDY
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STATISTICAL MODELLING FRAMEWORK

Data inventory/pre-processing Dependence analysis

Marginal analysis Quantify compound effects
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Event sampling

It is non-trivial to decide what
combination of surge and
precipitation leads to high
water levels. The objective of
this step is to identify
precipitation, surge and tide
predictors that explain most of
the dependence structure and
can be used to explain large
water levels. Event sampling
affects impact function and
marginal/copula
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EVENT SAMPLING

We used compositional analysis as a tool to identify potential candidates of predictors
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MARGINAL DISTRIBUTIONS
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This confirms that extreme water levels are not associated with the largest surge/precipitation. Extreme surges
(which impede drainage) seem to be more relevant.



IMPACT FUNCTION
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JOINT PROBABILITY DISTRIBUTION

@ Original data
Dependence pdf
Independence pdf
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fxv(z,y) = ClFx(z), Fy (Y)]fx(z)fy (y)

Copula fitting: 40 possible Vine copulas. Select
one with lowest Akaike information criterion
AIC). Result: Rotated Tawn type-| copula with
tau=-0.05

Comparison with shuffled (uncorrelated) data shows
that the joint probability distribution has larger co-
occurrence probability for original data.

Surprisingly, correlation for shuffled data is not zero,
and it is negative for the original data.

Are the drivers (surge, precipitation) negatively
correlated?



DEPENDENCE FOR IMPACT-CONDITIONED DRIVERS
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If drivers have positive contribution to impact, positive
dependence between drivers is not necessarily reflected
in positive dependence between impact-conditioned
predictors. Dependence # correlation

Comparison against case of zero dependence can
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JOINT PROBABILITY DISTRIBUTION

@ Original data
Dependence pdf
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fxv(z,y) = ClFx(z), Fy (Y)]fx(z)fy (y)

Copula fitting: 40 possible Vine copulas. Select
one with lowest Akaike information criterion
AIC). Result: Rotated Tawn type-| copula with
tau=-0.05

Comparison with shuffled (uncorrelated) data shows
that the joint probability distribution has larger co-
occurrence probability for original data.

Surprisingly, correlation for shuffled data is not zero,
and it is negative for the original data.

Are the drivers (surge, precipitation) negatively
correlated? No!

Shuffled predictors have a correlation of -0.15,
which is even more negative than -0.05, meaning
drivers in original data have positive dependence.
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THE ROLE OF INTERNAL CLIMATE VARIABILITY

We use 50 yearS Of data (instead Of 800 years) for (a) 50 years for‘all components' ) (b) Impact funcltion traim'ed witlh all data
different parts of the statistical framework, and assess (IR standard sami
the impact on Return Period Ratio (= Increased
probability due to compound effect)

50-year runs
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* Impact function based on MLR with standard sampling: i.e. the bin-sampling approach is not implemented.

| 800-year ensemble
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(Santos et al., 2021)
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CONCLUSIONS

We studied a multivariate compound event with preconditioning.

The proposed statistical framework captures compound flooding processes robustly for the study area.
This framework can be applied to other areas, but simulations of drivers and impact are needed to fit the
marginals/copula and calibrate the impact function.

Compositional analysis is a useful tool to define/identify compound events.

For the study area, we obtain that the dependence structure between surge and precipitation that led to
the near flooding event in 2012 event occurs >4 times more frequent in average due to dependence
between precipitation and surge. Therefore, these cannot be considered independent.

The interpretation of dependence measures for impact-conditioned predictors is counterintuitive. Zero
correlation does not necessarily mean independence (or negative correlation does not necessarily mean
negative dependence). One possible way to interpret this is to stablish a reference independent case.

It is important to calibrate the impact function with a focus on extremes.

Internal climate variability can be a significant source of uncertainty. Using 50-year time series might not
be enough to capture relationship between drivers and impact, and the compound effects, as shown for

the study area. Thanks! Questions?
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