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Gust effect factors of components and cladding wind
loads for low-slope roofs on low-rise bulldings
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Background

Low-rise buildings are vulnerable to wind-induced forces, if they are located in low-
seismic zones. Flow separation generates strong wind-induced suction pressure which
causes significant damage to roof.

Wind loads can be estimated by two methods: (i) gust effect factor method (G) which was
developed using quasi-steady theory (QST). This method is widely used for along wind
response for high-rise buildings and (ii) instantaneous peak pressure. This method is
widely used for components and claddings (C&C).

QST assumes Gaussian distribution of wind flow and negligible effects of body generated
turbulence.

Motivation

Low-rise buildings were assumed as rigid when G was developed. Hence, 0.85 constant
value has been assigned in ASCE 7 since 2002.

However, in recent time, architectural freedom, light weighted facades and increased use
of roof top solar structures raises concern for structural flexibility.

This might conflict the basic assumptions of G. Hence, its theoretical re-evaluation is
necessary for building roofs.

Prior research proves that QST is applicable for large-exposed area of roofs. However, its
extent is yet to be determined.

Research objective

Hypothesis: The G might lose the precision to predict correct wind-induced loads on
small-exposed area of roofs.

Objective: Evaluate G and assess its theoretical relevance for low-sloped gable roofs by
progressively varying wind exposed area using 28 buildings from NIST database.

For estimation of G, method of Wang and Kopp (2021) is used. Only low-sloped low-rise
buildings are considered.
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edge of bluff body.

« The pressure magnitude
reduces as the effects of
flow separation reduces.
The same increases when
flow reseparates from the
trailing edge.

« Statistical results, such
as skewness and kurtosis,
Indicate that wind flow
near windward edges is
highly non-gaussian.

« The magnitude of
statistical results, reduces

for incremental point
pressure approach.
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« Shown spatial plots are 1:12 125x80x16. Zones are assigned as per Ch. 30, ASCE 7-22.
Extreme pressure and respective parameters are extracted plotted against varying area.
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mean pressure. , Conclusion
« Gust effect factor (G) is a 8

« Separated shear layer and conical vortices are majorly responsible for peak pressure at
windward edges of roof or corners.

« The area-averaging techniqgue reduces effects of peak pressure and instantaneous
fluctuations. Hence, the effects of body-generated turbulence is noticeable if the exposed
area is < 1000 ft=.

« The existing constant value 0.85 for gust effect factor underestimates the wind-induced
loads on C&C.

« QST is still applicable at roof region if the considered exposed area is large enough.
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factor and gust dynamic 12
pressure factor.

« The trend is similar to Q
which indicates that G Is
mainly depends on Q.

« Area-averaging effects
reduces the overall
magnitude of G due to
dilution of peak pressure
under the considered 0
exposed area. X/H
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