TITLE ... TBD (Spine title: Plib)

by

$MMMM \ \underline{YYYYY}$

Graduate Program in Statistics and Actuarial Science

The Department of Statistical and Actuarial Sciences.

The University of Western Ontario

London, Ontario, Canada

MMMM YYYYY 2018

Abstract

This is an abstract.

Keywords: aaaa, bbbb

Contents

Abstract	ii
List of Figures	iv
List of Tables	v
List of Appendices	vi
1 DSAS	1
2 Theorems 2.1 Basic Theorems	3
Bibliography	3
A Proofs of Theorems	5

List of Figures

List of Tables

1 1	A random table	-
1.1	A random table	 -

List of Appendices

Appendix A Proofs of Theorems		5
-------------------------------	--	---

Chapter 1

DSAS

Logo of DSAS.

Figure 1.1: Logo of DSAS

Here's a table.

n	α	nα	β
1	0.2	0.2	5
2	0.3	0.6	4
3	0.7	2.1	3

Table 1.1: A random table

$$y = mx + b (1.1)$$

$$= ax + c (1.2)$$

This is an un-numbered equation, along with a numbered one.

$$u = px$$

$$p = P(X = x)$$
(1.3)

Look at Table 1.1 and Figure 1.1 and equations 1.1, 1.2, and 1.3. Let's do some matrix algebra now.

$$det \begin{pmatrix} 2 & 3 & 5 \\ 4 & 4 & 6 \\ 9 & 8 & 1 \end{pmatrix} = 42 \tag{1.4}$$

In the equation and equarray environments, you don't need to have the dollar sign to enter math mode.

$$\alpha = \beta_1 \Gamma^{-1} \tag{1.5}$$

This is citing a reference [2]. This is citing another [3]. Nobody said something [1].

Chapter 2

Theorems

2.1 Basic Theorems

Theorem 2.1.1 $e^{i\pi} = -1$

Bibliography

- [1] Nobody Jr. My article, 2006.
- [2] ME. Oh, my! 1990.
- [3] Mr. X. Mr. X Knows BibTeX. AWOL, 2005.

Appendix A

Proofs of Theorems

Proof of Theorem 2.1.1

$$e^{i\pi} = \cos(\pi) + i\sin(\pi)$$
 (A.1)

$$= -1 \tag{A.2}$$