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Funding
• Linking Hazard, Exposure and Risk Across Multiple Hazards

• NSERC CRD with Chaucer Synd.: 2015-2020  $1,375,600 
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2. Integration of general and specific earthquake loss estimation platforms

3. New methods for quantifying earthquake hazard.

4. Improved risk modeling for wind storms by accounting for the effects of storm 
duration.

5. Mapping climate change impacts on flood hazard in Canada

6. Tool for mapping resilience of urban regions across Canada for all hazards
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• Resilience as a new development paradigm:
• Practical link between adaptation to global change and sustainable 

development

• Systems approach needed for quantification of resilience
• Understanding of local context of vulnerability and exposure is 

fundamental for increasing resilience
• Consideration of time and space an integral part of 

quantification
• Modelling single and multiple hazard conditions requires 

different modelling



• Introductory remarks

• From risk to resilience

• Quantitative resilience of infrastructure systems
• Systems approach (simulation, time and space)

• Single hazard case

• Multi hazard case

• An example – Greater Toronto Area

• Conclusions
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INTRODUCTION4| Natural hazards – single and multiple



INTRODUCTION5| Infrastructure – single and interconnected



INTRODUCTION6| Infrastructure response

Infrastructure interdependence (Rinaldi et al., 2001)

• Cascading failures (throughout 

the whole infrastructure system 

at regional and national scales) 

• Effective protection and recovery 

are hard and costly

• Infrastructure system resilience 

is often overestimated

• Traditional approach – risk based
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• The broad definition 

• The combination of the probability of 
an event and its negative 
consequences. 

Risk = Hazard x Consequence 
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RISK TO RESILIENCE
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• Risk management framework (Leiss, 2001)
• Static (in time and space)
• Difficulties in assessing probability of extreme 

events 
• Difficult integration of physical, social, economic 

and ecological concerns

• Resilience framework
• Dynamic (in time and space)
• Not only assessment of direct and indirect losses 

– broader framework 
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• Simonovic and Peck, 2013
• …the ability of a system and its component parts to anticipate, absorb, 

accommodate or recover from the effects of a system disruption in a 
timely and efficient manner, including through ensuring the 
preservation, restoration or improvement of its essential basic 
structures and functions…
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• Four layers: 
• Streets
• Water supply
• Energy supply
• Information

• Nodes and edges (two states)
• Intra and interconnections
• Single and multiple disasters

x

y

Urban infrastructure network system – single hazard

• Five recovery strategies
• First repair first failures
• First repair last failures
• First repair important components 

independently 
• First repair the obvious dependent 

elements 
• First repair the hidden  dependent 

elements 
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QUANTITATIVE RESILIENCE13| Urban infrastructure network system – single hazard



QUANTITATIVE RESILIENCE14| Urban infrastructure network system – two hazards



Infrastructure Number
Electric Transmission Network

Power Generation
Nuclear 2
Gas -fired 6

Transmission Stations
500kv 4
230kv 43
115kv 26

Power line
500kv 13
230kv 64
115kv 30

Gas Transmission Network
Compressor Stations 2
Meter Stations 15
Pipelines 22

Oil Transmission Network
Pumping Stations 4
Meter Stations 1
Pipelines 6

QUANTITATIVE RESILIENCE – GTA CASE STUDY15| Urban infrastructure network system – two hazards



QUANTITATIVE RESILIENCE – GTA CASE STUDY16| Urban infrastructure network system – two hazards



QUANTITATIVE RESILIENCE – GTA CASE STUDY17| Urban infrastructure network system – two hazards



QUANTITATIVE RESILIENCE – GTA CASE STUDY18| Urban infrastructure network system – two hazards



QUANTITATIVE RESILIENCE – GTA CASE STUDY19| Urban infrastructure network system – two hazards



QUANTITATIVE RESILIENCE – GTA CASE STUDY20| Urban infrastructure network system – two hazards
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• Network layers: 
• Streets
• Water supply
• Energy supply
• Information

• Non-network infrastructure
• Critical facilities 

Towards general model – multiple hazard

• Temporal relationships 

• Spatial relationships 



QUANTITATIVE RESILIENCE22| Towards general model – multiple hazard
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• Single hazard impacts: 

• Multiple hazard impacts during phase j at specific time: 

• State function equation of each component:

• Physical and functional system performance: 

• Robustness: 
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• Resilience as a new development paradigm:
• practical link between adaptation to global change and sustainable 

development

• Systems approach needed for quantification of resilience
• Understanding of local context of vulnerability and exposure is 

fundamental for increasing resilience
• Consideration of time and space an integral part of 

quantification
• Modelling single and multiple hazard conditions requires 

different modelling



RESOURCES24|

www.slobodansimonovic.com

1. Simonovic, S.P. (2016) “From risk management to quantitative disaster 
resilience: a paradigm shift”, International Journal of Safety and Security 
Engineering, 6(2):85-95.

2. Kong, J., and S.P. Simonovic, (2018) “A Model of Infrastructure System 
Resilience”,  International Journal of Safety and Security Engineering, 
8(3):377-389.

3. Kong, J., S.P. Simonovic, and C. Zhang (2018) “Sequential hazards 
resilience of interdependent infrastructure system: A case study of 
Greater Toronto Area energy infrastructure system”, Risk Analysis, 
39(5)1141-1168, DOI: 10.1111/risa.13222.

4. Kong, J., and S.P. Simonovic, (2019) “Probabilistic multi hazard resilience 
model of interdependent infrastructure system”, Risk Analysis, 
39(8):1843-1863, DOI: 10.1111/risa.13305 .

http://www.slobodansimonovic.com/


OPPORTUNITY23|

www.icfm.world 



OPPORTUNITY24|



Q&A



Slobodan P. Simonović
Research facility26|

• Computer-based research laboratory
• Research: 

• Subject Matter - Systems modeling; Risk and 
reliability; Water resources and environmental 
systems analysis; Computer-based decision support 
systems development.

• Topical Area - Reservoirs; Flood control;  
Hydropower energy; Operational hydrology; Climatic 
Change; Integrated water resources management. 

• > 70 research projects
• Completed: 8 visiting fellows, 19 PosDoc, 22 

PhD and 43 MESc
• Current: 2 PosDoc, 2 PhD, 2 MESc and 2 

visiting scholars
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• > 540 professional publications
• > 235 in peer reviewed journals 
• 3 major textbooks

• Water Resources Research Reports 
105 volumes 

• > 75,000 downloads since 2011



• Water Resources Management Capacity 
Building in the Context of Global Change 

• Systems Engineering Approach  to the 
Reliability of Complex Hydropower 
Infrastructure

• Linking Hazard, Exposure and Risk Across 
Multiple Hazards
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